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Modelling methaods in Brain PET imaging:
Kinetic vs Statistical models

Kinetic models

- designed to describe and quantify the underlying biological processes that govern the behaviour of
the radiotracer within the brain.

- based on physiological and biochemical principles and involve the estimation of parameters related to
these processes.

- Examples: Compartmental models, Receptor Binding models, Graphical Models, Spectral Analysis

Statistical models

- focused on the statistical properties of the PET signal, often using data-driven approaches to analyze
or interpret the imaging data.

- they may not directly describe the underlying biological processes but are useful for extracting
patterns, trends, and significant differences in the data.

- Examples: Statistical Parametric Mapping (Atlas ROIs or Clusters), Machine Learning (ML) models
(supervised, unsupervised, deep learning, LASSO), Bayesian models



Modelling methods in Brain PET imaging

Modelling: the process of creating mathematical or computational representations
that describe and quantify the underlying biological, physiological, or biochemical
processes that govern the distribution, kinetics, and interaction of a radiotracer within
the brain.
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Input recovery method: improve
quality of sampled input functions
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Validation of IR method

Comparison of SUV TACs: Original preprocessed (PALZ) vs Recovered Input with Feng/Bayesian fit

(using time points between 5 and 100 min) Good vs Poor quality plasma input curves for [18flfdg (clamp condition)
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Selection Variable
(regression with SUV Max and Ratio Max/5th min)
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Validation of IR method

Selection by cut-off of cases <0.47 (to be recovered) © >=0.47 (acceptable)
to be recovered with the model

Good vs Poor quality plasma input curves for [18flfdg (clamp condition)
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Validation of IR method

Comparison of SUV TACs: Original preprocessed (PALZ) vs Recovered Input with Feng/Bayesian fit
(using time points between 5 and 100 min)
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Figure 6. Poor-quality Input TACs (Train set, n = 56) — Original and Recovered by the Feng-Bayes
model. The peak is recovered while the tail is kept similar to the original curves.
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Results (1) from IR method applied to the train set
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K1 (1/min)

Results (2): K1 of train set and FUR of all sets

K1 after IR Model:

Already acceptable before IR
Corrected after IR

== Stll not acceptable after IR
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Methods in Brain PET imaging: Input modelling
conclusions

* Input function quality affects modelling parameters and
should be corrected when possible

* Input recovery from samples of the tail of the time
activity curve in the plasma is a feasible method of
correction

* There are also different ways to derive input from image
but good quality images (not suitable for old scans) and
arteries should be in the Field Of View. (not shown)
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Brain PET: FDG



Brain FDG: Example of Metabolic Study

InSU]_in ReSiStance IS ASSOCiated Eleni Rebelos,” Marco Bucci,

Tomi Karjalainen,’ Vesa Oikonen,’

Wj.th Enhanced Braj-n G]-ucose féﬁ:iagdllfrnieﬂz¢jzil Kirsi A. Virtanen,™>
Uptake During Euglycemic ke meens e st

Hyp erinsuline mi a: A L ar ge _ S C al e Markku Laakso,® Ele Ferrannini,”

Patricia lozzo,” Lauri Nummenmaa,™® and

PE T COhOI‘t Pirjo Nuutila™®

Diabetes Care 2021,44:788-794 | https.//doi.org/10.2337/dc20-1549

* Type of modelling: semiquantitative (BGU, brain glucose
uptake (graphical analysis (FUR, fractional uptake rate))

* Type of statistical inference: Bayesian
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HYPERINSULINEMIC EUGLYCEMIC GLUCOSE CLAMP TECHNIQUE

TO MEASURE THE WHOLE BODY GLUCOSE DISPOSAL DURING INSULIN STIMULATION

Hyperinsulinemic Euglycemic Glucose Clamp

Adjust Glucose Infusion
"Clamp" Blood Glucose Leve.ml

y =

Glucose
) Analyzer

Variable Frequent
| Constant Glucose Blood

= Insulin Infusion Samplin
KPO, |nfusion i

At "Steady-State", Glucose Infusion = Net Glucose Utilization

Figure from: [Kim et al., J Korean Endocr Soc. 2009 Jun;24(2):75-83]

