2	
3	
4	
5	
6	
/	
o a	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20 21	
22	
23	
24	
25	
26	
27	
28	
29	1
30 21	
ו כ גר	1
33	-
34	
35	1
36	
37	
38	1
39	
40	
41	1
42 43	
44	
45	1
46	-
47	
48	1
49	
50	1
51	
52	1
55 51	
55	1
56	
57	2
58	-
59	2

1

Exercise training reverses the obesity-associated increase in resting state 1 brain activity but not insulin-stimulated glucose uptake in monozygotic 2 twin pairs discordant for BMI 3 Jaakko Hentilä¹, Jouni Tuisku^{1,2}, Ronja Ojala¹, Lihua Sun^{1,3}, Martin S Lietzén¹, Heidi 4 Virtanen¹, Riikka Lautamäki⁴, Kalle Koskensalo⁵, Lauri Nummenmaa^{1,6}, Eliisa Löyttyniemi⁷, 5 Semi Helin⁸, Kirsi H Pietiläinen^{9,10}, Jaakko Kaprio¹¹, Leo Lahti¹², Tarja Malm¹³, Juha O 6 Rinne^{1,2}, Jarna C Hannukainen^{1,2} 7 8 *Corresponding author Jaakko Hentilä 9 Postal address: Turku PET Centre, 4-8 Kiinamyllynkatu, 20520 Turku 0 Contact e-mail: Jaakko Hentilä: jajhen@utu.fi .1 Contact phone: +358 505293999 2 .3 Affiliations 4 15 1. Turku PET Centre, University of Turku, Turku, Finland .6 2. Turku PET Centre, Turku University Hospital, Turku, Finland 17 8 3. Huashan Institute of Medicine, Huashan Hospital, Fudan University, Shanghai, China 4. Heart Centre, Turku University Hospital, Turku, Finland 9 5. Department of Medical Physics, Turku University Hospital, Turku, Finland 20 21 6. Department of Psychology, University of Turku, Turku, Finland

2 3	22	7.	Department of Biostatistics, University of Turku and Turku University Hospital, Turku,
4 5 6	23		Finland
7 8	24	8.	Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku,
9 10	25		Turku, Finland
11 12 13	26	9.	Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty
14 15	27		of Medicine, University of Helsinki, Finland
16 17	28	10	. Abdominal Center, Obesity Center, Endocrinology, University of Helsinki and Helsinki
18 19 20	29		University Central Hospital, Helsinki, Finland
21 22	30	11	. Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki,
23 24	31		Finland
25 26 27	32	12	. Department of Computing, University of Turku, Turku, Finland
28 29	33	13	. A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
30 31	34		
32 33 34	35	Runni	ng headline: Exercise mitigates resting state brain metabolism
35 36	36		
37 38			
39 40 41			
42 43			
44 45			
46 47			
48			
49			
50 51			
52			
53			
54			
55			
56 57			
ว/ 58			
59			
60			

ABSTRACT

39	We hypothesized that neuroinflammation drives the obesity-associated increase in brain glucose
40	uptake (BGU) and is reversed by exercise training. Twelve monozygotic twin pairs mean age 40.4
41	(SD) 4.5 years discordant for BMI (leaner mean 29.1 (SD) 6.3, heavier mean 36.7 (SD) 7.0 kg·m ⁻²)
42	performed six months long exercise intervention. Insulin-stimulated BGU, brain inflammation
43	(translocator protein (TSPO) availability) and brain resting state activity were studied by [18F]FDG-
44	PET, [¹¹ C]PK11195-PET and fMRI, respectively. Cognitive function was assessed by an online
45	survey. At baseline, heavier co-twins had worse whole-body insulin sensitivity (M-value; p<0.01),
46	GU in parietal cortex and caudatus as well as increased resting state brain activity (p<0.05) and no
47	difference in cognitive function. Leaner co-twins had higher TSPO availability in white matter and
48	hippocampus (p<0.05). Exercise improved VO _{2peak} , M-value and cognitive function similarly in
49	both groups (p<0.05) as well as decreased resting state brain activity (both, p<0.05) and had no
50	effect on BMI, BGU or brain TSPO availability. Thus, independent of genetics, obesity associates
51	with insulin-stimulated BGU and increased resting state brain activity. Furthermore, exercise
52	training reverses the obesity-associated increase in resting state brain activity and improves
53	cognitive function without an effect on insulin-stimulated BGU or TSPO availability.
54	Clinical Trial Registration Number: NCT03730610.
55	https://clinicaltrials.gov/study/NCT03730610?cond=NCT03730610&rank=1

Keywords: Brain inflammation, cognitive function, insulin resistance, positron emission tomography, resting state functional magnetic resonance imaging

INTRODUCTION

63 Obesity and physical inactivity are major risk factors for the development of insulin resistance (IR) 64 and type 2 diabetes $(T2D)^{1,2}$. Insulin resistance in peripheral tissues including skeletal muscle, 65 adipose tissue and liver followed by impaired pancreatic β -cell function play a key role in the 66 development of $T2D^{3,4}$. During the past years, several studies have highlighted the possible 67 involvement of the brain in the development of IR/T2D.^{5–8}.

Previous studies from our laboratory^{9–12} and elsewhere^{13,14} using [¹⁸F]FDG positron emission tomography (PET) imaging have shown that brain glucose uptake (BGU) is increased upon insulin stimulation in people with obesity but not in normal weight healthy controls. However, the causal paths and underlying mechanisms of the obesity-associated increased insulin-stimulated BGU are not currently understood.

Intriguingly, preclinical studies suggest that high fat diet induces brain inflammation especially in
hypothalamus which can impair normal brain function. This may subsequently contribute to the
disrupted whole-body glucose homeostasis^{15,16}. In humans, hypothalamic inflammation has been
mainly assessed from MRI-scan based analysis. Some^{17–19} but not all²⁰ of these studies suggest that
obesity is associated with hypothalamic inflammation.

Exercise has numerous health benefits such as improved whole-body insulin sensitivity, which is
mainly attributed to improved insulin-stimulated glucose uptake in skeletal muscle^{21–23}. We have
also shown that only two weeks of high intensity interval training decreased insulin-stimulated
BGU which was accompanied by improvement in whole-body insulin sensitivity in sedentary
insulin resistant humans²⁴. Furthermore, previous studies have shown that in people with morbid
obesity, a bariatric surgery-induced weight loss improves whole-body insulin sensitivity and

decreases insulin-stimulated BGU^{9,25}. Hence, in people with obesity and impaired glucose tolerance/IR, increased BGU can be reversed with different interventions that improve whole-body insulin sensitivity.

Functional MRI (fMRI) can reveal brain activity and temporal synchronisation between different brain regions and networks²⁶. The default mode network (DMN) is one of the most studied resting state networks and is activated at rest i.e. in a task free environment when individual reflects his/her inner state²⁷. Previous studies measuring resting state brain activity by fMRI have shown body adiposity-associated increases in brain regions related to DMN²⁸⁻³⁰. Furthermore, ineffective suppression of the DMN was observed in individuals with obesity during an attention requiring task, which was associated with worse cognitive performance³¹. Interestingly, six months of aerobic exercise was shown to decrease the activity of precuneus³² that is an essential node of the DMN³³. This suggests that exercise training can reverse the obesity-associated increase in resting state brain activity in regions related to DMN.

The purpose of this study was to investigate whether increased BGU in obesity associates with increased brain inflammation, impaired cognitive function and altered resting state brain activity. To control for confounding by genetic factors, we studied MZ twin pairs discordant for body 43 101 weight. We hypothesized that obesity-associated increase in BGU is associated with brain inflammation, altered resting state brain activity as well as impaired cognitive function and these changes are reversed by regular exercise training.

