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Abstract 

Sociability is central for humans. Visual information ranging from low-level physical 

features (e.g. luminance) to semantic information (e.g. face recognition) and high-level 

social inference (e.g. emotional valence of social interactions) is constantly sampled 

for navigating the social world. Here we utilize large-scale eye tracking during natural 

vision for mapping how different levels of visual information guide the perception of 

social scenes. In three experiments, participants (N = 166) watched full-length films 

and short movie clips with varying social content (total duration: 193 minutes) during 

eye tracking. To model the association between the perceptual features and 

spatiotemporal eye movement parameters (gaze position, gaze synchronization, pupil 

size and blinking), we extracted 39 stimulus features from the movies including low-

level audiovisual features (e.g. luminance, motion), presence and location of mid-level 

semantic categories (e.g. faces, objects) and high-level social information (e.g. body 

movements, pleasantness). Pupil size was modulated by luminance, scene cuts and 

emotional arousal while gaze position was most accurately predicted by a combination 

of the presence of human faces, local motion and entropy. Faces and eyes were 

prioritized over other semantic categories and blinking rate decreased during periods 

of attentional engagement. Altogether the results show that human social vision is 

primarily guided by low-level physical features and mid-level semantic categories, 
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while high-level social features such as emotional arousal primarily modulate pupillary 

responses.  
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Introduction 

Visual information about other people is central for humans. The attentional systems 

constantly adjust the sampling of visual information to extract features that have the 

highest processing priority at each moment. This is primarily achieved by controlling 

the gaze position, and also via modulating visual sampling by adjusting fixation 

frequency, segmenting the visual input into chunks through blinking, as well as by 

controlling for the number of photons landing on the retina through pupillary control. 

This cascade of operations ensures that we, for example, quickly recognize affective 

content from scenes (Nummenmaa et al., 2010) and facial expressions (Calvo & 

Nummenmaa, 2008) and preferentially allocate attention to social signals ranging from 

faces to reproductive cues (Morrisey et al., 2019).  

Modelling of human social vision is complicated by the complex spatiotemporal 

dynamics of gaze behaviour. Mapping the links between high-dimensional stimulus 

models during natural vision is difficult for traditional eye-tracking paradigms because 

isolating the contribution of single social features (e.g. emotional content) to gaze 

control is complicated by the overlapping and hierarchical time scales, parallel 

processing of sensory features, and ever-changing locations of the objects of interest 

in dynamic scenes. This often necessitates analyzing of spatial gaze data during 

artificial static snapshots of scenes in pictures, which however precludes the analysis 

of the effects of temporally varying stimulus properties on gaze control. It has thus 

been debated whether the results from such simplified conditions transfer to social 

vision operating in the dynamic social environment (Williams & Castelhano, 2019), 

particularly as the visual system is differently influenced by static versus dynamic 

stimuli (Dorr et al., 2010). Furthermore, different external stimulus features may have 

unique, additive or interactive effects on spatial and temporal eye movement 

parameters (e.g. pupillary response, gaze position, blinking, etc.); yet, these features 

are rarely analyzed in unitary models. Instead, studies have mainly incorporated 

simple designs investigating one or few components of the visual system (e.g. pupil 

size or gaze control) for one or few phenomena at a time. Currently, our understanding 

of moment-to-moment high-dimensional modelling of the simultaneous impact of 

different external features on dynamic scenes is lacking. This kind of dynamic mapping 

of the links between high-dimensional social feature space and different eye 
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movement metrics would require a holistic and data-driven approach which we present 

in the current research.  

Social information processing is organized along eight main perceptual dimensions, 

such as the perception of pleasant versus unpleasant situations, social hierarchy, or 

communication (Santavirta et al., 2024), and functional neuroimaging has established 

that large-scale occipito-temporal brain networks are involved in processing of these 

features (Lahnakoski et al., 2012; Santavirta et al., 2023). It however remains 

unresolved how these social features are extracted through the visual attentional 

systems. The human visual system could be merely tuned to follow regularities in 

simple physical properties such as low-level visual features (e.g. luminance) or mid-

level semantic categorization (e.g. faces), and complex social inference is a mere 

result derived from these inputs. Alternatively, high-level social information could be 

used in guiding social vision in top-down manner during dynamic perception along with 

the low- and mid-level perceptual features. Studying simultaneous effects of low-, mid-

, and high-level stimulus features on the visual system would be required to distinguish 

these alternative possibilities.  

Gaze is the most studied component of the visual system. During dynamic vision, the 

gaze positions synchronize between individuals (Dorr et al., 2010; Franchak et al., 

2016; Smith & Mital, 2013). The synchronization of gaze indicates shared attention 

which is useful for common understanding of the events and for cooperation. 

Synchronization can be measured using intersubject correlation (ISC), which can be 

as high as 0.4 – 0.6 during movie watching (Hasson et al., 2008; Wang et al., 2012) 

indicating high attentional coherence and a major influence of the stimulus properties 

in directing the gaze. A large bulk of studies has addressed how gaze is directed by 

external or intrinsic features during scene perception, and both bottom-up and top-

down models for gaze control have been proposed (J. M. Henderson, 2003). Bottom-

up saliency models predict gaze direction reasonably well based on saliency maps 

computed from color, intensity, and orientation information in images (Itti & Koch, 

2000). However, these pure bottom-up models cannot explain innate strong human 

preferences for specific semantic object categories such as human faces and eyes 

that are not perceptually particularly salient (E. Birmingham et al., 2009; Elina 

Birmingham et al., 2008). Debate whether gaze directions are best modelled with low-

level saliency or object-based models is ongoing (Stoll et al., 2015), and the latest 
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evidence suggests that saliency and object-information together yield better predictive 

models than either of them alone (Nuthmann et al., 2020; Roth et al., 2023). Recent 

deep learning models for gaze patterns can yield high predictive performance without 

predefined features for images (Cornia et al., 2018; Lou et al., 2022) and some also 

for videos (Bellitto et al., 2021; Jain et al., 2021). These complex models do not 

distinguish between bottom-up and top-down influences, since complex models can 

learn to detect specific objects (for example faces) from local spatial features. 

However, it is difficult to know exactly what information these models have learned to 

use when predicting scene saliency. Indirect methods can be utilized to interpret the 

outputs of these complex models (Hayes & Henderson, 2021), but currently they offer 

little theoretical insight about the visual system in operation. 

Gaze direction is not the only component of the visual system indexing perceptual and 

cognitive processing. Pupil automatically regulates the flow of light on the retina, and 

the pupil size also fluctuates as a function of internal states such as emotional arousal 

and cognitive effort. Seminal results indicated that pupil dilates when watching 

pleasant images (Hess & Polt, 1960), while recent studies have shown that pleasant 

and unpleasant emotions trigger pupil dilation when viewing images (Bradley et al., 

2008), listening to sounds (Oliva & Anikin, 2018; Partala & Surakka, 2003), and also 

when imagining emotional episodes (R. R. Henderson et al., 2018). This arousal-

driven pupillary response is usually stronger for unpleasant than pleasant stimuli 

(Babiker et al., 2013; Kawai et al., 2013). Pupil dilation is also associated with cognitive 

effort in various cognitive control tasks (Ayres et al., 2021; Hyönä et al., 1995; 

Kahneman & Beatty, 1966; van der Wel & van Steenbergen, 2018). In turn, pupil has 

been found to constrict as a function of attractiveness of faces and natural scenes 

(Liao et al., 2021). Pupil constriction predicts how well people memorize images and   

reveals the novelty of a scene (Naber et al., 2013). Pupil seems to constrict even 

during sudden transitions of simple stimuli in isoluminous conditions (Kimura et al., 

2014). These luminance-independent pupillary responses are likely mediated by the 

adrenergic and cholinergic neurotransmitter systems that are engaged during both 

emotions and cognitive effort to maximize attentional prioritization and arousal levels 

in response to environmental demands (Joshi et al., 2016; Reimer et al., 2016). Real-

life pupillary response is a complex combination of pupillary light reflex and higher-

order effects such as those induced by emotions (Cherng et al., 2020; Steinhauer et 
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al., 2004), but it is not yet established how multiple factors simultaneously modulate 

the pupil size during natural vision.  