The m-value (or glucose infusion rate, GIR) represents
the amount of glucose that needs to be infused per
minute to maintain a constant euglycemic state
(normal blood glucose level) during a
hyperinsulinemic-euglycemic clamp study. The higher
the m-value, the more insulin-sensitive the subject is,
as it indicates that more glucose needs to be infused
to_maintain _blood glucose levels in the presence of

high insulin.
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Statistical inferences: Bayesian vs frequentist

* Bayesian modelling

Bayesian Learning Cycl.e

Deduction
A Prior
Knowledge
Kaﬁ:ﬁge Prediction
Prediction Data
Error
%
Induction

Bayesian vs. Frequentist Summary

Attributes: Bayesian: Frequentist:

What is it? Probability distribution around the Parameters are fixed and a single point
parameters

What fioes it Given the data, Yvhat is the probability Is the hypothesis true or false?

question? of the hypothesis?

What does it Prior knowledge/information and any . N

. A stopping criterion

require? dataset.

What does it Aforor agalnst probability about the point estimate (p-value)

output? hypothesis.

Main advantage

Backed up with evidence and can apply
new information

They are simple and easy to use, and
does not need prior knowledge

Main
disadvantage

Requires advanced statistics

Highly dependent on the sample size,
and only give a yes or no output

When should | use
it?

Limited your data when you have
priors

Uses more computing power

With a large amount of data
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Statistical inferences: Bayesian vs frequentist

Frequentist ---Sampling distribution Bayesian Posterior distribution
— Likelihood function A —— Likelihood function
e Prior distribution
2 =
‘0 7))
c | =
[y [}
()] ()]
> — >
6, © Parameter of interest
. Source: Skrepnek, G.H. (2007) Pharmaeconomics, 25(8): 649-64
Parameter of interest
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Brain FDG: Posterior distributions predicting BGU

Table 1—Anthropometric and biochemical characteristics of the study participants

Frontal = =
5 Limbic - Men (n = 63) Women (n = 131)
i OPC;::I;:::: :: Mean SD Range Mean SD Range
Temporal = Age (years) 56 11 20-69 56 14 23-80
Frontal —— 2 v
o Limbic B BMI (kg - m?) 29 6 22-48 30 7 19-51 (9
<0 Occipital " — HbA;
Parietal — % 56 03 5163 56 04 49-7.1
Temporal —— mmol/mal 38 4 32-45 38 8 30-54
iri?nnt:?(l S—— M value (umol - kgee - min~Y) 402 245 7.9-130.8 491 253 10.3-138.2
e —
é Occipital — e - Type 2 diabetes, n (%) 7 (11) 20 (15)
Parietal —
Temporal e
£ Frontal =
S Limbic - . .
2 Occipital - The m-value (or glucose infusion rate, GIR) represents the amount
@ Te’::ggrt:l' == of glucose that needs to be infused per minute to maintain a
» Frontal — —— constant euglycemic state (normal blood glucose level) during a
£ Oé—é’i“;ﬁ; S e —— hyperinsulinemic-euglycemic clamp study. The higher the m-value,
2 Parietal — — the more insulin-sensitive the subject is, as it indicates that more
Temporal g e—— glucose needs to be infused to maintain blood glucose levels in the

-0.1 0.0 0.1 02

. - presence of high insulin.
Regression coefficient

Figure 2—Posterior intervals of the regression coefficients for the variables of interest predicting

BGU. The thick lines represent the 80% posterior intervals, the thin lines represent the 95% Rebe|OS et al D|a betes Ca re 2021 17
2 ’

posterior intervals, and the circles represent posterior means. ss, steady state.



Brain FDG: Posterior distributions predicting BGU

8

BGU in frontal lobe
8

=

Figure 3—Brain clusters (as defined by false discovery rate—corrected statistical parametric mapping one-sample t test) for the association between BGU
during clamp and M value and the corresponding scatterplots.