MATERIALS AND METHODS

6 Ethics

This study is part of a larger clinical exercise training intervention entitled "Systemic cross-talk
between brain, gut, and peripheral tissues in glucose homeostasis: effects of exercise training
(CROSSYS, NCT03730610)".

The study protocol, patient information and informed consent were approved by the Ethical
committee of the Hospital district of Southern Western Finland (100/1801/2018/438§: approval date
23.11.2018). All the participants signed a written consent. The study was conducted according to
the good clinical practices and the Declaration of Helsinki.

114 Study participants and study design

The participants were monozygotic (MZ) twin pairs (75% female, mean age 40.4 (SD) 4.5 years) discordant for BMI that were recruited from three population-based longitudinal twin cohort studies.³⁴ 116 Of the 12 recruited twin pairs that fulfilled the inclusion criteria 10 complete pairs finalised the 34 117 ³⁶ 118 exercise intervention period and participated in the post measurements (Figure 1). Both co-twin 39 119 groups were classified as non-diabetic according to American Diabetes Association (ADA) guidelines. However, of the leaner co-twins, five met the criteria for impaired fasting glucose (IFG) 41 120 43 121 and two for impaired glucose tolerance (IGT). In addition, of the heavier co-twins, seven were 122 classified to have IFG and two IGT. Monozygosity of the twin pairs was determined as previously described³⁵ and all twin pairs were Finnish of European ancestry.

124 On a screening visit day at the Turku PET centre, anthropometric measurements, a thorough health 51 52 examination and an oral glucose tolerance test (OGTT) were performed after an at least 10 h fast. In 53 125 54 55 126 addition, physical performance tests at Paavo Nurmi Centre were conducted. Baseline measurements 56 ⁵⁷ 127 were carried out after the screening visit. During the baseline measurements, functional and 58 59 ₆₀ 128 anatomical brain MRI scans and two positron emission tomography (PET) imaging studies ((R)-

2 3 129 ^{[11}C]PK11195-PET and ^{[18}F]FDG-PET) were carried out at the Turku PET centre. After the baseline 4 5 measurements, twin pairs exercised for six months. After the exercise intervention period, the same 130 6 7 measurements as at baseline were repeated³⁴ (Figure 2). 131 8 9 10 Exercise performance tests, anthropometric measurements, and training intervention 132 11 12 13 133 Cardiorespiratory capacity (VO_{2peak}) was measured by a stationary bicycle ergometer test (Ergoline 14 15 ₁₆ 134 800 s, VIASYS Healthcare, Germany) until a volitional exhaustion and body composition (whole-17 18 135 body fat percentage and lean mass) by Inbody 720 (Biospace Co, Korea) at Paavo Nurmi Centre 19 ²⁰ 136 (Turku, Finland) as previously described in detail³⁴. 21 22 23[–]137 Intervention consisted of six months of mixed type progressive training³⁴. Twin pairs exercised at 24 their place of residence four times per week and were supervised by a personal trainer once a week. 25 138 26 27 139 Training consisted of two endurance, one resistance, and one high intensity interval exercise session 28 29 29 30¹⁴⁰ per week. Participants completed training logs and wore a heart rate monitor (Polar A370, Polar, 31 32 141 Finland) in order to monitor training adherence and intensity, respectively.³⁴ 33 34 ₃₅ 142 Euglycaemic hyperinsulinemic clamp, [¹⁸F]FDG–PET/CT scan, and T1 weighted MRI scan 36 37 143 Insulin-stimulated BGU was studied during euglycaemic hyperinsulinemic clamp with [¹⁸F]FDG by 38 39 40 144 PET/CT (Discovery MI (DMI), GE Healthcare, US) and the protocol has been previously described 41 in detail³⁴. The M-value was calculated as previously described^{36,37}. After the steady-state was 42 145 43 44 achieved in the euglycemic hyperinsulinemic clamp, 150 MBq of [18F]FDG was injected to the 146 45 46 .3 47 147 antecubital vein via a catheter, and brain scanning was immediately started for 40 minutes. Plasma 48 49 148 radioactivity for the input function was measured from arterialised blood samples. 50 51 ₅₂ 149 To achieve anatomical reference images for PET and rs-fMRI analysis, T1 weighted brain MRI-53 54 150 scan was performed with Siemens Magnetom Skyra fit 3 T MRI system using a Siemens 55 ⁵⁶ 151 Head/Neck 20 channel coil (Siemens Healthcare, Erlangen, Germany) as previously described in 57 58 59 152 detail³⁴. Visceral fat mass scan and analysis protocol has been described earlier in detail^{34,37}. 60

3 [¹¹C]PK11195-PET/CT scan

TSPO availability to assess brain-specific inflammation was measured with [¹¹C]PK11195 by 60
 minutes PET-scan. The scanning was conducted in a supine position by the same scanner as
 [¹⁸F]FDG-PET. Approximately 350 MBq of tracer was injected to the antecubital vein via a catheter
 and scanning was initiated immediately after the injection.³⁴

158 PET-image analysis and modelling

The obtained raw [¹⁸F]FDG-PET and [¹¹C]PK11195-PET-images were corrected for attenuation,
dead time and decay. The block sequential regularized expectation maximization algorithm with
BETA factor 150 for [¹⁸F]FDG and 350 for [¹¹C]PK11195 were used to reconstruct the images.
For both radioligand data, PET images were processed using MAGIA pipeline³⁸ in MATLAB (The
Mathworks, Natick, MA), where PET data were first realigned frame-by-frame and co-registered to
individual T1 weighted MRI images using SPM12 software (Wellcome Trust Centre for
Neuroimaging, London, UK). Next, [¹⁸F]FDG and [¹¹C]PK11195-PET kinetic modelling was
carried out for ROIs (whole brain, cortical grey matter, white matter, frontal cortex, parietal cortex,
temporal cortex, occipital cortex, cingular cortex, posterior cingulate cortex, precuneus,
hippocampus, putamen, thalamus and caudatus) that were parcellated using FreeSurfer software
(version 6.0.0, <u>http://freesurfer.net/</u>). For [¹⁸F]FDG-PET data, brain glucose uptake was quantified
using arterial input Patlak method for 15–40 minute period.
For [¹¹C]PK11195-PET data, regional TSPO availability was quantified as a distribution volume
ratio (DVR), estimated with Logan's method within 20–60 minutes, using pseudoreference region
obtained using clustered reference algorithm ³⁹. In addition, parametric binding potential (BP_{ND})

images were calculated using a basis function implementation of simplified reference tissue model

⁶ with 250 basis functions. The resulting parametric maps were further normalized into MNI152

²⁸ space in SPM12 and smoothed with Gaussian 8 mm FWHM filter.

177 Resting state fMRI

Resting state functional MRI data, to measure resting brain activity from BOLD signal, was
 acquired as previously described³⁴. The scan was conducted twice and the participants had eyes
 open during the scan. A total of 197 functional volumes were acquired per scan and the mean of
 two scans was used for the analysis.