Blinking is another component of the visual system that can reveal cognitive processes 

outside of its main function. Blinks keep the eyes lubricated and remove irritants from 

the eye surface but the automatic eyeblink reflex is also a part of the startle response, 

where the orbicularis oculi muscle contracts rapidly after brief and intense auditory, 

visual, or tactile stimuli (Grillon & Baas, 2003). Blinking is however also influenced by 

cognitive and affective factors. Blinking and pupil dilation are suggested to be the most 

sensitive physiological measures of cognitive load (Ayres et al., 2021). In a naturalistic 

study on Mastermind TV-quiz contestants, blinking was strongly modulated by the task 

so that more blinks occurred at attentional or cognitive breakpoints right before and 

right after each question, contestant’s response or feedback (Wyly et al., 2024). In 

addition, blink rate varies as a function of the emotional content indicating motivational 

relevance and biological significance of the stimuli (Maffei & Angrilli, 2019). Blinking is 

found to synchronize between participants during shared natural vision indicating 

shared attention (Nakano et al., 2009); moreover, blink synchronization is higher 

among participants who are more interested in the stimuli (Nakano & Miyazaki, 2019). 

Thus, blinking reflects cognitive load, attention, or interest levels of the participants, 

and possibly the emotional context. Functional neuroimaging results have also 

established a link between blinking and attentional engagement, as decreased brain 

activity in the dorsal attention network after blink onset has been identified 

simultaneously with increased activity in the default-mode network (Nakano et al., 

2013).  

The current study 

To understand how social vision is controlled during natural perception, a unified 

approach linking spatial and temporal aspects of eye movements to low- and high-

level scene features is needed. The objective of this study was to establish a unified 

framework for how human visual system is tuned by external features in dynamic 

social scenes. We studied moment-to-moment gaze positions, pupillary response, and 

blinking behaviour while participants freely viewed social movies. We aimed to 

simultaneously investigate the contributions of low-level physical features, semantic 

perceptual features, and high-level perceived social information on the spatial and 
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temporal dynamics of human social vision. Movie scenes were utilized as dynamic 

stimuli since they depict highly engaging social and emotional contents and effectively 

synchronize human gaze positions (Hasson et al., 2008), which makes them ideal 

naturalistic stimuli used in the laboratory (Adolphs et al., 2016; Saarimäki, 2021).  

We conducted three experiments with a total of 166 participants and 193 minutes of 

movie stimuli to ensure sufficient statistical power and to allow replicability testing for 

results across the datasets. A total of 39 different perceptual features from low-level 

audiovisual properties (e.g. luminance, motion) to mid-level perceptual semantic 

objects (e.g. eyes, objects) and high-level perceived socioemotional features (e.g. 

pleasantness, talking) were dynamically extracted from the movies. A stimulus model 

including 16 predictors was generated from the extracted stimulus features after 

studying the covariance structure of the original 39 features. Four main analysis 

techniques (total gaze time analysis, multi-step regression analysis, gaze prediction 

analysis, and scene cut effect analysis) were developed to link the extracted stimulus 

features with the eye-tracking parameters.  

Our results show that human social vision is primarily guided by low-level physical 

features and mid-level semantic categories, while high-level social features, such as 

emotional arousal, primarily modulate pupillary responses. Importantly, gaze direction, 

pupillary responses and blinking all indexed unique response patterns in relation to 

external stimulus features in dynamic perception. 

Results 

Eye movements during movie viewing 

Figure 1 shows the histograms for fixations, saccades, and blinks during movie 

viewing. The data are combined over all three experiments. The fixation, saccade and 

blink durations were similar across the experiments (Figure SI-1). The median fixation 

duration was 309 ms (q5% - q95%: 135 ms – 1047 ms), the median saccade duration 

was 27 ms (q5% - q95%: 11 ms – 55 ms) and the median blink duration was 91 ms 

(q5% - q95%: 23 ms – 217 ms). The fixation, saccade and blink rates varied between 

participants. The median fixation rate was 2.12 / s (q5% - q95%: 1.77 / s – 2.52 / s) 

and the median blink rate was 0.20 / s (q5% - q95%: 0.05 / s – 0.55 / s). The median 

total fixation time (total duration of fixations / total stimulus duration) was 0.89 (q5% - 
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q95%: 0.82 – 0.93) and the median total blink time (total duration of blinks / total 

stimulus duration) was 0.02 (q5% - q95%: 0.00 – 0.07). The gaze patterns were 

moderately consistent across subjects (Mean ISC: 0.37, SD: 0.20). The eye-tracking 

measures (pupil size, ISC, fixation rate and blink synchronization) were mostly 

uncorrelated with each other (Figure 2 & Figure SI-2). In the 200 and 500 ms temporal 

scale, a negative correlation was observed between fixation rate and ISC (r = -0.14) 

and between blinking and ISC (r = -0.09) consistently across the three experiments, 

but this weak correlation was not consistent across datasets when analyzed in longer 

temporal scales (1000 ms – 4000 ms). 

 

Figure 1 Distributions of fixations, saccades, and blinks during movie viewing. The top 

row shows distributions for fixation, saccade and blink durations over all participants 

and datasets. The middle row shows the distributions of participant-wise mean fixation 

/ saccade / blink rates and the bottom row shows the distributions of participant-wise 

proportions of time allocated for fixations, saccades, or blinks. 
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Figure 2. Top: Time series of median pupil size and ISC across subjects in the 

Experiment 1 data (coloured areas mark the 40%, 60%, and 80% quantile intervals, 

see Figure SI-3 for time series of Experiment 2 & 3 data). Bottom: correlations 

between the eye-tracking parameters. The correlations were calculated for each 

experiment separately and then averaged over datasets. Correlations that had 

consistent signs over all experiments are circled. The correlations were calculated in 

multiple different time scales (200 ms – 4000 ms, see Figure SI-2). Blink 

synchronization indicates how many participants blinked in a given time window. 
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Gaze time analysis  

The participants showed an attentional preference in the dynamic stimuli to the eye 

and mouth area in all three datasets (Figure 3). The eyes were viewed 21% - 33% of 

the total stimulus time, which was 16 – 24 percentage points more than would be 

expected by chance (p < 0.005). The mouth area was viewed 10% - 11% of the time, 

which was 7 – 8 percentage points more than would be expected by chance (p < 

0.005). The bodies were looked at 18% - 28% of the total time, which was 4 – 7 

percentage points less than would be expected by chance (p < 0.005). Similarly, 

background was viewed 15% - 23% of the total time, which was 17 – 23 percentage 

points less than would be expected by chance (p < 0.005).  The difference in gaze 

time for objects and faces excluding the eye and mouth area was small, and the 

direction of difference was inconsistent between the datasets. People also gazed at 

unclassified areas, for which the computer vision algorithm failed to assign a reliable 

category for 10% - 14% of the time which, was 1% - 2% less than would be expected 

by chance (p < 0.005). This indicates that the computer vision algorithm did not miss 

highly prioritized information from the stimuli. People gazed at areas outside the video 

less than 1% of the time. Since the real gaze coordinates were randomly sampled for 

the permuted chance time estimation, the gaze time outside the video area cannot be 

differentiated from chance with the implemented test. 
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Figure 3. Results of the gaze time analysis. The gaze time analysis results are plotted 

separately for each experiment. The red bars show the true total gaze times 

(proportional to the experiment duration), while the blue bars show the total times that 

would be expected by chance for different semantic classes. The numbers show the 

difference between true gaze time and estimated chance gaze time. All differences 

between true and chance gaze times were statistically significant based on a 

permutation test (p < 0.005). 

Multi-step regression analysis 

We next established links between spatiotemporal gaze parameters and low-, mid-, 

and high-level stimulus features. To that end, pupil size, ISC, fixation rate and blink 

rate were modeled with a stimulus model of 16 low-level, semantic, and social 

perceptual features using a multi-step regression approach. The stimulus model was 

generated from the extracted 39 features based on the covariance structure between 

the original features. Figure 4 summarizes the regression results for the 

representative 500 ms temporal analysis scale. The results were, however, consistent 

when the analyses were repeated across different time scales (Figure SI-4). While 

most of the predictors had a consistent sign of association between the eye-tracking 

variables in simple regression over the cross-validation rounds (leave-one-

experiment-out cross-validation, not tested for statistical significance), only a limited 
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number of predictors increased the subsequent multiple regression models’ out-of-

sample prediction accuracies significantly. 

Pupil size was most consistently associated with low-level features and perceived 

unpleasantness (Figure 4 & Figure SI-4). In the 500 ms time scale, adding consistent 

predictors one-by-one into a multiple regression model starting from the predictor with 

the best out-of-sample prediction accuracy in simple regression, the predictors 

“Luminance / entropy” (negative association), “Luminance / entropy, time derivative” 

(negative association), “Audio intensity / roughness” (positive association), “Scene cut” 

(negative association) and “Unpleasant situation” (positive association) increased the 

model’s out-of-sample prediction accuracy significantly compared to the permuted 

chance level (p < 0.05). The final models including these five features produced 

predictions in the test set (leave-one-experiment-out) that correlated highly with the 

true pupil size (Exp. 1 as the test set: r = 0.36, Exp. 2 as the test set: r = 0.49, Exp. 3 

as the test set: r = 0.50). 