Higher BGU is associated with lower M-Value (insulin

resistance)) probably due to increased brain inflammation
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Figure 4—Spatial correlation between the regional M valu
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Language
d dentinsulin-sti dBGU (y-

axis) and meta-analytic blood oxygenation level-dependent functional MRI activation patterns for
four basic cognitive functions retrieved from the Neurosynth database (https://www.neurosynth
.org). These results show how well the M value-dependent BGU effects correspond with cerebral

localization of different cognitive functions.
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Brain PET: Amyloid (Flutemetamol)
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Figure 1: Pathological mechanisms invalved in Alzheimer's disease and their associated biofluid-based biomarkers
Alzheimer's disease has a complex pathophysiology. Biofluid-based biormarkers that can be reliably measured in both blood and C5F are: AR, pTau, NiL, and GFAP.

Biomarkers with strang potential in CSF only include: cytakines, sTREMZ, PDGFRE, MIFs, NGRM, GAP-43, and NPT AR=arrylaid B. NfL=nevrofilament light chain
plau=phosphorylated tau. GFAP=glial fibrillary acidic pratein, MMP=matric metalloproteinase. 54 Pesporadic Alzheimer's disease. faD=familial Alzheimer's disease
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Figure from Teunissen et al., Lancet Neurol., 2022; Cummings et al., A&D, 2023
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Brain Amyloid PET: VR vs SUVR discordance

European Journal of Nuclear Medicine and Molecular Imaging (2021) 48:2183-2199 a (n=22)
tps:/fdoiorg/ 10 1007/500259-021-05311-5 6
ORIGINAL ARTICLE ®
' H
A multisite analysis of the concordance between visual image 8 ()
interpretation and quantitative analysis of ['®Flflutemetamol s °
amyloid PET images £ (n=9) Disc. type
°©
N N . o A N - " ® v-a+ %
Marco Bucci’ - Irina Savitcheva? - Gill Farrar® - Gemma Salvadé ** - Lyduine Collij® - Vincent Doré™* . = N v+Q-%
Juan Domingo Gispert***'° . Roger Gunn'""2 . Bernard Hanseeuw'>'* . Oskar Hansson'® - Mahnaz Shekari **® . k=
Renaud Lhommel ' - José Luis Molinuevo**®'® . Christopher Rowe”"” . Cyrille Sur"® . Alex Whittington'" - = (n=8)
Christopher Buckley” - Agneta Nordberg *** 5 2 (n=15)
2 (n=4) (n=6)
g
SUVR 0.46 SUVR 0.60 SUVR 0.62 SUVR 0.71 SUVR 1.12 o) sl
o (n=0) (n=0)  (=0)
AIBL (n=269) ALFA+ (n=359) BIOFINDER (n=401) GE (n=172) Kl (n=191) MCK (n=928)
V+Q- V-Q+ Total
(n=37) (n=14) (n=51)

Diagnosis 0.014
HC 7 (50 %) 7 (50 %) 14
HC(ADO) 22 (91.7 %) 2 (8.3 %) 24

scD 2 (40 %) 3 (60 %)
4 (66.7 %) 2(33.3 %)
1 (100 %) 0(0 %)
1(100%) 0 (0 %)

R R, o u
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Brain Amyloid PET: VR vs SUVR paper
discordance: sensitivity analysis

European Journal of Nuclear Medicine and Molecular Imaging (2021) 48:2183-2199
https://doi.org/10.1007/500259-021-05311-5

ORIGINAL ARTICLE @

A multisite analysis of the concordance between visual image
interpretation and quantitative analysis of ['*Flflutemetamol
amyloid PET images

Marco Bucci’ - Irina Savitcheva? - Gill Farrar® - Gemma Salvadé** - Lyduine Collij® - Vincent Doré”* .

Juan Domingo Gispert***'° . Roger Gunn'"'? - Bernard Hanseeuw'>'* . Oskar Hansson'® - Mahnaz Shekari *** -
Renaud Lhommel? - José Luis Molinuevo***'° . Christopher Rowe”'” . Cyrille Sur® . Alex Whittington'"
Christopher Buckley® - Agneta Nordberg "%

Different sites, maybe
necessary harmonization
(ComBat) or CL scaling

99.0%

96.0%

93.0%
Selected peak performance cutoff
Kl (0.61)

GE (0.58)

AIBL (0.65)

BIOFINDER (0.7)

ALFA+ (0.57)

90.0%

LR X X R

87.0%

Percentual agreement by study
= KI (wlo BL, n=191)

== GE (n=172)