We used fMRIPrep 23.1.4 to preprocess the fMRI data⁴⁰. Anatomical T1 weighted reference images ₁₆ 182 18 183 were processed with following steps: correction for intensity non-uniformity, skull-stripping, brain 184 surface reconstruction, spatial normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c⁴¹ using nonlinear registration with antsRegistration (ANTs 2.2.0), and brain tissue 185 segmentation. fMRI data were processed with following steps: co-registration to the T1 weighted 25 186 ²⁷ 187 reference image, slice-time correction, spatial smoothing with a 6-mm Gaussian kernel, automatic removal of motion artifacts using ICA-AROMA⁴², and resampling to the MNI152NLin2009cAsym 188 standard space. Quality of images was assessed via the visual reports of fMRIPrep and was 32 189 34 190 inspected manually in accord to the whole-brain field of view coverage, proper alignment to the anatomical images, and signal artifacts. All functional data were retained in the analysis. 191

192 **Cognitive function test**

Cognitive function was assessed by an online survey using Gorilla Experiment Builder (gorilla.sc) 42 193 194 by a standard desktop computer in a quiet room³⁴. The survey consisted of tasks that measure 46 .5 47 195 working memory (N-back tasks with N=1 and N=2, digit span text entry), memory encoding and 48 retrieval with CERAD Word List Memory task type test, vigilance, simple reaction time, and fluid 49 196 50 ⁵¹ 197 intelligence with The matrix reasoning item bank (MaRs-IB) which is a modified open-source 52 ⁵³ 54 198 variant of the Raven's progressive matrices test. Emotional sensitivity was measured by asking 55 56 199 subjects to report their feelings of valence (pleasure-displeasure) and arousal to a set of pleasant, 57 58 200 unpleasant and neutral pictures derived from the International Affective Picture system (IAPS). The 59 ⁶⁰ 201 detailed protocol is described in supplementary file 1.

2 3 202 4 5 6 7 8 9 10 11 205 12 13 206 14 15 16 17 208 18 19 20 209 21 ²² 210 23 24 25⁻¹211 26 27 212 28 ²⁹ 213 30 31 214 32 33 34 215 35 36 216 37 38 217 39 40 ... 41 218 42 43 219 44 ⁴⁵ 220 46 47 221 48 49 50 222 51 52 223 53 54 55 224 56 57 225 58 59 60

Statistical analysis

The normal distribution of the data was evaluated visually from Q-Q plots and histograms as well as 203 studentized residuals from the model. Logarithmic (Log10) and square root transformations were 204 carried out to achieve normal distribution, when necessary. The transformations are noted by special characters in table and figure legends when appropriate. Data in figures and tables are 207 represented as model based means and 95 % confidence intervals. Pearson's correlation coefficient was used to determine the association between the variables. Statistical tests were performed by SAS System (version 9.4 for Windows SAS Institute, Cary, NC, USA) as two-sided, and p-values less than 0.05 were considered as statistically significant. Statistical analyses were conducted using a linear mixed model for repeated time points using compound symmetry covariance structure. The model included twin as a statistical unit, time (PRE and POST intervention) and twin group (leaner and heavier co-twin) as within-factors and their interaction term (time x group). Used estimation was restricted maximum likelihood which also allows participants with the missing data to be included. If there was a significant time x group effect, same model was used to determine the within twin-group effects over time. The baseline difference between the co-twins was estimated from the same model using pre intervention data. For the rs-fMRI data, general linear model (GLM) was used to map resting-state network features to activation z-scores. At the first (within-twin) level analysis, the effect of higher BMI at baseline (heavier vs. leaner co-twin at baseline) and exercise training intervention (Pre vs. Post) were involved in the model. This was done to generate contrast images for the (time x group) interaction effect as well as for the main effect of exercise training (time-effect). Furthermore, the main effect of training was assessed within heavier and leaner cotwins as there was a group x time interaction effect in BOLD activity. Thereafter, contrast images were subjected to second-level analyses.

RESULTS

Anthropometrics, physical fitness, glucose and lipid profile

At baseline, heavier co-twins had significantly higher body adiposity (difference 33 %, p<0.001) as well as lower cardiorespiratory fitness (VO_{2peak}) (difference 27 %, p=0.003) and whole-body insulin sensitivity (difference 63 %, p=0.007) (M-value) compared with their leaner co-twins (Table 1). Furthermore, heavier co-twins had a worse blood glucose homeostasis profile compared with their leaner co-twins.

Exercise intervention improved cardiorespiratory fitness (9.4 %, p=0.001) and M-value (29.4 %, p=0.022) as well as lowered systolic (9.7 mmHg, p=0.011) and diastolic (5.8 mmHg, p=0.017) blood pressure similarly in leaner and heavier co-twins (Table 1). However, exercise training had no effect on whole-body fat percentage (p=0.370). However, visceral fat mass tended to decrease on average in the whole study sample (0.27 kg, p=0.067), and the decrease was statistically significant only within heavier co-twins (0.37 kg, p=0.029) (Table 1).

240 Insulin-stimulated brain glucose uptake

At baseline, heavier co-twins had higher BGU globally in each ROI-set but the difference reached statistical significance in parietal cortex (difference 11 %, p=0.032) and caudatus (difference 9 %, p=0.043; Figures 3A–C) and there was strong tendency in precuneus, cortical grey matter, frontal cortex and posterior cingulate cortex (difference 9–10 %, p=0.058–0.081) (data not shown).

51 245 Exercise training had no effect on BGU.

53 246 Brain inflammation measured by TSPO availability

At baseline, opposite to our initial hypothesis, leaner co-twins had higher TSPO availability at
 white matter (2.2 % difference, p=0.031) and hippocampus (3.2 % difference, p=0.032) (Figures

4A–C). Interestingly, TSPO availability in hippocampus, white matter and whole brain correlated positively with M-value and VO_{2peak} as well as negatively with CRP, BMI and visceral fat mass (Supplementary file 2).

11 252 **Resting state-functional MRI**

At baseline, heavier co-twins demonstrated higher resting state brain activity (BOLD signal) in the ₁₄ 253 precuneus that is a key node of brain DMN (Figure 5A). Exercise training intervention decreased 16 254 resting state brain activity in medial prefrontal cortex, precuneus and insula (Figure 5B) and interestingly, the training response was different between the groups (Figure 5C) showing 23 257 statistically significant decrease only in heavier co-twins (Figure 5D).

₂₆ 258 **Cognitive function**

₂₉ 259 At baseline, there was no difference in cognitive performance between the leaner and heavier cotwins (Supplementary file 2). Exercise training intervention improved performance in memory 31 260 encoding and retrieval on average by 8 % (p<0.05, Figures 6A-C) as well as in fluid intelligence ₃₆ 262 tests on average by 14 % (p<0.05, Figures 6D & E) similarly in leaner and heavier co-twins. When participants were shown pleasant pictures, exercise intervention shifted the emotional reaction 38 263 ⁴⁰ 264 towards agitation more in heavier co-twins (p=0.034) compared with their leaner co-twins (time x group: p=0.038, Figure 6F).

DISCUSSION

This study on MZ pairs discordant for body weight showed that independent of genetics, higher BMI is associated with higher insulin-stimulated BGU. This result was accompanied by increased resting brain activity. Intriguingly, this increase in brain activity observed in heavier co-twins was reversed by exercise intervention that also improved memory encoding, fluid intelligence, cardiorespiratory fitness, and whole-body insulin sensitivity but had no effect on body weight. Contrary to our initial hypothesis, the increased insulin-stimulated BGU in caudatus and parietal cortex was not reversed by exercise training. Additionally, BGU did not associate with TSPO availability which was measured to assess inflammation. Vice versa, we observed that TSPO availability in white matter and hippocampus was increased in leaner co-twins compared with their heavier co-twins.

Previous studies have shown that BGU is increased upon insulin stimulation in people with obesity and insulin resistance but not in normal weight people^{9,10}. Furthermore, increased insulin-stimulated BGU has been associated with worse whole-body insulin sensitivity¹¹⁻¹⁴ but the underlying mechanism has remained unknown. The increase in insulin-stimulated BGU in previous studies has been global across the whole brain^{9,10} but there has been also regional differences. For example, Tuulari et al. found that upon insulin-stimulation the increase in BGU was highest in right caudate nucleus⁹. In the current study, we showed that independent of genetics increased BMI resulted in higher insulin-stimulated BGU in all analysed regions, but the difference was statistically significant only in caudate nucleus and parietal cortex. This aligns to some extent with the results by Tuulari et al. and might suggest the caudate nucleus being most sensitive to obesity-associated changes. The reason for not reaching statistical significance in all brain regions may be due to the lack of statistical power due to limited sample size.