ISC of gaze was most consistently associated with mid-level features and motion 

(Figure 4 & Figure SI-4). In the 500 ms time scale, the predictors “Gaze on face” 

(positive association), “Gaze on body” (negative association), “Gaze on background” 

(negative association) and “Visual movement” (negative association) increased the 

multiple regression model’s out-of-sample prediction accuracy significantly (p < 0.05). 

The final models including these four features produced predictions in the test set 

(leave-one-experiment-out) that correlated highly with the true ISC (Exp. 1 as the test 

set: r = 0.43, Exp. 2 as the test set: r = 0.33, Exp. 3 as the test set: r = 0.40). 

Fixation rate was most consistently associated with mid-level features and audio 

intensity / roughness (Figure 4 & Figure SI-4). In the 500 ms time scale, the predictors 

“Scene cut” (positive association), “Gaze on face” (positive association), “Gaze on 

body” (positive association), “Gaze on background” (positive association), “Gaze on 

object” (positive association), “Audio intensity / roughness” (negative association) and 

“Body movement” (negative association) increased the multiple regression model’s 

out-of-sample prediction accuracy significantly (p < 0.05). The final models including 

these seven features produced predictions in the test set (leave-one-experiment-out) 

that correlated moderately with the true fixation rate (Exp. 1 as the test set: r = 0.26, 

Exp. 2 as the test set: r = 0.21, Exp. 3 as the test set: r = 0.24). 
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Blink rate was mainly associated with “Gaze on background” (positive association), 

“Audio intensity / roughness” (negative association) and “Body movement” (negative 

association). These variables increased the model’s out-of-sample prediction 

accuracy significantly (p < 0.05) in the 500 ms time scale. The final models including 

these three features were not able to predict much variation in the leave-one-

experiment-out test set (Exp. 1 as the test set: r = 0.03, Exp. 2 as the test set: r = 0.02, 

Exp. 3 as the test set: r = 0.03). 

All the above reported associations between perceptual features and eye-tracking 

measures were consistent between the initial simple regressions and the multi-step 

regression rounds indicating that the addition of other predictors in the model did not 

yield interpretational difficulties.   

Figure 4. The results of multi-step regression analyses for pupil size, ISC, fixation rate 

and blink rate in the 500 ms time scale. Coefficients from the simple regressions are 

visualized with a blue (negative) – red (positive) colour gradient. Grey colour indicates 

that the direction of the association was inconsistent between the simple regression 

cross-validation rounds (leave-one-experiment-out cross-validation). The final multiple 

regression model included the features marked with asterisks. These features 

increased the model’s out-of-sample prediction accuracy significantly compared to 

chance (p < 0.05) when added to a multiple regression model. (V) denotes low-level 

visual predictors, (A) denotes auditory low-level predictors and D denotes the time 

derivative of the feature.  
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Performance of the gaze prediction model 

Random forest models using all available low-level, semantic, and social perceptual 

information were trained separately for each of the three datasets to predict the 

moment-to-moment population level gaze heatmaps. The performance of the trained 

models was tested with the two datasets that were left out from the model training. 

The performance of the models was evaluated by calculating the correlation between 

the true and predicted gaze heatmaps and by measuring how far, on average, the 

predicted peak value was from the true heatmap peak value (Figure 5). The evaluation 

metrics were consistent across the models trained with different datasets. Correlations 

between predicted heatmaps and true heatmaps in the testing dataset ranged 

between 0.41 and 0.47, while the peak value distances ranged between 10 % and 16 

% of the image width indicating robust out-of-sample prediction performance. 

Relative importance measures how influential (between 0 and 1) a given predictor is 

for the model’s predictions. The relative importances were consistent across the 

models trained on different datasets (Figure 6, bar plot). The presence of eyes in a 

given voxel showed by far the highest importance for the predictions (Exp. 1:  0.48, 

Exp. 2: 0.67, Exp. 3: 0.46). After eyes, the presence of mouth (Exp. 1:  0.20, Exp. 2: 

0.08, Exp. 3: 0.18), visual movement (Exp. 1:  0.09, Exp. 2: 0.10, Exp. 3: 0.06) and 

luminance / entropy (Exp. 1:  0.03, Exp. 2: 0.06, Exp. 3: 0.09) showed higher relative 

importances than the rest of the predictors.  

To establish whether the important predictors have a positive or negative effect on the 

models’ predictions we simulated how the models’ predictions would change when all 

other predictors are held constant but the values of only one predictor are changed 

(Figure 6, violin and density plots). The random forest models predicted higher gaze 

probability when eyes or mouth were present than when they were absent. 

Additionally, higher than average local movement and visual luminance / entropy 

resulted in increased gaze probability prediction compared to lower-than-average 

values. The relative importance and change in simulated predictions with different 

predictor values was negligible for the rest of the predictors. The high-level social 

features are constant within each time window and cannot thus have an independent 

main effect on the gaze location. However, they could inform the model about the 

expected distributions of the gaze probabilities between time windows and high-level 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2024. ; https://doi.org/10.1101/2024.10.18.618846doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.18.618846
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

information can have an interaction effect with some pixelwise predictor (e.g. eyes are 

watched more closely in unpleasant situations). However, exploratory simulations of 

interactions between the perceived social predictors and the four most important 

predictors did not indicate any clear interaction effects.  

Figure 5. Performance of the gaze prediction model. The random forest model was 

trained with each dataset separately and the model’s performance was tested with the 

two other datasets. Top left: A confusion matrix showing the correlation of the true 

versus predicted gaze heatmaps for the trained models. Top right: True and predicted 

gaze heatmaps for one representative 200 ms time window. Bottom left: A confusion 

matrix showing how far, on average, the predicted peak heatmap value was from the 

true heatmap peak. Bottom right: Example peak value distances for 10 % and 20 % 

levels are visually provided for guiding the evaluation of the reported peak value 
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distances. The sample images are from the Experiment 2 movie stimuli (Louhimies, 

2008). 

Figure 6. Interpretation of the gaze prediction models. Barplots visualize the relative 

importance of each predictor in the trained models. Violin plots for categorical and 

density plots for continuous predictors visualize the simulated influence of each 

predictor on the gaze probability prediction when other predictors’ values are held 

constant. (V) denotes low-level visual predictors, (A) denotes auditory low-level 

predictors and D denotes the time derivative of the feature. 

Scene change effect 

Figure 7 shows the scene change effect on pupil size, ISC and blink synchronization. 

The findings were consistent across the datasets. Pupil size started to decrease 

rapidly after the scene changed and the pupil size was significantly decreased 

compared to the permuted baseline between 350 ms  - 1150 ms after scene cut in all 

datasets (p < 0.05, based on a permutation test). The minimum pupil size (97 – 98 % 

of the baseline on average) was reached between 500 ms – 800 ms after the scene 

cut. ISC increased briefly after the scene changed. For continuous movies (Exp. 2 & 
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3), ISC increased significantly up to 800 ms after the scene transition (Exp. 2:  between 

400 ms and 800 ms after cut, Exp. 3: between 200 ms and 800 ms after cut, p < 0.05), 

while for short movie clips (Expr. 1) ISC remained elevated for a longer period of time 

(between 400 ms and 1400 ms after the scene cut, p < 0.05).  

The percentage of participants that blinked in 200 ms time windows decreased shortly 

following the scene change in all datasets. For continuous movies, the percentage of 

participants blinking was briefly decreased at single time windows (Exp. 2: 200 ms – 

400 ms after scene cut, Exp. 3: 0 ms – 200 ms after scene cut, p < 0.05). For the 

movie clip dataset (Exp. 1) blinking first decreased between 0 ms – 400 ms after the 

scene cut and then increased between 600 ms – 1000 ms (p < 0.05). The decrease 

followed by increase in blinking was not reliably observed in the movie datasets, 

although a similar increasing pattern after initial decrease in blinking was also 

suggested by the Experiment 3 data (Figure 7). 

Figure 7. Temporal dynamics of pupil size, ISC and blinking after a scene cut 

separately for each experiment. The scene cut time is marked as a vertical line and 

the permuted statistically significant deviation period (pupil) or time points (ISC & 

blinking) from baseline are marked with orange (p < 0.05). Normalized ISC (ISC * 

stimulus area / total monitor area) is plotted since it account for the stimulus size 

differences between the Experiments  (stimulus area / monitor area, Exp. 1: 0.53, Exp. 