== AIBL (w/o BL, n=269)

== BIOFINDER (n=401)

“= ALFA+ (wlo BL, n=359)

84.0%

81.0%

78.0%

Percentual Agreement - Visual Reads vs Quantification (Excluding Borderlines)

75.0%

0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72
Quantification Pons Ref. region cut-off (SUVR)

Fig. 1 Change in % agreement between visual and quantitative image interpretation around the SUVr pons threshold of 0.55 to 0.74 (with borderlines
(BL) excluded). Note: The number of BL cases excluded is 21, 2 and 7 for KAROLINSKA, ALFA+ and AIBL, respectively
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Brain Amyloid PET: VR vs SUVR paper
discordance: sensitivity analysis

V-Q+ (N=21) V+Q- (N=4) Total (N=25) p value

Progression to any clinical diagnosis 0.524

Clinical progression 14 (66.7%) 2 (50.0%) 16 (64.0%)

stable 7 (33.3%) 2 (50.0%) 9 (36.0%)
Progression to AD/Other Diagnosis 0.322

Progression to AD 8 (38.1%) 0 (0.0%) 8 (32.0%)

Progression to Other Diagnosis 6 (28.6%) 2 (50.0%) 8 (32.0%)

stable 7 (33.3%) 2 (50.0%) 9 (36.0%)
Progression in detail 0.206

HC to SCD 1 (1.8%) 1(25.0%) 2 (8.0%)

MCI to AD 4 (19.0%) 0 (0.0%) 14 (16.0%)

MCT to Parkinsonian 2 (9.5%) 0 (0.0%) 2 (8.0%)

SCD to AD 4 (19.0%) 0 (0.0%) 4 (16.0%)

SCD to MCI 0 (0.0%) 1 (25.0%) 1 (4.0%)

SCD to Parkinsonian 1 (4.8%) 0 (0.0%) 1 (4.0%)

SCD to Vascular 2 (9.5%) 0 (0.0%) 2 (8.0%)

stable 7 (33.3%) 2 (50.0%) 9 (36.0%)

Performing Competing Risk Regression
analysis that took advantage of the full
follow-up data (up to 7 years), using
censoring similar to a survival analysis
and discounting the contribution of the
competing events (AD and OD
progression):

the V-Q+ discordant cases were 11% (Cl
95%: 4%-34%) more likely to progress to
AD than V+Q- discordant cases
(p<0.001).

Table from Bucci et al., EINMM 2021 (https.//doi.org/10.1007/s00259-021-05311-5) 23
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Brain PET: Amyloid (Flutemetamol) +
Tau (Fluortaucipir)



AD biomarkers: the AT(N) framework

 Some of the AD biomarkers are designed to target AD-specific changes,
such as the deposition of amyloid-B (A) and tau (T), while others the
downstream neurodegeneration (N).

 The AT(N) framework from Jack et al (2018):

¢ A - Amyloid-B (PET or CSF)

% T—Tau (PET or CSF p-tau)

** (N) — Neurodegeneration (MRI, CSF t-tau, FDG PET)

= Note that in the original formulation the biomarkers in the same category
(A,T or N) can be used indistinctively!
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ATN paper: aims

a) to assess the agreement/concordance of the imaging and
CSF biomarkers across the ATN components and as ATN
profiles;

b) to evaluate which of the investigated biomarkers proves
better in predicting prospective cognitive decline.
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ATN paper: General characteristics

I S N T T B e

Age, years

Mean (SD)
Range

Sex
M
F

Education, years
Mean (SD)
Range

APOEA4 carrier
Missing (n)
No
Yes

MMSE
Mean (SD)
Range

CDR
Mean (SD)
Range

ADNI mem. comp. score
Mean (SD)
Range

Follow up time interval, months
Missing (n)
Mean (SD)
Range

72.9 (7.4)

56.0-90.4

37 (42.0%)
51 (58.0%)

17.1 (2.0)

12.0-20.0

0

61 (69.3%)
27 (30.7%)

28.9(1.2)

25.0-30.0

0.0 (0.1)
0.0-0.5

1.1 (0.5)
02-27

43
20.2 (6.7)
0.0-28.2

71.3 (6.5)
57.1-90.4

72.3 (7.8)
57.8-88.1

25 (30.5%) 21 (60.0%)