Even though we saw obesity-associated region specific increase in insulin-stimulated BGU, 291 exercise intervention did not decrease BGU in these regions in neither of the twin groups. We have 292 previously shown that only two weeks of high intensity interval training decreases insulin-293 stimulated BGU in middle aged people with insulin resistance²⁴. Furthermore, Tuulari et al. has 295 shown decreased BGU in people with morbid obesity after bariatric surgery⁹. In both of these previous studies, the intervention induced a decrease in weight loss, whereas this was not observed 296 in the current study. Furthermore, the participants in the previous studies had more advanced insulin resistance compared to participants in our study and thus may respond to the intervention more 298 effectively. 299

Preclinical^{15,16} and some¹⁷⁻¹⁹ but not all²⁰ clinical studies have suggested that high fat diet and 300 27 301 obesity induces inflammation in brain, especially in hypothalamus. Thus, we hypothesised that the increased insulin-stimulated BGU observed in previous studies9-13 could be an obesity-induced ²⁹ 302 neuroinflammatory response. In the present study we measured neuroinflammation with PET-303 imaging using radio tracer [¹¹C]PK11195⁴³. This radioligand binds to TSPO protein that has been 34 304 36 305 mainly found in microglia and macrophages but also in astrocytes in human brain. In normal nondiseased brain, TSPO expression is very low. However, upon pro-inflammatory stimuli, the 306 41 307 expression of TSPO increases in microglia and astrocytes as they activate and change their phenotype^{44,45}. Thus, hypothetically, as brain-resident astrocytes and microglias respond to obesity-43 308 ⁴⁵ 309 induced pro-inflammatory stimulus, their energy expenditure and abundance would increase which would be reflected as an increased BGU. This hypothesis is supported by a previous preclinical 310 ^{[18}F]FDG-PET-study showing that astrocytes also contribute to the brain ^{[18}F]-FDG signal in 50 311 52 31**2** addition to the glucose uptake by neurons⁴⁶. In addition, preclinical studies suggest that high fat diet 54 55 313 induced-obesity increases the amount of astrocytes in mouse brain^{47,48}.

However, contrary to our initial hypothesis, we showed that leaner co-twins had higher TSPO availability in white matter and hippocampus. Furthermore, we found that whole brain TSPO 60 315

availability correlated negatively with BMI, CRP and visceral fat mass and positively with whole-316 body insulin sensitivity and VO_{2neak}. Thus, based on this data, higher TSPO availability was 317 associated with biomarkers of better metabolic health. This result aligns with a previous study 318 10 319 investigating the association between TSPO availability and BMI. By combining brain scans from 11 12 320 three different PET centres, thus yielding a study sample of n=140, the authors were able to show a 13 14 significant negative correlation between BMI and TSPO availability measured with [11C]PBR49 that 321 15 16 17 322 is a second generation TSPO radioligand. Because TSPO is a mitochondrial protein with many 18 19 functions such as cholesterol transport, steroid hormone synthesis and mitochondrial respiration⁵⁰, it 323 20 21 may be speculated that obesity decreases mitochondrial content or functional properties also in the 324 22 23 24 325 brain. The derangement of the mitochondrial function is a common feature observed in peripheral 25 ²⁶ 326 tissues in people with obesity and contribute to whole-body insulin resistance⁵¹. Overall, our study 27 28 combined with the previous study suggests that TSPO availability in healthy adults without brain 327 29 30 31 328 abnormalities is linked to better metabolic health. Even though exercise training in the current study 32 33 329 improved whole-body insulin sensitivity and cardiorespiratory fitness, it had no effect on brain 34 35 330 TSPO availability. Whether a substantial body weight or fat loss would increase brain TSPO 36 37 ₃₈ 331 availability should be addressed in the future. 39

.. 41 332 A recent study showed that during neuroinflammation, TSPO expression is only increased in certain rodent species including rat and mouse but not in humans⁵². This study emphasized that TSPO 43 333 ⁴⁵ 334 signal in human neuroinflammation studies should be interpreted as a change in glial cell density rather than activation of glial cells. 335

Interestingly, we showed that heavier co-twins had higher brain activity at resting state at baseline 336 53 337 in DMN specific brain regions, specifically in precuneus. Insulin-stimulated BGU also tended to be 55 338 higher in precuneus in heavier co-twins. Thus, this suggest that the higher BGU observed in heavier 57 58 339 co-twins may reflect increased energy need due to higher brain activity at resting state. This

60

40

42

44

46 47

1 2 3

4 5

6 7

hypothesis is supported by findings from Passow and colleagues who also showed positive

correlation between BGU and resting state brain activity (BOLD signal measured by fMRI)⁵³. The obesity-associated increase in resting state brain activity observed in the present study aligns with previous studies showing that brain activity in regions related to DMN are more active in people with obesity compared to age- and sex-matched normal-weight controls²⁸⁻³⁰. Our study adds to the current literature that obesity, independent of genetics, induces increased brain activity in DMN specific brain areas. We also showed that the exercise intervention decreased brain activity at resting state more in heavier co-twins compared to their leaner co-twins which is also in line with a previous study³² showing that six months of exercise decreased activity in the precuneus in overweight participants. Previous literature suggests that obesity is associated with worse cognitive function, especially executive function and working memory⁵⁴. Even though cognitive performance did not differ between groups at baseline in the present study, exercise intervention improved memory encoding and retrieval in CERAD type word list task without difference between heavier and leaner co-twins. In addition, the performance in the task that measured fluid intelligence was improved by exercise training. The benefits of exercise on cognitive function are previously widely shown⁵⁵. The important notion from this study is that exercise without weight loss is also beneficial for cognitive function and is not limited to older populations with mild or more severe cognitive impairment. However, we cannot rule out the learning effect in this study because we did not have a control group and the cognitive test survey was similar before and after the intervention. One possible mechanism for the improved cognitive performance induced by exercise training may be mediated by exerkine called brain derived neural factor (BDNF) that has been shown to increase post exercise⁵⁶. Upon its delivery to the brain, it induces among other functions, neurogenesis which is postulated to be beneficial for the brain and cognitive function⁵⁷. Another possible explanation for the improved cognitive function after exercise training may be improved ability to switch from

resting state network (e.g. from DMN) to task related/attention requiring brain network³¹. To indirectly support this postulation, we showed that exercise training decreased brain activity at resting state in regions that are part of DMN (medial prefrontal cortex, precuneus and insula) and this effect was larger in heavier co-twins compared to their leaner co-twins. However, to fully confirm this hypothesis, we should have measured brain activity by fMRI while changing the test environment from rest to cognitive tasks.

The strength of this study is that we were able to study the effect of increased body weight while controlling for genetic factors by studying MZ-twin pairs discordant for BMI. Furthermore, the exercise intervention was well planned which manifested as high training adherence (approximately 80 %) as well as improved cardiorespiratory fitness and whole-body insulin sensitivity. In addition, we highlight that the changes induced by the intervention are not confounded by body weight loss. We also used state of the art methods to measure non-invasively insulin stimulated BGU.