2: 0.94, Exp. 3: 0.95). 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2024. ; https://doi.org/10.1101/2024.10.18.618846doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.18.618846
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

Discussion 

Our results established consistent relationships between low-level and semantic 

scene features on the spatiotemporal aspects of eye movements. During natural vision 

the gaze positions were relatively consistent across observers (mean ISC = 0.37) and 

mostly guided by mid-level semantic social information and low-level audiovisual 

features, whereas high-level social context contributed only minimally. In turn, pupil 

size was modulated by low-level sensory features as well as emotional content and 

scene transitions, while blinking rate was indicative of attentional enagement on the 

scenes. These results generalized across three independent datasets with different 

dynamic stimuli and participants. Our results thus suggest that gaze position, pupillary 

response and blinking are determined by independent, yet partially overlapping sets 

of external features, and that human social vision is primarily guided by low-level 

physical features and mid-level socially relevant semantic categories (most notably 

faces), while high-level socioemotional features such as emotional arousal primarily 

modulate pupillary responses (Figure 8).  

Gaze direction depends on the presence of faces, motion, and visual 
information 

The regression analysis for ISC and gaze prediction analysis both achieved moderate 

to high out-of-sample prediction accuracies (up to r = 0.43 for ISC and up to r = 0.47 

for gaze heatmaps) indicating that external features consistently predict what we 

attend to in dynamic social scenes. Across the analyses we found that the eyes and 

mouths of the characters were the best predictors of dynamic gaze positions and the 

synchronization of gaze between participants. Across all datasets, people fixated on 

human eyes and mouth areas much more often than would be expected by chance 

(Figure 3). The developed permutation analysis ensured that the attentional priority 

for faces was not due to a centrality bias (Dorr et al., 2010) or just a result of movies 

presenting faces disproportionately more often than other contents. High priority for 

faces resulted in less fixations on bodies of the characters and on the background / 

surroundings, which were gazed much less than expected by chance. These results 

were confirmed in regression analyses that also accounted for low-level audiovisual 

features and perceived social information of the stimuli.  
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Eye movement synchronization (ISC) increased when faces were gazed at and 

decreased when the subjects gazed at bodies or background (Figure 4). This 

increased synchrony indicates that the faces, as biologically salient signal, could 

constitute a cue whose presence captures the viewers’ attention (Morrisey et al., 

2019), thus resulting in increased gaze position synchronization. Indeed, the 

population gaze prediction analysis showed that eyes and mouth were the most 

important predictors of gaze positions in cinematic social scenes, surpassing low-level 

salient features (Figure 6). This is in line with previous findings suggesting that social 

information is prioritized over low-level saliency in social scenes (End & Gamer, 2017). 

Selective attention to human faces has been well established in controlled study 

designs (Bindemann et al., 2005; Morrisey et al., 2019; Theeuwes & Van der Stigchel, 

2006). Other people are noticed quickly and independently of the task indicating that 

the identification of our conspecifics happens automatically (Rösler et al., 2017; Smith 

& Mital, 2013). Our results provide novel evidence on how faces are prioritized over 

other available information and provide an estimated “effect size” of the face priority 

when watching dynamic social scenes. The participants watched the faces 38 % (Exp. 

1), 50 % (Exp. 2) and 38% (Exp. 3) of the total stimulus presentation time when only 

14 %, 20 % and 10 % gaze times would have been expected if participants inspected 

the scenes with their eyes randomly.  

In addition to social semantic features, local visual luminance / entropy predicted the 

moment-to-moment gaze positions (Figure 6). This visual feature cluster combined 

the information of “luminance” (a measure of local lighting), “visual entropy” (a 

measure of local randomness of pixel intensities) and “spatial energy” (a measure that 

detects local edges). Therefore, it indexes the amount of local visual information that 

the area conveys, as visual information requires light (luminance), local variation 

(entropy) and detectable forms (visual energy) to stand out from the background. High 

local contrast and low correlation between local pixel intensities (as measures of local 

information) have been previously shown to draw attention in natural still images 

(Krieger et al., 2000; Reinagel & Zador, 1999) supporting the interpretation that 

information-rich areas stand out from the rest and capture attention effectively. 

While human faces were the strongest predictors of ISC and moment-to-moment gaze 

positions, global scene motion (Figure 4 & Figure SI-4) was associated with lower 

ISC indicating that the overall motion desynchronized the gaze positions between 
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participants. The decrease in synchronization was most likely due to the need for 

increased visual sampling which resulted in diverging temporal gaze patterns between 

participants in these highly dynamic scenes. Nevertheless, the gaze prediction 

analysis indicated that areas with local motion draw attention (Figure 6). Increased 

attention to motion has been previously reported in humans (Abrams & Christ, 2003; 

Bruckert et al., 2023) and also in macaques (Mahapatra et al., 2008), and motion has 

been shown to capture attention task-independently suggesting automated attention 

towards motion (Smith & Mital, 2013). In sum, scenes with a lot of movement (real 

movement or camera movement) result in generally more scattered gaze positions 

between participants but local areas with high movement draw attention irrespective 

of the global amount of movement. 

Scene cut effect analysis indicated that ISC increased briefly starting 200 ms after the 

scene cut and, depending on the stimulus, it returned to baseline between 800 ms (full 

movie stimulus) to 1400 ms (movie clips) after the scene cut (Figure 7). Higher ISC 

after scene transition suggests that introduction of a new scene leads to an orientation 

response that is tightly time-locked across subjects, while after this initial response the 

interindividual variation in the visual sampling increases. This accords with a prior 

study investigating the effect of scene cuts on gaze position synchronization (Mital et 

al., 2011). However, the regression analysis did not indicate a significant association 

between ISC and scene transition, although a consistent positive association was 

apparent in multiple different time windows (Figure SI-4). Since the regression results 

were carefully controlled for other predictors unlike the scene cut effect analysis, it is 

most likely that the observed increase in ISC after a scene change was more 

accurately modelled with other features, such as the presence of human faces. 

Finally, fixation rate was higher when the participants gazed at semantic categories 

compared to unknown areas or areas outside the presentation window (Figure 4). 

Scene transitions were also associated with increased number of fixations but during 

intense and rough sounds the number of fixations decreased. Fewer saccades 

(decreased fixation rate) have been found to occur during high visual attention and 

with stationary stimuli (Mahanama et al., 2022). Hence, our results indicate that 

recognizing and tracking semantic objects and orienting to new scenes require more 

fixations (and saccades) compared to stationary moments with more static 

information. Intense and possibly emotionally arousing scenes are most likely visually 
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engaging and saccades are inhibited to closely monitor the most important source of 

information. 

Pupil size depends on low-level information, emotional arousal, and scene 
changes 

The multiple regression analysis for pupil size achieved high out-of-sample prediction 

performance (up to r = 0.5) indicating a major influence of external stimulus features 

on pupil size. In the regression models, the low-level feature luminance / entropy 

(including “luminance”, “visual entropy” and “spatial energy”) was negatively 

associated with pupil size, as the main function of the pupil is to regulate how much 

light enters the eye (Figure 4 & Figure SI-4). Perceived unpleasantness of the scene 

was positively associated with pupil size and this effect was independent from the 

overall scene luminosity. The unpleasantness predictor was combined from the 

evaluated features “unpleasantness”, ”aroused”, “aggressive”, and “pain”, based on 

the clustering analysis. This result indicates that unpleasant scenes were highly 

arousing in the movie stimuli. Additionally, we found that audio intensity and roughness 

was positively associated with pupil size. Intense sounds are arousing and alerting 

(Dean et al., 2011; Di Stefano & Spence, 2022; Ilie & Thompson, 2006; Trevor et al., 

2020), which was also supported by the moderately positive association between 

perceived arousal and measured audio intensity (r = 0.39, Figure SI-5). The observed 

effect of emotional arousal on pupil size is in line with the previous controlled studies 

showing that both highly unpleasant and pleasant conditions dilate the pupil compared 

to neutral conditions (Bradley et al., 2008; R. R. Henderson et al., 2018; Partala & 

Surakka, 2003). Some studies also indicate that negative emotions may show a more 

robust effect on pupil size than positive emotions (Babiker et al., 2013; Kawai et al., 

2013) – a result consistent with the present study. 

