SECOND-LEVEL ANALYSIS OF PET AND MRI DATA

Turku PET Centre Brain Imaging Course 2024

Lauri Nummenmaa, Turku PET Centre

Basic problems associated with scientific measurement

- How well is target variable reflected in true scroe (construct validity)
- How well true score is reflected in observed score? (reliability)
- How well does observed score predict behaviour? (criterion-based validity)

OBSERVED SCORE (Outcome measure such as BPND)

TARGET (e.g. specific neuroreceptor)

TRUE SCORE (T) How target is defined (e.g. number of receptors)

PREDICTION OF BEHAVIOR (e.g. anxietylike behaviour)

ERRORS PRESENT AT ALL LEVELS; THEY ALSO ACCUMULATE FROM LEVEL TO LEVEL

ARE THESE BRAINS STATISTICALLY DIFFERENT?

Starting point: Images where voxel intensities reflect the outcome measure

Sneak peek: Analysis of PET vs. fMRI data

- **PET data needs to be modelled** before population level inference
	- 4D image —> 3D image
	- Voxel intensities reflect outcome measure (receptor density, metabolism....)
- **Similarly, EPI data needs to be modelled** before population level inference
	- 4D image —> 3D image
	- Voxel intensities reflect the fit of the stimulation model to the BOLD time series

Univariate data Regularly shaped

3D neuroimaging data Irregularly shaped

ROI-based analyses

• Pros: Anatomically accurate if ROIs well definied, data can be analyzed with simple univariate

• Cons: Laborious, using many ROIs not feasible, averaging within ROI not always appropriate

- statistical tests
-

Univariate data regularly shaped can use univariate stats

MASS UNIVARIATE TESTING FOR ALL VOXELS

SUBJECT 1

SUBJECT 2

SUBJECT 3

STATISTICAL PARAMETRIC MAP TEMPLATE

(BPND, contrast estimate, tissue probability) (BPND, contrast estimate, tissue probability) **Voxel intensity** = outcome measure outcome measure **Voxel intensity**

THE BASIC RECIPE

THRESHOLD TO HIGHLIGHT

SMOOTH **SMOOTH**

Full-volume analyses with real brains

- Basic problem: Individual brains differ in size and shape
- Solution to the problem: Make brains similar by warping them
- Problems with the solution
	- Warps distort anatomy
	- Anatomical information is not the precise anyway
	- How should we warp the brains?

The MNI space as the target

• **ICBM 152 template**

- Based on average of 152 brains that have been spatially normalized
- Statistical average of the typical western adult brain
- Problem: not necessarily representative of study sample
- In fMRI can also use e.g. spherical models

Spatial normalization in practice

NATIVE

AFFINE NORMALIZATION: 4*3 PARAMETERS

- 1. Linear (12-parameter affine) normalization
	- Match size and position
- 2. Nonlinear normalization
	- Linear combinations of smooth discrete cosine basis functions

Smoothing

FWHM = spatial extent of the filter

Example on smoothing brain-PET images UNSMOOTHED 12mm FWHM

16mm FWHM 32mm FWHM

Why smooth?

- Smoothing neuroimaging data: reduces noise and anatomical discrepancies
- voxel size
- Enables hypothesis testing and dealing with multiple comparison problem in functional imaging
-

• Assumption: error terms are roughly Gaussian; FWHM greater than

• However introduces problem of how to correct for multiple comparisons

Raw data: 16384 independent numbers

Problem with kernel-based smoothing: How many numbers are independent?

8 by 8

square

How many independent numbers? Image 1 - smoothed with Gaussian kernel of FWHM 8 by 8 pixels 20 40 Pixel position in Y 60 80 100 120 20 80 100 120 60 40

Kernel-based smoothing

https://matthew-brett.github.io/teaching/random_fields.html

Pixel position in X

Random Field Theory in nutshell

- Estimate the number of resels in the image
	- Resel= block of pixels / voxels of the same size as the FWHM of the smoothness of the image. Depends on both image size and FWHM
- Work out the Euler characteristic (EC) of the image
	- Property of the image after it has been thresholded. Roughly number of blobs in image after thresdholfing
- Resels and EC are linked: when Z thresholds increases and EC drops the expected EC approximates the probability of observing one or more blobs at that threshold.

What sort of voxelwise model to fit?

ANOVA, ANCOVA, linear regression…

Masking the data

Applying explicit / threshold mask is necessary to avoid fitting model to noise

Between-groups design

Group 1

Karlsson et al (2015 J Neurosci)

1) Mean images for each group

2) Statistical differences (t-map)

3) Region-of-interest data

Challenge / longitudinal design

Voxelwise comparison with mass univariate repeated measures tests

Lag hours or days

Challenge: Task, drug, etc.

Fast vs. Non-palatable

Fast vs. Palatable

$$
X=4
$$

$$
Y = -1
$$

\square Non-palatable meal Palatable meal

Tuulari et al (2018 J Neurosci)

 \blacksquare Fast

Correlational design

Baseline scan

Lowered mu-opioid receptor levels in subclinical depression

Nummenmaa et al (2020 Neuropsychopharmacology)

SUBJECT 1

SUBJECT 2

SUBJECT 3

STATISTICAL PARAMETRIC MAP TEMPLATE

(BPND, contrast estimate, tissue probability) PND, contrast estimate, tissue probability) **Voxel intensity** = outcome measure outcome measure **Voxel intensity** $\overline{\mathsf{B}}$

THE BASIC RECIPE