32 377 The limitation of this study is that, even though there was a substantial mean level BMI-difference 378 (7.6 kg/m^2) between leaner and heavier co-twins, there was heterogeneity between the twin pairs ₃₇ 379 which may cause confounding variability into the data. More precisely, in some twin pairs both individuals were with obesity, and in one twin-pair both were only overweight and close to be 39 380 normal weight. In addition, on average the leaner co-twins were overweight. Ideally, in this study, 381 .3 44 382 the intra-pair difference in each pair would have been as high as possible and the BMI of the leaner co-twins would have been $< 25 \text{ kg/m}^2$ and that of heavier co-twins $> 25 \text{ kg/m}^2$. Moreover, the total 46 383 ⁴⁸ 384 number of twin-pairs in this study was smaller than we aimed to, and some measurements were not successful which yielded as modest sample size. Furthermore, in the light of new evidence⁵², the 385 ¹¹C]PK11195 is not optimal radiotracer to measure neuroinflammation in human brain. 53 386

To conclude, this study showed that independent of genetic factors, obesity is associated with increased insulin-stimulated glucose uptake in caudatus and parietal cortex which is accompanied by increased resting state brain activity in regions that are part of default mode network. Regular

1 2		
3 4	390	exercise training reverses the obesity-associated increase in resting state brain activity and improves
5 6	391	cognitive function, but has no effect on brain insulin-stimulated glucose uptake or TSPO
7 8	392	availability.
3 9 1 1 1		Considential: tor Review Ont

Acknowledgments

The authors thank the volunteers that participated in the study, the staff of the Turku PET centre and Paavo Nurmi Centre, University of Turku for their brilliant assistance. We thank Ekaterina Saukko PhD Department of Radiology, Turku University Hospital, Turku, Finland for her expertise and assistance in conducting the MRI scans. We thank Vesa Oikonen for the assistance in the [¹⁸F]FDG-PET data modelling.

400 Author contribution statement

Planning of the study design (JCH, TM, LL and JOR). Participant recruitment and data collection
(JH, RO, MSL). PET-data analysis (JT and JH). Resting state-fMRI data analysis (LS and JH).
Planning the cognitive function test (LN). Planning of the statistical analyses (EL). Responsible
physician (RL). MRI scans (KK). Visceral fat mass analysis (HV). Radiotracer production
[¹¹C]PK11195 (SH). Responsible of the twin cohort (KHP and JK). JH wrote the first manuscript
which was then revised by JCH. The revised version of the manuscript was read, commented and
approved by all authors.

38 408 Declaration of conflicting interest

41 409 The authors declared no potential conflicts of interest with respect to the research, authorship,
 43 410 and/or publication of this article.

46 411 Sentence regarding supplementary information on JCBFM website

Pearson correlation coefficients for the TSPO availability and main outcome measures as well as
 complete results of the cognitive function tests are provided in supplementary files 1 and 2,
 respectively

57 415 STATEMENTS AND DECLARATIONS

60 416 Ethical considerations

1 2	
2 3 417 4	The study protocol, patient information and informed consent were approved by the Ethical
5 6 418	committee of the Hospital district of Southern Western Finland (100/1801/2018/438§: approval date
7 8 419	23.11.2018). The study was conducted according to the good clinical practices and the Declaration
9 10 420 11	of Helsinki.
12 13 421 14	Consent to participate
15 16 422 17	All the participants signed a written consent to participate in the study and the written consents are
18 423 19	held by the researchers in University's facilities.
20 21 424 22	Consent for publication
23 24 425 25	All the participants signed a written consent to publish their results and the written consents are held
26 27 28	by the researchers in the University's facilities.
29 30 21	Funding statement
³¹ ³² 33	This study is financially supported by: Academy of Finland (JCH decision 317332), Hospital
34 35 429	District of Southwest Finland, the Finnish cultural foundation (JCH, JH and MSL), Kyllikki and
36 37 430 38	Uolevi Lehikoinen foundation (JH), the Diabetes research foundation of Finland (JCH, JH, RO and
³⁹ 431 40	MSL), Varsinais-Suomi Regional Fund (JCH, RO and JH), Maud Kuistila memorial foundation
41 42 432	(JH), Maija and Matti Vaskio Foundation (MSL), Emil Aaltonen Foundation (MSL), the Turku
43 44 433 45	Finnish University Society (RO), Turku University Foundation (RO) and University of Turku
46 434 47	Doctoral Programmes in Clinical Research (RO). JK has been supported by the Academy of
48 49 50	Finland Center of Excellence in Complex Disease Genetics (grant # 352792 to Jaakko Kaprio).
⁵¹ 436 52	Data availability
54 55 437	The dataset generated and analysed during the current study are not publicly available in order to
56 57 438 58	protect the individual privacy. However, the data is available from the corresponding author on a

1 2		
3 4	439	reasonable request for researchers who have institutional review board/ethics approval and an
5 6	440	institutionally approved study plan.
7 8		
9	441	
11		
12 13		
14 15		
16 17		
18		
20		
21 22		
23 24		
25 26		
27		
29		
31		
32 33		
34 35		
36 37	1	
38 39	1	
40 41	I	
42		
44		
45 46		
47 48		
49 50	1	
51 52		
53 54		
55		
57		
58 59		
60	1	

2			
³ 442	REF	REFERENCES	
4			
5			
° 443 7			
8			
9 444	1	Chatteriee S Khunti K Davies MJ Type 2 diabetes Lancet 2017: 389: 2239–2251	
10	1		
11			
12 445	2	Hruby A, Hu FB. The Epidemiology of Obesity: A Big Picture. <i>Pharmacoeconomics</i> 2015;	
13			
¹⁴ 15 446		33 : 673–689.	
15			
10	-		
17 447	3	Reed J, Bain S, Kanamarlapudi V. A Review of Current Trends with Type 2 Diabetes	
19			
20 448		Epidemiology, Aetiology, Pathogenesis, Treatments and Future Perspectives. <i>Diabetes</i> ,	
21			
22 449		<i>Metab Syndr Obes</i> 2021; 14 : 3567–3602.	
23			
24	4	James DE Stäaldi I Dimbaum MI The esticle sy and melecular landscope of insulin	
25 450 26	4	James DE, Stockii J, Birnbaum MJ. The actiology and molecular landscape of msunn	
20		notistance Net Day Mal Call Di 10021, 22, 751, 771	
28 28		resistance. Nai Rev Moi Cell Biol 2021, 22: 751–771.	
29			
³⁰ 452	5	Tschritter O. Preissl H. Hennige AM. Stumvoll M. Porubska K. Frost R et al. The	
31			
³²		cerebrocortical response to hyperinsulinemia is reduced in overweight humans. a	
33			
34 35 454		magnetoencephalographic study <i>Proc Natl Acad Sci US A</i> 2006: 103 : 12103–12108	
36			
37			
₃₈ 455	6	Reno CM, Puente EC, Sheng Z, Daphna-Iken D, Bree AJ, Routh VH et al. Brain GLUT4	
39			
40 456		Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and	
41			
⁴² 457		Impaired Hypoglycemic Counterregulation. <i>Diabetes</i> 2017; 66: 587–597.	
43 11			
45	7		
46 458	/	Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for	
47			
48 ⁴⁵⁹		inhibition of glucose production. Nat Med 2002; 8: 1376–1382.	
49			
50 - 460	8	Parton LE, Ye CP, Connari R, Enriori PL Choi B, Zhang CY <i>et al.</i> Glucose sensing by	
51 400	0	r arton EE, re er, copparrie, Enrierre, ener D, Enang er er ar. Gracobe bensnig by	
52 53 /61		POMC neurons regulates glucose homeostasis and is impaired in obesity <i>Nature</i> 2007: 449 :	
53 4 01 54		Towie neurons regulates glacose nonicostasis and is imparted in obesity. <i>Nature</i> 2007, 449.	
55 167		228-232	
56			
57			
⁵⁸ 463	9	Tuulari JJ, Karlsson HK, Hirvonen J, Hannukainen JC, Bucci M, Helmiö M et al. Weight	
59			
60			