The analysis of scene transition dynamics (Figure 7) showed that the pupil begins to 

contract rapidly after a scene transition with the peak contraction reached between 

500 ms – 800 ms after the cut. Pupil dilates back to the baseline between 1150 ms – 

1500 ms after the scene transition. This effect occurred with the same temporal scale 

as the ISC response to scene transition. Importantly, the regression analysis that 

controlled for other information also found the negative association between pupillary 

response and scene transition. Pupil constriction at the scene transitions may 
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eventually reflect a more general response for quick change in the visual input, since 

the same phenomenon is found with controlled and simple stimulus changes under 

isoluminous conditions (Kimura et al., 2014). Nevertheless, the scene transitions 

should be taken into consideration in future studies using cinematic stimuli.  

Blinking as an indicator of attentional engagement 

Participants lost only a few percent (median 2%) of the total stimulus viewing time due 

to blinking. Fewer participants blinked at the very beginning of a new scene (< 400 ms 

from the scene cut) compared to the later time points. The increase in ISC (and 

pupillary response) after scene transition begun simultaneously with the inhibition of 

blinking, providing further evidence that when a scene changes people really attend 

to the most important / interesting stimuli first and only afterwards they can blink 

without the risk of losing visual information (Figure 7). In line with this, we also 

observed a weak but consistent negative correlation (500ms scale: r = -0.14) between 

blinking and ISC when analyzing the full time series of the experiments (Figure 2). In 

the regression analysis, we did not observe a significant association between 

participant specific blink rates and scene cuts (Figure 4). People blink relatively 

infrequently when watching movies, around once per 5 seconds in our data, and this 

sparsity of blinks over the experimental time course most likely explains why significant 

associations between participant specific blink rate and scene change were not 

observed in the regression analysis. However, the blink rates were negatively 

associated with audio intensity / rough sounds and perceived body movement, which 

can be indicative of behaviourally intense moments in the scenes. This is also 

suggested by the relatively high correlations between arousal, aggression, body 

movement, auditory roughness, and audio intensity in the movie stimuli (Figure SI-5).  

People also blinked more often when they were gazing at the background, which could 

indicate that blinks occur during scenes with fewer important features, such as faces. 

In contrast with other modelled eye parameters, the regression models were poor at 

predicting the out-of-sample blink rates, suggesting that changes in blink rates may be 

more intrinsic than stimulus driven. 

All in all, the results suggest that attentional engagement modulate the blinking 

behaviour. Previous studies focusing on blinks have reported that blinking is inhibited 

during attentional engagement (Ranti et al., 2020; Shin et al., 2015), blinking  
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decreases as a function of attentional demand (Oksama & Hyönä, 2016) and blinks 

tend to occur at attentional breakpoints (Nakano et al., 2009; Wyly et al., 2024) 

supporting the current results derived from dynamic modelling of complex social 

scenes. Video stimulus with a coherent story line synchronizes blinking and yields 

lower blink rates compared to documentaries (Nakano et al., 2009; Shin et al., 2015), 

and blinking becomes increasingly synchronous across participants that are highly 

interested in the topic compared to those that are not (Nakano & Miyazaki, 2019). 

Functional brain imaging has demonstrated that the brain activity shifts from the dorsal 

attention network to the default-mode network after blink onset, which suggests that 

blinking associates with attentional disengagement (Nakano et al., 2013). Our results 

thus add evidence for the view that blinking reveals the participant's attention or 

interest even dynamically when they watch complex social scenes, but that high-level 

social information has only negligible effects on blinking. Based on these confirming 

results, synchronized blinks could be used as indicators of attentional breakpoints of 

the stimulus and periods without (synchronized) blinks would indicate attentional 

engagement. 

Figure 8. Summary of the findings. Investigation of the gaze direction, semantic 

category priority and gaze synchronization reveals that the presence of human faces, 

especially eyes, drive the fast visual sampling simultaneously with low-level visual 

features. Blinking is suppressed in intense scenes and during scene transitions 

indicating attentional engagement to the scenes, while pupil size is modulated by 

emotional arousal, scene transitions and luminance. The findings are based on 

analyses with 16 features derived from the movie stimuli (16 feature clusters were 

identified from the extracted 39 features). The sample images are from the Experiment 

2 movie stimuli (Louhimies, 2008). 
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Intense and rough sounds as an indirect measure of emotional arousal  

The combined audio intensity and roughness was found to be a consistent modulator 

of pupil size, fixation rate, and blink rate in movie scenes. Most likely interpretation is 

that rough sounds indirectly capture intense periods in the movie stimuli, leading to 

people paying close attention to these events (suppressed blinking & lower fixation 

rate) and becoming emotionally aroused (pupil dilation). The audio intensity and 

roughness are physical properties that are easily extracted from audio stream and can 

be thus incorporated in any temporal analysis scale. Perceptual measures, such as 

evaluated emotional arousal, are subjective and the temporal analysis resolution 

depends on how the perceptual ratings are collected. Hence, audio intensity and 

roughness could serve as an indirect and objective measure of the behavioural 

intensity of movie scenes and emotion arousal of perceivers. Similar findings 

demonstrating that the auditory roughness relates to emotionally arousing (negative) 

events have been reported (Dean et al., 2011; Di Stefano & Spence, 2022; Ilie & 

Thompson, 2006; Trevor et al., 2020).          

Limitations 

The stimulus contained short, socially rich Hollywood movie clips, which do not entirely 

reflect real world social situations. Movies have been intentionally directed and edited 

to capture attention and with editing and camera work the viewers’ visual attention is 

externally modulated in a way that diverges from how visual attention operates in real 

life. However, movies have the advantage of being controllable dynamic stimuli in the 

laboratory, since accurate eye tracking still requires a stationary measurement 

protocol. Viewing movies is a form of passive observation, while natural vision is used 

for guiding actions as well as for both gathering information from others and signaling 

back to them (Evan F. Risko et al., 2016). This dual function of gaze differentiates 

gaze patterns in real world situations from those in laboratory settings (Gobel et al., 

2015; E. F. Risko & Kingstone, 2011). Future studies could collect first-person footage 

of every day social interaction with wearable cameras, while measuring the 

participants’ eye movements with accurate wearable eye trackers. 

The initial feature space for the stimulus models was designed by the researchers. 

Hence, the results do not rule out the possibility that some other low-, mid- or high-

level perceptual information can have significant influence on visual attention. 
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Additionally, the time-window approach taken in the current analyses treated 

consecutive time windows as independent samples. Since the consecutive samples 

in the time windows are never truly independent, even more detailed information could 

be extracted from the data, if temporal pattern information over multiple time windows 

were also analyzed. Future studies could investigate whether the social context could 

still yield specific temporal gaze patterns with dynamic stimuli. Finally, the results 

delineate the shared external influences of the visual system especially in social 

contexts. In doing so, they describe the average associations between external 

influences and human visual attention over individuals. In other words, they do not 

reveal any participant-specific factors or between-participant differences in how people 

pay visual attention in social contexts. Future studies on the attentional differences 

between individuals are needed for understanding how well the current models could 

predict the visual attention of certain individuals. 

Conclusion 

Our results yield a comprehensive model on how visual attention, pupillary response, 

and blinking behavior are influenced by low-, mid-, and high-level perceptual features 

in dynamic perception using cinematic stimuli. We demonstrate that gaze, pupillary 

response and blinking behaviour are uniquely modulated by external stimulus 

features. Human faces, especially eyes, and low-level information (motion and visual 

information density) guide the gaze, not the socioemotional context. Pupillary 

response, in turn, was modulated by low-level information (mostly luminance) and 

emotional arousal, while fewer blinks occurred after scene transitions and during 

behaviourally intense scenes (loud noises, body movement). This work advances our 

understanding of visual processing in social contexts by modelling different eye-

tracking parameters dynamically and simultaneously. Future research should explore 

how visual attention is modulated in even more complex and ecologically valid 

environments to bridge the gap between controlled laboratory studies and fully natural 

perception. 
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Materials and Methods 

Experimental design 

To investigate how the visual perceptual system works in dynamic social contexts, we 

set up three independent eye-tracking experiments, where participants watched 

different movie stimuli rich in social interaction. Different participants were recruited for 

each experiment. In Experiment 1, we used our previously validated socioemotional 

“localizer” paradigm that allows us to present variable social content (Karjalainen et 

al., 2017, 2018; Lahnakoski et al., 2012; Nummenmaa et al., 2021; Santavirta et al., 

2023). The experimental design and stimulus selection has been described in detail in 

the original study with this setup (Lahnakoski et al., 2012). Briefly, the participants 

viewed a set of 68 movie clips (median duration: 11.2s, range: 5.3 – 27.8 s, total 

duration: 14 min 26 s) that have been curated to contain large variability of social and 

emotional content. The videos were extracted from mainstream Hollywood movies 

with audio tracks in English. See Table SI-1 for short descriptions of the movie clips. 