57 (69.5%) 14 (40.0%)
16.5 (2.1) 16.3 (2.9)
12.0-20.0 12.0-20.0
1 0
45 (55.6%) 25 (71.4%)
36 (44.4%) 10 (28.6%)
29.2 (1.0) 28.4 (1.4)°
26.0-30.0 25.0-30.0
0.0 (0.0) 0.5 (0.1)>
0.0-0.0 0.0-0.5
1.0 (0.5) 0.4 (0.4)>
0.2-2.3 0.3-1.4
47 6
17.3 (6.3) 17.1 (8.0)
10.7-28.4 3.9-36.6

73.6 (8.4)
55.9 - 88.2

19 (61.3%)
12 (38.7%)

15.9 (2.4)
10.0 - 20.0

0
16 (51.6%)
15 (48.4%)

26.9 (2.6)%b-¢

19.0-30.0

0.5 (0.1)2
0.0-1.0

0.1 (0.5)3b-¢
-1.0-0.9

1
14.4 (5.3)?
4.1-263

72.1(9.7)
55.5-87.8

72.3 (7.5)
55.5-90.4

14 (77.8%) 116 (45.7%)

4 (22.2%) 138 (54.3%)

16.2 (2.7) 16.6 (2.3)

12.0-20.0 10.0 - 20.0
0 1

7 (38.9%) 154 (60.9%)

11 (61.1%) 99 (39.1%)

22.3 (1.9)2-b-cd: 28.2 (2.3)
17.0- 26.0 17.0 - 30.0
0.7 (0.3)2-b-c.d: 0.2 (0.3)
0.5-1.0 0.0-1.0
-0.8 (0.6)2P-c.d- 0.7 (0.7)
-1.6-0.4 -1.6-2.7
5 102
14.4 (5.1)? 17.3 (6.8)
10.4 - 28.2 0.0-36.6

1) Linear Model ANOVA; 2) Pearson’s Chi-squared test ; a,b,c,d denote significant differences respectively with CN, SMC, EMCI and LMCI with Tukey Post Hoc. p < 0.05.a.,b.,c.,d. p < 0.001

Marco Bucdi, et al, Molecular Psychiatry 2021

0.556!

< 0.001%

0.074*

0.040%

<0.001*

< 0.001!

< 0.001*

0.002!
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AT groups (CSF) %

751

50 1

251

AT groups (PET-AT1(Temporal MetaROl)) %

CN SMC EMCI LMCI AD cN SMC EMCI LMCI AD
(n=88) (n=82) (n=35) (n=31) (n=18) (n=88) (n=82) (n=35) (n=31) (n=18)
Group Group

AT classification ' A-T- B A-T+ [ A+T- Wl A+T+
Marco Bucdi, et al, Molecular Psychiatry 2021
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Results — AT(N) profiles
Discordance between biomarkers

A-T+N- (CSF) (1)

\ A+T-N- (PET/MR) (11)

b o

A-T-N- (CSF) (81) A+T-N- (CSF) (32) // A-T-N+ (PET/MR) (10)

A-T-N- (PET/MR) (93) / '

A-T-N- (PET/MR) (26)

A+T-N- (CSF) (44)

A-T-N- (CSF) (19)
IA-T-N+ (PET/MR) (17,
- A+T-N+ (PET/MR) (9) /
A-T+N+ (CSF) (8)

&
-~
A-T+N+ (CSF) (14) . 7
/I\(
A-T-N+(CSF) 3) ) # A+T-N- (PET/MR) (41) A+T+N+ (PET/MR) (19)
A-T+N- (CSF) (2) \\\\ A+T+N+ (CSF) (22)

A+T+N+ (CSF) (24) — A+T+N+ (PET/MR) (1)
E—

A+T+N- (CSF) (2) == |:‘ At (PET/MR) (7) A+THN- (CSF) ) [T L

CU (CN,SMC) Cl (EMCI,LMCI,AD)

A+T—N+ (PET/MR) (9)

A+T+N- (PET/MR) (9)