2 3 464 4		loss after bariatric surgery reverses insulin-induced increases in brain glucose metabolism of
5 6 465 7		the morbidly obese. <i>Diabetes</i> 2013; 62 : 2747–2751.
8 9 466	10	Hirvonen J, Virtanen KA, Nummenmaa L, Hannukainen JC, Honka M-J, Bucci M et al.
10 11 467		Effects of insulin on brain glucose metabolism in impaired glucose tolerance. <i>Diabetes</i> 2011;
12 13 468 14 15		60 : 443–447.
16 469 17	11	Rebelos E, Bucci M, Karjalainen T, Oikonen V, Bertoldo A, Hannukainen JC et al. Insulin
¹⁸ 470 19		Resistance Is Associated With Enhanced Brain Glucose Uptake During Euglycemic
20 21 471 22		Hyperinsulinemia: A Large-Scale PET Cohort. Diabetes Care 2021; 44: 788–794.
23 24 472	12	Pekkarinen L, Kantonen T, Rebelos E, Latva-Rasku A, Dadson P, Karjalainen T et al.
26 473 27		Obesity risk is associated with brain glucose uptake and insulin resistance. Eur J Endocrinol
²⁸ 474 29 30		2022; 187: 917–928.
³¹ 475 32	13	Boersma GJ, Johansson E, Pereira MJ, Heurling K, Skrtic S, Lau J et al. Altered Glucose
³³ 34 476		Uptake in Muscle, Visceral Adipose Tissue, and Brain Predict Whole-Body Insulin
35 36 477		Resistance and may Contribute to the Development of Type 2 Diabetes: A Combined
37 38 478 39		PET/MR Study. <i>Horm Metab Res = Horm und Stoffwechselforsch = Horm Metab</i> 2018; 50 :
40 41 42		627–639.
43 44 480	14	Eriksson JW, Visvanathar R, Kullberg J, Strand R, Skrtic S, Ekström S et al. Tissue-specific
45 46 481		glucose partitioning and fat content in prediabetes and type 2 diabetes: whole-body
47 48 482 49		PET/MRI during hyperinsulinemia. Eur J Endocrinol 2021; 184: 879–889.
50 51 483 52	15	De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC et al.
53 484 54		Consumption of a fat-rich diet activates a proinflammatory response and induces insulin
55 56 485 57		resistance in the hypothalamus. <i>Endocrinology</i> 2005; 146 : 4192–4199.
58 59 486 60	16	Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A et al.

Page 27 of 41

	Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in
	rats fed a high-fat diet. Am J Physiol Endocrinol Metab 2009; 296: E1003-12.
17	Puig J, Blasco G, Daunis-i-Estadella J, Molina X, Xifra G, Ricart W et al. Hypothalamic
	Damage Is Associated With Inflammatory Markers and Worse Cognitive Performance in
	Obese Subjects. J Clin Endocrinol Metab 2015; 100: E276–E281.
18	Thaler JP, Yi C-X, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO et al. Obesity is
	associated with hypothalamic injury in rodents and humans. J Clin Invest 2012; 122: 153-
	162.
19	Schur EA, Melhorn SJ, Oh S-K, Lacy JM, Berkseth KE, Guyenet SJ et al. Radiologic
	evidence that hypothalamic gliosis is associated with obesity and insulin resistance in
	humans. <i>Obesity</i> 2015; 23 : 2142–2148.
20	Rebelos E, Hirvonen J, Bucci M, Pekkarinen L, Nyman M, Hannukainen JC et al. Brain free
	fatty acid uptake is elevated in morbid obesity, and is irreversible 6 months after bariatric
	surgery: A positron emission tomography study. <i>Diabetes Obes Metab</i> 2020; 22: 1074–1082.
21	Eskelinen J-J, Heinonen I, Löyttyniemi E, Saunavaara V, Kirjavainen A, Virtanen KA et al.
	Muscle-specific glucose and free fatty acid uptake after sprint interval and moderate-
	intensity training in healthy middle-aged men. J Appl Physiol 2015; 118: 1172–1180.
22	Sjöros T, Heiskanen MA, Motiani KK, Löyttyniemi E, Eskelinen J-J, Virtanen KA et al.
	Increased insulin-stimulated glucose uptake in both leg and arm muscles after sprint interval
	and moderate intensity training in subjects with Type 2 Diabetes or Prediabetes. Scand J Med
	<i>Sci Sport</i> 2018; 28 : 77–87.
23	Ruegsegger GN, Booth FW. Health Benefits of Exercise. Cold Spring Harb Perspect Med
	2018; 8. doi:10.1101/cshperspect.a029694.
	17 18 19 20 21 22

1 2			
3 5 4	10	24	Honkala SM, Johansson J, Motiani KK, Eskelinen JJ, Virtanen KA, Löyttyniemi E et al.
5 6 5	11		Short-term interval training alters brain glucose metabolism in subjects with insulin
7 8 5 9	12		resistance. J Cereb Blood Flow Metab 2018; 38: 1828–1838.
10 11 5	13	25	Rebelos E, Immonen H, Bucci M, Hannukainen JC, Nummenmaa L, Honka M-J et al. Brain
12 13 5 14	14		glucose uptake is associated with endogenous glucose production in obese patients before
15 16	15		and after bariatric surgery and predicts metabolic outcome at follow-up. Diabetes Obes
17 18 5 19	16		<i>Metab</i> 2019; 21 : 218–226.
20 21 5	17	26	Barkhof F, Haller S, Rombouts SARB. Resting-State Functional MR Imaging: A New
22 23 5 24	18		Window to the Brain. Radiology 2014; 272: 29–49.
25 26 5	19	27	Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy,
27 28 5 29	20		function, and relevance to disease. Ann NY Acad Sci 2008; 1124: 1–38.
30 31 5	21	28	Tregellas JR, Wylie KP, Rojas DC, Tanabe J, Martin J, Kronberg E <i>et al.</i> Altered default
32 33 34 5	22		network activity in obesity. <i>Obesity (Silver Spring)</i> 2011; 19 : 2316–2321.
35			
36 37 30	23	29	Kullmann S, Heni M, Veit R, Ketterer C, Schick F, Häring H-U et al. The obese brain:
38 39 5 40	24		association of body mass index and insulin sensitivity with resting state network functional
41 5 42	25		connectivity. <i>Hum Brain Mapp</i> 2012; 33 : 1052–1061.
43 44 5 45	26	30	Doucet GE, Rasgon N, McEwen BS, Micali N, Frangou S. Elevated Body Mass Index is
46 47	27		Associated with Increased Integration and Reduced Cohesion of Sensory-Driven and
48 49 5 50	28		Internally Guided Resting-State Functional Brain Networks. Cereb Cortex 2018; 28: 988–
51 5 52	29		997.
53 54 5 55	30	31	Syan SK, Owens MM, Goodman B, Epstein LH, Meyre D, Sweet LH et al. Deficits in
56 5 57	31		executive function and suppression of default mode network in obesity. NeuroImage Clin
58 59 60	32		2019; 24 : 102015.