In Experiment 2, the participants watched a Finnish historical drama film “Käsky” 

((Louhimies, 2008), 70 min 14 s), and in Experiment 3, the participants watched a full-

length horror movie “The Conjuring 2” ((Wan, 2016), 109 min 3 s). The total stimulus 

duration of the stimuli was 193 minutes 43 seconds in three independent experiments. 

The variability of the movie stimuli ensures that the replicable findings would 

generalize across different social perceptual contexts, at least within cinematic stimuli. 

Participants, eye-tracking data, and quality control  

A total of 166 participants were recruited (Experiment 1: 110 participants, Experiment 

2: 28 participants, Experiment 3: 28 participants) and the data were collected in Turku, 

Finland between 2019 and 2021. Normal or corrected to normal vision was required. 

Participants gave an informed consent prior to taking part in the experiment. Seven 

participants were excluded due to incomplete data (three for incomplete data and four 

for corrupted data files resulting in partial data loss). We also excluded participants 

from the analyses based on data-driven quality control of the eye-tracking data. We 

first calculated the total time of fixations and blinks as well as the gaze position time 

within the presented video area (time in presentation area / total experiment duration) 

for each participant. Then we fitted beta distributions to these data and identified the 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 21, 2024. ; https://doi.org/10.1101/2024.10.18.618846doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.18.618846
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

2% probability cutoff points from the long tail of the fitted distributions (Figure SI-6). 

The participants whose total fixation time, total blink time or total gaze time fell into the 

2% probability in the long tail of the distribution were considered outliers and their data 

were excluded. Four participants were excluded because they had both atypically low 

total fixation times and high blink durations (fixations less than 76% and blinks over 

12% of the total time), two participants based on low fixation time alone (fixations less 

than 76% of the total time) and two participants based on low total time within video 

area (gaze position within video area less than 93% of the time). The final sample thus 

included 151 out of 166 participants. 

Table 1. Demographic information of the participant sample. 

Eye movement recordings and data preprocessing 

In Experiment 1, short movie clips whose contents were unrelated to each other were 

presented to the participants in fixed, initially randomized order without breaks to 

enable synchronization analyses. The eye tracker was calibrated and validated using 

a 5-point calibration, and validation was repeated with one point before the 

experiment. Validation was successful if gaze position error was below 1°. Validation 

was repeated three times during the experiment (after every 17th movie clip). The 

stimuli were presented with a 27’’ Retina 5K monitor at 90 cm distance from the eyes. 

The eye-tracking data was collected with SR EyeLink 1000 Plus (SR Research, 

Ontario, Canada) eye tracker with the following setup: v5.15 Jan 24 2018, Eyes: Right, 

File filtering level: Extra, Pupil tracking algorithm: Centroid. In Experiments 2 and 3, 

the movie was presented in short segments in fixed chronological order (Experiment 

2: 26 trials, median trial duration: 159 s, range: 68 s – 256 s. Experiment 3: 30 trials, 

median trial duration: 215 s, range: 146 – 300 s) to allow repeated drift correction and 

camera calibration throughout the experiment and to maximize participant comfort. 

Before each trial (i.e. movie segment) a 5-point calibration and validation and a 

subsequent 1-point validation (error < 1°) was conducted. The stimuli were presented 

Experiment Subjects M/F Mean age (range)  

Experiment 1, Movie clips 106 40/66 27.1 (19 - 74) 

Experiment 2, Feature film 21 2/19 23.6 (19 - 38) 

Experiment 3, Horror movie 24 5/19 27.0 (19 - 57) 
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with a 24’’ BenQ XL2411Z monitor at 70 cm distance from the eyes.  The eye-tracking 

data were collected with EyeLink 1000 (SR Research, Ontario, Canada) eye tracker 

with the following setup: v4.594 Jul 6 2012, Eyes: Right, File filtering level: Extra, Pupil 

tracking algorithm: Ellipse. Fixation and saccade reports were generated with EyeLink 

DataViewer 4.1.1. software (https://www.sr-research.com/data-viewer/). Fixations 

shorter than 80 ms were considered unreliable and previous reliable fixation was 

extrapolated to continue until the next reliable fixation to create a continuous time 

series of fixation information. 

Eye-tracking parameters  

We extracted pupil size, gaze position, saccades, and blink timings from the EyeLink 

DataViewer reports. Intersubject correlation of the gaze position (ISC) was 

dynamically calculated for measuring the moment-to-moment gaze position 

synchronization across participants using eISC-toolbox for Matlab (Nummenmaa et 

al., 2014). Briefly, the ISC is based on computing participant-wise fixation heatmaps 

in pre-defined time windows, and momentary ISC is defined as the mean spatial 

correlation across participants in each window. For gaze prediction analysis (see 

section “Gaze prediction analysis”), population average gaze heatmaps were also 

generated using the eISC-toolbox. Blink synchronization was estimated by calculating 

how many participants blinked within a given time window. Fixation and blink rates 

were calculated separately for each participant in specific time windows.  

A single analysis time window such as 500 ms or 1000 ms is not justifiable in 

uncontrolled movie perception because different eye movement parameters (e.g. 

pupillary responses or gaze position changes) have different intrinsic time scales, and 

because the predictor variables also had different time scales (from 40ms resolution 

for physical and semantic features to 4000 ms resolution for the perceived social 

features, see “Perceptual models derived from movie stimulus”). Therefore, different 

analysis time scales may capture associations between the visual system and the 

stimulus features. To estimate the effect of the chosen temporal scale, the eye-

tracking parameters were sampled and analyzed across different temporal scales (200 

ms, 500 ms, 1000 ms, 2000 ms, 4000 ms). 

Perceptual models derived from the movie stimuli 
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Stimulus features varying from low-level audiovisual properties (e.g. luminance and 

audio intensity) to semantic information (e.g. faces and objects) and to the perceived 

socioemotional information (e.g. (un)pleasant interaction and arousal) were estimated 

from the video stimuli to model the simultaneous effects of perceived features across 

distinct processing levels in human cognition. We 1) extracted multiple low-level 

features and their time derivatives from the audiovisual domain (24 features), 2) 

identified semantic features from the video frames using computer vision (7 features) 

and 3) collected dynamic perceptual ratings of high-level socioemotional features from 

human annotators (8 features). The predictors were then sampled to different temporal 

scales (200 ms, 500 ms, 1000 ms, 2000 ms, 4000 ms) matching with the eye-tracking 

data (see above). 

Low-level audiovisual features 

Low-level visual features were extracted for each frame (static features) or 

consecutive frame pair (features that measure change) from the video stimulus. Visual 

features included luminance, visual entropy, optic flow, spatial energy with two distinct 

Fourier filters for edge detection, and differential energy for measuring total change 

between consecutive frames. Auditory features included audio intensity (RMS), 

properties of the frequency spectrum (geometric mean, standard deviation, entropy, 

and high-frequency energy), waveform sign change rate or “noisiness” and sensory 

dissonance or “roughness”. The auditory features were extracted using MIRToolbox 

(Lartillot & Toiviainen, 2007). Since the video frame rate was 25 / second, the auditory 

features were extracted in matching 40 ms time windows. For each audiovisual feature 

(except optical flow and differential energy that are already measured between frames) 

the difference between consecutive frames was also calculated. The visual information 

was extracted locally within each frame and then averaged over the pixels in each 

frame. Detailed properties of the feature extraction are provided in Supplementary 

materials (see section “Low-level feature extraction”). 

Semantic features 

We segmented the stimulus films frame-by-frame to extract semantic information from 

the videos using pre-trained open-source computer vision models. Each pixel was 

assigned into a class (eye area, mouth area, other face area, body parts, animals, 

objects or background) or left unknown, if the model’s prediction confidence was under 
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50 %. To first segment the whole image, we used a panoptic feature pyramid network 

(FPN) segmentation model 

(https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-

PanopticSegmentation/panoptic_fpn_R_101_3x.yaml) from the Deceptron2 Python 

library (Wu et al., 2019). The FPN included a Mask R-CNN architecture with ImageNet 

pretrained ResNet101 backbone and it was trained on the COCO dataset to segment 

the images to 134 initial categories (Kirillov et al., 2019; Lin et al., 2014). After 

segmentation, the initial categories were assigned into broad semantic classes 

(bodies, animals, objects, background and unknown) for the analyses. Next, we used 

the RetinaFace face detection model (Deng et al., 2020) following the implementation 

of a previous eye-tracking study of autism to segment rectangular face, eye and mouth 

areas from the videos (Keles et al., 2022). Eye and mouth areas were excluded from 

the whole face segmentations to parcel faces into three segments (eyes, mouth and 

face excluding eyes and mouth). 