Marco Bucdi, et al, Molecular Psychiatry 2021



Aim 2 — Prediction of cognitive decline via
LMM (Linear Mixed Models)
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Results — CSF/PET Tau profiles to predict Cog.
Decline: Tau PET better than CSF for prediction

Tau CSF vs Tau PET (Temporal metaROI)

Linear Mixed Model predicting (Model 6)
ADNI mem composite cognitive score L ;’;:;:S"F"/:;'T';ag:l::“ c
CSF-PET- (87 subjects with 200 cognitive evaluations: [CN=28,SMC=21,EMCI=22,LMCI=14,AD=2]) ——
CSF+PET- (32 subjects with 75 cognitive evaluations: [CN=12,SMC=10,EMCI= 4 LMCI= 5AD=1]) ——
CSF-PET+ ( 9 subjects with 19 cognitive evaluations: [CN= 1,SMC= 2 EMCI= 1LMCI= 3 AD=2|) ——
‘ CSF+PET+ (24 subjects with 50 cognitive evaluations: [CN= 3 SMC= 2,EMCI= 3,LMCI= 8 AD=8]) ——
Tau Profiles (CSF+PET-) o— . : . : .
Tau Profiles (CSF-PET+) o : 10 : L
Tau Profiles (CSF+PET+) ** ———— | ) L — ||
Qo Tr : | |
Time (months) ** 2 o054 &l 1 L T
ADNI Memory cscore (baseline) ** E \ '.
i \
Unimpaired Cognition (CU=2,Cl=1) ** e Z  00- | I
: . ? o) ' ———
Tau Profiles (CSF+PET-) x Time < <
Tau Profiles (CSF-PET+) x Time * = ﬁ 05 B
Tau Profiles (CSF+PET+) x Time ** o L -t o MNLLL L LELLL L : -
0 10 20 30 40

-0.3 -0.2 -0.1 0.0 0.1 0.2

Estimate Time (months)

Note: Gender and ApoE4 carrier status were not significant or did not improve the model

<001, *p=005
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Results — A/T PET profiles to pre

dict Cog. decline

Tau PET is a preferrable predictor to Amy PET

Linear Mixed Model predicting (Model 6)
ADNI mem composite cognitive score
A-T-

A+T-
A+/T+

70 subj
t49 subj
32 subj

!

Amy PET vs Tau PET (Temporal metaROI)
Profiles x Time - interaction effect (Model 6)
PET (A/T) Profiles*

ects with 156 cognitive evaluations: [CN=23, SMC=16,EMCI=18 LMCI= 12 AD= 1
ects with 119 cognitive evaluations: [CN=17,SMC=15,EMCI= 8LMCI= 7 AD= 2
ects with 67 cognitive evaluations: [CN= 4,SMC= 3, EMCI= 4,LMCI= 11 "AD=10;

PET Profiles (A+/T-) ** 104

PET Profiles (A+/T+) **

[
Time (months) ** § 05 '
£ ;
ADNI Memory cscore (baseline) ** g
Unimpaired Cognition (CU=2,Cl=1) ** — é 0.0 -

PET Profiles (A+/T-) x Time

PET Profiles (A+/T+) x Time **

11 Tllm.(l-,l,u,l_l,l | 11T L 0L

N1
T

-03 -02 -01 0.0 0.1 0.2

Estimate

10 20 30 40

Time (months)

Note: Gender and ApoE4 carrier status were not significant or did not improve the model

* PET (A-/T+) profile included only 1 subject (with bordeline values)
and was dropped from the analysis

**p=0.01
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Conclusions

* While biomarkers for amyloid-beta in CSF and imaging
agree considerably, CSF and imaging biomarkers for tau and
neurodegeneration proved not to be interchangeable.

* Tau PET positivity was superior to phosphorylated tau and
amyloid-B PET in predicting a cognitive decline in the
Alzheimer’s disease continuum.
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Background

*  Plasma biomarkers have shown promising performance in research cohorts in discriminating
between different stages of Alzheimer’s disease (AD).
— {t Plasma GFAP, in elderly individuals at high risk of AD (Chatterjee et al, 2021) and in carriers of
autosomal dominant AD mutations before symptoms manifestation (Chatterjee et al, 2022).
— Plasma pTaul81 and pTau231, in autopsy studies, had the highest sensitivity and specificity in
detecting AD neuropathological changes compared to pathology diagnoses (Smirnov et al, 2022).