Page 29 of 41

2		
³ 533 4	32	McFadden KL, Cornier M-A, Melanson EL, Bechtell JL, Tregellas JR. Effects of exercise on
5 6 534		resting-state default mode and salience network activity in overweight/obese adults.
7 8 535 9		Neuroreport 2013; 24: 866–871.
10 11 536 12	33	Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and
13 537 14 15		behavioural correlates. Brain 2006; 129: 564–583.
16 538 17	34	Heiskanen MA, Honkala SM, Hentilä J, Ojala R, Lautamäki R, Koskensalo K et al. Systemic
¹⁸ 539 19		cross-talk between brain, gut, and peripheral tissues in glucose homeostasis: effects of
20 21 540		exercise training (CROSSYS). Exercise training intervention in monozygotic twins
22 23 541 24 25		discordant for body weight. BMC Sport Sci Med Rehabil 2021; 13: 16.
26 542 27	35	Heinonen S, Saarinen L, Naukkarinen J, Rodríguez A, Frühbeck G, Hakkarainen A et al.
28 543 29		Adipocyte morphology and implications for metabolic derangements in acquired obesity. Int
30 31 544 32		J Obes 2014; 38 : 1423–1431.
³³ 34 545	36	DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying
35 36 546 37		insulin secretion and resistance. Am J Physiol 1979; 237: E214–E223.
38 39 547 40	37	Ojala R, Hentilä J, Lietzén MS, Arponen M, Heiskanen MA, Honkala SM et al. Bone
40 41 548 42		marrow metabolism is affected by body weight and response to exercise training varies
⁴³ 549 44 45		according to anatomical location. <i>Diabetes Obes Metab</i> 2024; 26: 251–261.
46 47 550	38	Karjalainen T, Tuisku J, Santavirta S, Kantonen T, Bucci M, Tuominen L et al. Magia:
48 49 551		Robust Automated Image Processing and Kinetic Modeling Toolbox for PET
50 51 552 52		Neuroinformatics. Front Neuroinform 2020; 14: 3.
53 54 553	39	Schubert J, Tonietto M, Turkheimer F, Zanotti-Fregonara P, Veronese M. Supervised
55 56 554 57 58		clustering for TSPO PET imaging. Eur J Nucl Med Mol Imaging 2021; 49: 257–268.
59 555 60	40	Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A et al. fMRIPrep: a

2 3 556 4		robust preprocessing pipeline for functional MRI. Nat Methods 2019; 16: 111-116.
5 6 557 7	41	Fonov VS, Evans AC, McKinstry RC, Almli CR, Collins DL. Unbiased nonlinear average
8 9 558		age-appropriate brain templates from birth to adulthood. NeuroImage, suppl Suppl 1 2009;
10 11 559 12		47. doi:https://doi.org/10.1016/S1053-8119(09)70884-5.
13 14 560 15	42	Pruim RHR, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA-AROMA:
16 561 17		A robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage
¹⁸ 562 19 20		2015; 112 : 267–277.
²¹ 563 22	43	Cagnin A, Kassiou M, Meikle SR, Banati RB. Positron emission tomography imaging of
23 24 564 25		neuroinflammation. Neurother J Am Soc Exp Neurother 2007; 4: 443–452.
26 27 565	44	Chen M-K, Guilarte TR. Translocator protein 18 kDa (TSPO): molecular sensor of brain
28 29 566 30		injury and repair. <i>Pharmacol Ther</i> 2008; 118 : 1–17.
31 32 567	45	Cosenza-Nashat M, Zhao M-L, Suh H-S, Morgan J, Natividad R, Morgello S et al.
34 568 35		Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes
³⁶ 37 569		based on immunohistochemical localization in abnormal human brain. Neuropathol Appl
38 39 570 40		<i>Neurobiol</i> 2009; 35 : 306–328.
41 42 571	46	Zimmer ER, Parent MJ, Souza DG, Leuzy A, Lecrux C, Kim H-I et al. [(18)F]FDG PET
43 44 572 45		signal is driven by astroglial glutamate transport. <i>Nat Neurosci</i> 2017; 20 : 393–395.
46 47 573 48	47	Jones NS, Watson KQ, Rebeck GW. High-fat diet increases gliosis and immediate early gene
49 50 51		expression in APOE3 mice, but not APOE4 mice. J Neuroinflammation 2021; 18: 214.
⁵² 575 53	48	Delle C, Cankar N, Digebjerg Holgersson C, Hvorup Knudsen H, Schiøler Nielsen E,
⁵⁴ 55 576		Kjaerby C et al. Long-term high-fat diet increases glymphatic activity in the hypothalamus in
56 57 577 58		mice. <i>Sci Rep</i> 2023; 13 : 4137.
59 60 578	49	Tuisku J, Plavén-Sigray P, Gaiser EC, Airas L, Al-Abdulrasul H, Brück A et al. Effects of

1 2		
3 579 4		age, BMI and sex on the glial cell marker TSPO - a multicentre [(11)C]PBR28 HRRT PET
5 6 7		study. Eur J Nucl Med Mol Imaging 2019; 46: 2329–2338.
8 9 581	50	Lee Y, Park Y, Nam H, Lee J-W, Yu S-W. Translocator protein (TSPO): the new story of the
10 11 582 12		old protein in neuroinflammation. BMB Rep 2020; 53: 20–27.
13 14 583 15	51	Heinonen S, Jokinen R, Rissanen A, Pietiläinen KH. White adipose tissue mitochondrial
16 584 17		metabolism in health and in obesity. Obes Rev an Off J Int Assoc Study Obes 2020; 21:
¹⁸ 585 19 20		e12958.
²¹ 586 22	52	Nutma E, Fancy N, Weinert M, Tsartsalis S, Marzin MC, Muirhead RCJ et al. Translocator
23 24 587		protein is a marker of activated microglia in rodent models but not human neurodegenerative
25 26 588 27 28		diseases. Nat Commun 2023; 14: 5247.
28 29 589 30	53	Passow S, Specht K, Adamsen TC, Biermann M, Brekke N, Craven AR et al. Default-mode
31 590 32		network functional connectivity is closely related to metabolic activity. Hum Brain Mapp
33 34 591 35		2015; 36 : 2027–2038.
³⁶ 37 592	54	Yang Y, Shields GS, Guo C, Liu Y. Executive function performance in obesity and
38 39 593		overweight individuals: A meta-analysis and review. Neurosci Biobehav Rev 2018; 84: 225-
40 41 594 42 42		244.
43 44 595 45	55	Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B. Exercise interventions for
46 47 596		cognitive function in adults older than 50: a systematic review with meta-analysis. $Br J$
48 49 597 50		Sports Med 2018; 52 : 154–160.
51 52 598	56	Marston KJ, Newton MJ, Brown BM, Rainey-Smith SR, Bird S, Martins RN et al. Intense
53 54 599 55		resistance exercise increases peripheral brain-derived neurotrophic factor. J Sci Med Sport
56 600 57 58		2017; 20 : 899–903.
59 601 60	57	Kowiański P, Lietzau G, Czuba E, Waśkow M, Steliga A, Moryś J. BDNF: A Key Factor

1		
2 3 4	602	with Multipotent Impact on Brain Signaling and Synaptic Plasticity. Cell Mol Neurobiol
5	603	2018; 38 : 579–593.
7 8 9	604	
10	C	
11	1 605	
13	3	
14	4	
15	5	
17	7	
18	3	
20	9)	
21	1	
22	2	
22	4	
25	5	
26	5	
28	8	
29	9	
30) 1	
32	2	
33	3	
34	4 5	
36	5	
37	7	
39	9	
40	0	
41 47	1	
43	3	
44	4	
45 46	5	
47	7	
48	8	
43 5(9 0	
51	1	
52	2 3	
54	4	
55	5	
56 57	o 7	
58	8	
59	9	
6(J	