The accuracy of the automatic segmentations was validated using human reference 

in the stimulus for Experiment 1. Judging the accuracy of all segmentations from each 

stimulus frame would have been overly laborious. Hence, the human annotator 

evaluated the accuracy of the segmentations in the most interesting areas (i.e. areas 

receiving most fixations from observers) of a subset of the video frames as follows. 

One frame per second was extracted from the stimulus and the segmentations for this 

frame were overlaid onto the frame. One second interval was considered sufficiently 

short for accurate estimations of the segmentation data quality and the work was not 

overly laborious for manual checking with that interval. Next, the thresholded (95th 

percentile) population average gaze position heatmap was overlaid to the frame to 

identify the areas that were the most interesting to the participants around the 

extracted frame (100 ms time window around the frame). A human annotator checked 

these images one-by-one and judged whether the segmented classes within the 

interest areas (under the gaze position heatmap) were correct or not, and then marked 

the right class based on her opinion. The model’s average positive predictive values 

were: eye area 99 %, mouth area 87 %, other face area 99 %, bodies 69 %, animals 

65 %, objects 79 % and background 83 %. The sensitivities were: eye area 92 %, 

mouth area 95 %, other face area 77 %, body parts 89 %, animals 59 %, objects 44 

% and background 82 %. The confusion matrix of the quality control results, and 
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sample frames of the segmentations are shown in Figure 9. Since animals were 

infrequently present and the positive predictive value of this category was the lowest, 

we decided not to include this category in the further analyses. 

Figure 9. Semantic segmentation quality control. The confusion matrix shows the 

agreement of a human annotator and the segmentation algorithm in the Experiment 1 

(movie clips) stimulus. Examples of the segmentation results are visualized alongside 

the confusion matrix. The sample images are from the Experiment 2 movie stimuli 

(Louhimies, 2008). 

Scene cuts 

Unlike real life situations, movies contain scene cuts that result in major semantic and 

perceptual changes. The cuts also impact eye movements considerably (Bruckert et 

al., 2023). We used a scene filter from ffmpeg to detect scene changes in the stimulus 

(https://ffmpeg.org/ffmpeg-filters.html#select_002c-aselect, filter command: 

“select=’gt(scene,threshold)’”). The filter first assigns a score to each frame, where 

higher scores indicate higher probability of the frame starting a new scene. Cuts are 

then identified using a detection threshold for the score. To optimize the detection 

threshold and validate the performance of the automatic scene cut detection method, 

three human annotators identified the scene cuts in the Experiment 1 stimulus. Using 

the manual annotations as the ground truth, the detection threshold of the automatic 
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scene filter was optimized to balance the positive predictive value and sensitivity of 

the scene cut detection. Two hundred ms temporal distance between the algorithm 

and human annotators was chosen as the maximum distance for confirming a match. 

Optimized scene cut detection achieved 96% positive predictive value (PPV) and 95% 

sensitivity in the Experiment 1 stimulus. The optimized scene filter was used to detect 

scene cuts in all three experiment stimuli. 

Perceived social features 

We selected a set of perceived socioemotional features that were identified as 

important perceptual features in our previous studies of social perception (Santavirta 

et al., 2023, 2024). These features are also annotated with high between-participant 

consistency (Santavirta et al., 2024) which is crucial since different participants 

annotated the stimuli and participated in the eye-tracking experiments. These features 

were perceived pleasant feelings, unpleasant feelings, arousal, pain, talking, body 

movement, feeding and playfulness. The ratings were collected in four-second 

temporal resolution with an abstract slider scale from “absent” to “very much”. Five 

annotators were recruited to the laboratory for annotating these features for 

Experiment 1 and 2 using Onni platform (https://onni.utu.fi/) (Heikkilä et al., 2021). The 

annotations for the Experiment 3 were collected online using Gorilla platform 

(https://gorilla.sc/) and the participants were recruited through Prolific 

(https://www.prolific.com/). To decrease the workload of online participants one 

participant annotated only a subset of the video clips. The online experiment begun 

with a bot check (in addition to Prolific’s internal bot checks for their participant pool) 

to increase the data quality. Quality control of the online participant data was 

conducted as described previously (Santavirta et al., 2024) and data were collected 

until five reliable annotations were retrieved for each clip and feature. Finally, we took 

the average over the individual annotators to get the high-level predictors for the eye-

tracking analyses. 

Final predictor set 

As described in above sections, we extracted a total of 39 perceptual features from 

the video stimulus in order to get a detailed description of the stimulus contents in 

multiple processing levels from pure audiovisual processing to semantic categorization 

and perceived social information. Correlation analysis between the extracted features 
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indicated that some of the features were strongly associated with each other. Reliable 

and interpretable mapping of the eye-tracking data with the available features requires 

that the predictors provide relatively independent information. We thus decreased the 

correlations between predictors by hierarchically clustering the correlation matrix of 

the extracted features using the default UPGMA clustering algorithm 

(https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/hclust). The 

clustering identified 16 clusters (seven clusters for low-level features, five clusters for 

perceptual semantic categories and four clusters for perceived social information) from 

the extracted 39 features which were used as predictors in the analyses instead of the 

original features. Cluster predictors were formed by calculating the average over the 

standardized values of the features within each cluster. See section “Dimension 

reduction” and Figure SI-5 in the supplementary materials for a detailed description 

of the dimension reduction. 

Statistical analyses 

The aim of this project was to establish how external low-, mid-, and high-level social 

perceptual features together guide the visual system. The following research 

questions were studied with unique analytical techniques developed for each of them: 

1. Do people prioritize certain semantic categories (e.g. faces) over other 

semantic categories in social scenes? 

2. How are the eye-tracking parameters dynamically modulated by low-level 

audiovisual information, semantic category information, and perceived social 

information in social scenes? 

3. How accurately the population level gaze directions can be dynamically 

predicted in social scenes with an interpretable model that incorporates low-

level information, semantic category information, and perceived social 

information? 

4. How scene cuts influence the eye-tracking parameter dynamics immediately 

after a scene cut?  

 

To address each of these questions, we developed a set of analytical methods and 

tested whether the results generalize across the three independent datasets. First, we 

conducted a gaze time analysis to assess if people have attentional priorities for some 
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semantic categories (Question 1). Second, we used a cross-validated multiple 

regression analysis to assess which perceptual predictors have an independent 

association with pupil size, ISC, fixation rates and blink rates (Question 2). Third, we 

built cross-validated random forest models for moment-to-moment pixelwise 

predictions of the population level gaze heatmaps to understand how well the actual 

gaze positions can be modeled with the available predictors and to deepen the 

understanding of the attentional priorities when observing dynamic social scenes 

(Question 3). Finally, we investigated the average dynamics of the pupil size, ISC and 

blink rates after each scene cut (Question 4). 

Gaze time analysis  

To investigate whether people have an attentional preference towards certain 

semantic classes we conducted a gaze time analysis. The pixel-to-pixel semantic 

class information from the computer vision allowed identifying which class (eyes, 

mouth, face excluding eyes and mouth, body parts, object, or background) a 

participant was watching at each time point. From these data, we calculated the total 

gaze time for each class and averaged the gaze times over the participants within 

each experiment to get population level gaze times for each class. The analysis was 

conducted separately for each experiment.   

High gaze time for a class does not itself reveal an attentional preference for the class 

but could merely indicate that the class is often present occupying large parts of the 

screen. Additionally, centrally presented contents are likely to receive more fixations 

as observers prefer looking at the center of the stimulus (Dorr et al., 2010). To control 

for the location, frequency, and total presented area for the semantic classes in our 

stimulus we used permutation testing to differentiate whether the true gaze times are 

significantly different from those expected by chance. The permutation testing was 

conducted by bootstrapping the true fixation gaze data circularly to break the temporal 

synchrony between the stimulus and the gaze coordinates. Total gaze times for 

semantic classes were then calculated for the bootstrapped random data. The 

bootstrapping was repeated 500 times to get the estimation of the gaze time null 

distributions. Finally, a p-value for the null hypothesis that the true gaze time does not 

differ from chance was calculated by ranking the real gaze times to the corresponding 

null distributions. Since true fixation coordinates were used in the permutation testing 
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instead of simulated random coordinates, the only difference between random data 

and true data is the temporal asynchrony between the gaze coordinates and the stimuli 

(distributions of gaze coordinates and fixation durations do not differ). 