1 2		
2 3 4	606	
5 6 7	607	Titles and legends to figures
8 9	608	Figure 1. Consort flow of the Crossys study. MZ=monozygotic.
10 11 12	609	Figure 2. Overview of the Crossys study protocol. ECG: electrocardiography, OGTT: oral glucose tolerance
13 14	610	test, VO _{2peak} : peak oxygen uptake, [¹⁸ F]FDG: 2-deoxy-2-[¹⁸ F]fluoro-D-glucose, PET: positron emission
15 16	611	tomography, CT: computed tomography, MRI: magnetic resonance imaging, rs-fMRI: resting state
17 18	612	functional magnetic resonance imaging, (<i>R</i>)-[¹¹ C]PK11195: ¹¹ C-labelled R isomer of [1-(2-chlorophenyl)-N-
19 20 21	613	methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide].
22 23	614	Figure 3. Insulin-stimulated glucose uptake (GU) in A) caudatus and B) parietal cortex measured by
24 25	615	[18F]FDG-PET/CT during euglycaemic hyperinsulinamic clamp before (PRE) and after (POST) the exercise
26 27	616	intervention in heavier and leaner co-twins. C) Brain [18F]FDG-PET images for a representative twin pair at
28 29	617	baseline. Caudatus and parietal cortex are marked with black open circle. In A and B figures, twin pairs share
31 32	618	the same color in dashed lines and solid black line depicts model-based mean with 95 % confidence
33 34	619	intervals. P-values indicate statistical significance between leaner and heavier co-twins at baseline.
35 36 37	620	Figure 4. Brain translocator protein (TSPO) availability measured by [¹¹ C]PK11195 distribution volume
38 39	621	ratio (DVR) before (PRE) and after (POST) the exercise intervention in heavier and leaner co-twins in A)
40 41	622	white matter and B) hippocampus. C) Brain [¹¹ C]PK11195-PET images for a representative twin pair at
42 43	623	baseline. Hippocampus is marked with black open circle. In A and B figures, twin pairs share the same
44 45	624	colour in dashed lines and solid black line depicts model based mean with 95 % confidence intervals. P-
46 47 48	625	values indicate statistical significance between leaner and heavier co-twins at baseline.
49 50	626	Figure 5. Resting state brain activity (BOLD signal) measured by functional MRI at resting state. In A) blue
51 52	627	voxels depict brain areas where heavier co-twins had higher brain activity compared with their leaner co-
53 54	628	twins at baseline, B) blue voxels depict areas where brain activity was decreased post training in the whole
55 56	629	sample, C) red and yellow voxels depict brain areas where training response was greater in heavier co-twins
57 58	630	compared with their leaner co-twins, and D) blue voxels depict areas where brain activity was decreased post
59 60	631	training within heavier co-twins. All data are FDR-corrected at p<0.05.

Figure 6. Cognitive test results that showed statistically significant improvement post training. A) CERAD

10 Word list memory task type test from the third round: B & C) Fluid intelligence tests: B) degree of

difficulty medium C) degree of difficulty hard. D) Word retrieval test, E) Word recognition test, F)

Emotional sensitivity, pleasant pictures shown (reaction: 0=peaceful – 100=agitated). Twin pairs share the

<text><text><text> same color in dashed lines and solid black line depicts model based mean with 95 % confidence intervals. P-

values for time indicate statistical significance for the change from pre to post in the whole sample.

	Leaner co-twins		Heavier co-twins		P-value		
	Pre (n=12)	Post (n=10)	Pre (n=12)	Post (n=11)	Baseline	Time	Time*grouj
Sex	8 female / 4	4 male pairs					
Anthropometrics	NO _b						
Age	40.4 [37.5;43.4]		40.4 [37.5;43.4]				
Weight (kg)	86.4 [72.4;100.4]	86.9 [72.6;101.2]	108.7 [94.2;123.3]	108.0 [93.1;122.9]	0.001	0.948	0.374
BMI (kg/m ²)	29.1 [25.2;33.0]	29.3 [25.3;33.2]	36.7 [32.7;40.7]	36.4 [32.4;40.4]	0.0006	0.921	0.407
Whole-body fat (%)	30.4 [21.3;39.6]	29.5 [20.3;38.7]	40.6 [36.5;44.7]	40.0 [35.9;44.1]	0.0005	0.370	0.718
Lean mass (kg)	33.1 [30.0;36.3]	33.9 [30.6;37.2]	35.9 [31.9;39.8]	36.2 [32.1;40.3]	0.003&	0.140	0.102
Visceral fat mass (kg)	3.38 [2.13;4.64]+	3.22 [2.03;4.42]	5.83 [4.74;6.93]+++	5.46 [4.42;6.50]++	0.002*	0.067	0.280
Systolic BP (mmHg)	131.4 [120.4;143.4]	122.3 [114.1;131.1]	136.1 [128.4;144.4]	126.8 [121.2;132.7]	0.375	0.011*	0.983*
Diastolic BP (mmHg)	80.1 [73.3;86.9]	77.1 [71.2;83.0]	86.9 [80.2;93.5]	78.3 [72.5;84.0]	0.074	0.017	0.091
VO _{2peak} (ml/kg/min)	32.4 [26.9;37.8]	35.1 [29.9;40.2]	25.6 [23.2;28.0]	28.3 [26.1;30.6]	0.003	0.001	0.935
Fasting glucose (mmol/l)	5.5 [5.2;5.7]	5.5 [5.2;5.7]	5.7 [5.4;5.9]	5.8 [5.6;6.1]	0.388	0.367	0.418
Fasting insulin (mU/l)	6.6 [5.1;8.7]	6.3 [4.3;9.3]	11.1 [8.7;14.2]	9.9 [6.9;14.1]	0.006*	0.502*	0.711*
HOMA-index	1.60 [1.19; 2.16]	1.53 [1.01; 2.31]	2.78 [2.15; 3.58]	2.55 [1.79; 3.63]	0.013*	0.589*	0.866*
HbA1c (mmol/mol)	34.9 [32.9;36.9]	34.7 [32.2;37.1]	36.5 [35.0;38.0]	36.0 [34.2;37.7]	0.047*	0.581	0.675
M-value (umol/kg/min)	37.5 [28.0;47.0]+	46.9 [31.7;62.1]++	23.0 [16.1;29.9]+	31.4 [20.4;42.3]+++	0.007	0.022	0.82

T 11 1 D • • • • •

Friglycerides (mmol/l)	0.79 [0.60;1.02]	0.77 [0.64;0.94]	1.20 [0.81;1.78]	1.08 [0.81;1.43]	0.040*	0.536*	0.491*
FFA (mmol/l)	0.52	0.49	0.59	0.56	0.328&	0.666 ^{&}	0.956 ^{&}
	[0.36;0.70]+	[0.34;0.66]	$[0.43; 0.78]^+$	[0.42;0.72]			
Total cholesterol (mmol/l)	4.37 [3.70;5.15]	4.45 [3.88;5.11]	4.68 [4.01;5.46]	4.57 [4.02;5.20]	0.197*	0.972*	0.148*
LDL (mmol/l)	2.77 [2.28;3.36]	2.77 [2.30;3.32]	3.12 [2.59;3.77]	3.03 [2.54;3.62]	0.101*	0.721*	0.525*
HDL (mmol/l)	1.40 [1.21;1.62]	1.49 [1.32;1.69]	1.22 [1.05;1.42]	1.24 [1.09;1.41]	0.086*	0.133*	0.109*
hs-CRP (mg/l)	0.81 [0.41;1.61]++	0.56 [0.21;1.47]+++	1.42	1.14	0.005*	0.296*	0.450*
			[0.75;2.70]++	$[0.46;2.85]^{++++}$			

Data are expressed as model-based mean [95 % CIs]. P-value for baseline describes the difference between heavier and leaner co-twins before exercise intervention. P-value for time describes the change from PRE to POST in all participants. P-value for time*group interaction describes the change difference between heavier and leaner co-twins from pre to post. &=square root transformation, *=logarithmic transformation. *=n=11, ++n=10, +++n=9, ++++n=8. All the other blood variables were measured after an overnight fast (10 h) except hs-CRP which was measured before [1¹C]PK11195-scan in a post-prandial state. Abbreviations: M-value=Whole-body insulin sensitivity, VO_{2peak}=cardiorespiratory fitness, FFA=free fatty acid, BP=blood pressure, Hba1c=glycated haemoglobin, hs-CRP=high-sensitive C-reactive protein, LDL=low density lipoprotein, high density lipoprotein.

Figure 1