Regression analysis  

To investigate the associations between the extracted predictors and eye-tracking 

parameters while controlling for all other predictors we conducted a multi-step 

regression analysis. Even after dimension reduction the 16 features in the predictor 

space were not fully independent. Repeated simple regressions or one multiple 

regression with all the predictors in the same model could result in mixed findings due 

to possible collinearity between predictors. Instead, we chose a multi-step regression 

approach to achieve more support that the identified associations are truly 

independent of the effects of other included predictors. For pupil size modelling, 

predictors were shifted 1000 ms forward to correct for the lag in pupillary response 

(Figure SI-7) while ISC, fixation rate and blink rate were modelled without temporal 

shift. 

First, we ran simple regression for all predictors in a leave-one-experiment-out cross-

validation process where models were fit to the data of two experiments and one 

experiment’s data was left as the testing set. The predictors where the sign of the 

association (regression coefficient) was consistent across all cross-validations 

indicating replicable sign of association between experiments were selected for the 

next analysis step. If the simple regression associations were inconsistent between 

the cross-validation rounds, we concluded that the results do not support association 

between eye-tracking data and the feature. Second, we ranked the consistent 

predictors by their out-of-sample prediction accuracy (correlation of the model’s 

predictions with the leave-out experiment data) to prioritize the features that have 

higher predictive power in the simple regression setting over the features with lower 

predictive power. Finally, we built an additive regression model where we added 

candidate predictors one-by-one to a multiple regression design starting with the 

features whose predictive power ranked the highest in the previous regression model. 

After every addition of a new predictor to the model, we tested whether the out-of-

sample prediction accuracy (correlation with the leave-out experiment data) improved 

more than would be expected by chance. If the prediction accuracy after adding a new 
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predictor was lower than expected by chance, we concluded that the predictor does 

not have an independent association and the predictor was dropped from the design. 

Hence, the final model tests all consistent predictors and returns the final model with 

only predictors that improve the prediction accuracy significantly.  

The order in which the predictors are added to the multiple regression influences the 

results when predictors are not fully independent but testing all possible combinations 

and orders is computationally prohibitive with up to 16 predictors. Hence, the initial 

prediction accuracy in the simple regression was chosen to determine the order of 

addition. This approach penalizes the predictors that initially showed a low prediction 

accuracy but does not rule out the possibility of an independent effect if the predictor’s 

effect is not better modelled by the previously added predictors. This approach 

assumes that if multiple correlated predictors had association with the variable of 

interest in the simple regression setup, the one with the highest prediction accuracy 

would be the one most likely associated with the variable of interest. To ensure that 

the simple regression and the stepwise multiple regression results did not yield mixed 

findings, we confirmed that the sign of association of the final set of significant 

predictors stayed the same in the initial simple regression and in the multiple 

regressions. 

To test whether adding a predictor to the multiple regression design yields better 

predictions than expected by chance in the left-out-experiment data we conducted a 

permutation test after each predictor addition. Only the newly added column of the 

design matrix was bootstrapped circularly to preserve the covariance structure of the 

previously validated model. Bootstrapping was repeated 500 times to generate the null 

models. The null distribution of the out-of-sample prediction accuracy was generated 

from the prediction accuracies of these null models. The p-value for the hypothesis 

that the newly added feature did not improve the model’s prediction accuracy more 

than would be expected by chance was then calculated by ranking the true prediction 

accuracy to the null distribution. The predictor was considered to improve the 

prediction accuracy significantly when p < 0.05. 

Gaze prediction analysis 

We built a data-driven model to predict the population average gaze position heatmaps 

to assess how well the current predictors can explain the momentary gaze directions 
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of the subjects. Pixelwise predictor values were used to predict the gaze probability of 

each of the pixels. To lower computational demands, the gaze heatmaps and 

predictors were downsampled to 64 x 64 pixel resolution prior to training the gaze 

prediction models. We did not model the gaze heatmaps for each frame since 40 ms 

time interval is unnecessarily short. Instead, we calculated the gaze heatmaps in 200 

ms time windows for this analysis to preserve high temporal resolution while allowing 

the temporal accumulation of information between a few adjacent frames. This 

temporal resolution is likely close to the temporal resolution of the human visual 

system since the typical fixation duration was approximately 300 ms in our data 

(Figure 1).  

We used a random forest regression model that preserves some interpretability, allows 

for more complex association to be considered than ordinary linear regression and is 

computationally efficient, unlike deep convolutional neural network which would be 

computationally prohibitive and difficult to interpret in this context. The random forest 

models were trained using the fitrensemble function in Matlab 

(https://se.mathworks.com/help/stats/fitrensemble.html). The fitrensemble function 

randomly selects N out of N observations of data with replacement and ⅓ of predictors 

for training each individual decision tree. The number of individual decision trees and 

the number of branches in each tree were optimized (see supplementary materials, 

section “Random forest regression optimization”). Based on the optimization results 

50 decision trees and 63 branches (6 branches from the tree trunk to the leaf) were 

selected. Separate models were trained for each of the three datasets to allow out-of-

sample performance testing and comparison of the trained models between datasets. 

The performance of the gaze prediction models was evaluated by testing the trained 

models on the two datasets that were not included in the model training. Two 

performance metrics were calculated. First, we calculated the correlation between the 

true heatmap values and the predicted heatmap values over all time windows in the 

tested dataset. Correlation measures the overall similarity of the heatmap distributions 

but is not sensitive in measuring how well the model predicts the most salient area 

(area with the peak heatmap value) in the screen. To assess how well the model can 

predict the most salient areas, we also calculated the distance between the true peak 

value and the predicted peak value for each 200 ms time window. This peak prediction 

distance was then averaged over all time windows and is reported as percentage of 
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the image width. If the peak prediction distance is low, then the model is able to predict 

well the most salient part of the screen, regardless of the overall similarity of the true 

and predicted heatmap distributions. 

To interpret the trained random forest models we extracted the relative feature 

importance 

(https://se.mathworks.com/help/stats/classreg.learning.classif.compactclassificatione

nsemble.predictorimportance.html) for each predictor which states how influential the 

predictor was for the model’s prediction in range between 0 and 1. The relative 

importance does not reveal whether increase in the predictor value would increase the 

predicted gaze probability or vice versa. Hence, we simulated how changing the value 

of one predictor influences the model’s predictions when all other predictor values are 

held constant. First, we randomly selected a pixel from the training dataset and 

extracted the real predictor values for that pixel. For categorical predictors we 

simulated how changing the value between 0 and 1 will influence the gaze probability 

prediction in that pixel. For standardized continuous predictors we simulated new 

predictions with 20 uniformly distributed random predictor values (Z-scores) between 

-3 and 3. This simulation was repeated for 200 000 randomly selected pixels and the 

simulation was done separately for each trained model (one for each dataset) before 

pooling the simulation results together. 

Scene cut influence analysis 

We extracted the eye-tracking data for 3600 ms time window around each identified 

scene cut (from cut – 600 ms to cut + 3000 ms) for each participant. Pupil size, ISC 

and blink rate were then extracted for these time windows. Pupil size was extracted 

continuously (1kHz) and ISC and blink rates were calculated in 200 ms time windows 

(5Hz). Since pupil size is an arbitrary participant specific measure, pupil size time 

series were normalized with the mean pupil size in a 600 ms interval before scene cut. 

To estimate the replicability of the scene cut effect, the data were averaged over the 

participants separately for each experiment.  

To estimate whether the population level change in eye-tracking measures after scene 

cut was significantly higher than would be expected by change, a permutation test was 

applied. We sampled 100 time series (3600 ms) at random time points from the eye-

tracking data for each participant and averaged these over all participants to get a 
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random sample of the population level average time series for the 3600 ms time 

period. This sampling was repeated 500 times to get a null distribution of the 

population level random time series thus the null distribution was generated from 50 

000 random samples (100 x 500). True population level time series calculated from 

participant-level time series around scene cuts were ranked within this null distribution 

to get the exact p-value for each time point around the scene cut. Significant cut effect 

is reported for time points with p < 0.05 based on this permutation test. 

Data and code availability 

The analysis scripts and the extracted stimulus features are freely available in the 

project’s GitHub repository (https://github.com/santavis/social-vision-in-cinema). The 

subjects’ permissions for public distribution of the subject-level eye-tracking data were 

not collected and hence the eye-tracking data cannot be distributed. The stimulus 

movies can be made available for researchers upon request, but copyrights preclude 

public redistribution of the stimulus set. Table SI-1 provides short descriptions of the 

movie clips in Experiment 1. 
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