Research cohorts tend to have strict inclusion and exclusion criteria, which lead to a higher
degree of patient homogeneity, facilitating interpretability of results.

Clinical cohorts should provide valuable insights on the clinical utility of plasma biomarkers ahead
of their incorporation in a real-world setting.

*  Amyloid-f PET when used clinically has an added diagnostic value, especially in patients with
unclear diagnosis (Leuzy et al, 2019).
— Itis of interest to investigate whether single plasma biomarkers or in combination could

predict amyloid-B PET positivity (or negativity) in clinical setting.
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Aims
e Evaluate plasma biomarkers in a real-world clinical setting in patients

undergoing memory clinical assessment in a tertiary memory clinic:

— Evaluate plasma biomarkers association to amyloidosis in brain
(Amyloid-f PET)

— Test if plasma biomarkers alone or in combination can predict
amyloid positivity assessed as visual read of Amyloid-f PET
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Methods (1)

Tertiary memory clinic of Karolinska University Hospital
Extensive clinical assessment
— neuropsychological testing, CT/MRI, CSF biomarker analysis
[18F]flutemetamol PET (AB-PET) examination
— visual reads, quantification with Centiloids
Blood samples taken in the same time frame for plasma biomarker analyses
— Plasma GFAP, NFL, AB42 and AB40 (Quanterix, SIMOA)

— Plasma pTau-231, pTau-181 (in-house assay kits from Gothenburg Univ.)
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Methods (2) — Study population

Characteristics of the study population and diagnostic subgroups

126 patients

?‘ﬁlﬂﬁ)ﬂ pAD (N=18)  ADD (N=51) ?‘N":"z‘gn CU (N=4) Total (N=126)  p value
Age 0.808 (1)
- Mean (SD) 65.87 (10.66) 66.83 (8.41)  64.12(7.26)  65.70 (8.74)  64.00 (2.16)  65.21 (8.47)
Sex 0.186 (2)
~F 17 (56.7%) 14 (77.8%) 28 (54.9%) 9 (39.1%) 2 (50.0%) 70 (55.6%)
M 13 (43.3%) 4 (22.2%) 23(45.1%)  14(60.9%) 2 (50.0%) 56 (44.4%)
MMSE* <0.001 (1)
- Mean (SD) 2557 (3.36) 2750 (1.92)  25.38(3.38)  23.32 (4.04)  29.50 (0.58)  25.50 (3.53)
Centiloid** <0.001 (1)
- Mean (SD) 1.02(16.15) 7231 (23.32) 87.95 (24.84) -1.44 (17.28)  -7.41 (2.24) 45.59 (47.79)

Marco Bucci*, Marina Bluma* et al, Trans. Psychiatry 2024

MCI, Mild Cognitive Impairment; pAD, Prodromal AD; ADD, Alzheimer’s Disease Dementia; Non-AD, Non-AD dementias, CU, Cognitive Unimpaired. (1) - Kruskal-Wallis test, (2) — Pearson’s x2 test
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Methods (3) - Statistical analyses

Group differences, tested with non-parametric tests
corrected for multiple comparisons

Correlation coefficients (Spearman’s)
ROC curves, to predict for Amyloid-B PET positivity

LASSO regressions to combine multiple variables (and
dropping the ones not contributing to the model) for

prediction of Amyloid-B PET positivity (cross-validation
10-fold of the models)
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Results (1)

A Amyloid PET B Plasma GFAP C  Plasma NFL
Hirsaans(3) = 8787, p = 6.28e-19, 7%, = 0.74, Class, [0.73. 1.00]. e = 119 Fhrusearws(3) = 29.72.p = 1.58¢-06, 82, = 0.25, Clygy, [0.15, 1.00], N = 122 Fhrusearwana(3) = 2.92,p = 040,72, = 0,02, Closs [8.91€-03. 1.00]. As = 122
150 s 400 e - 75
- 1
. . .
* Plasma GFAP levels are 100 i g : : =
. s 't e =) - £ 50 ..
different between MCI = < 5 o0 s g
(@] N 3 E .I- N [
Af- and prodromal AD [ , 6 K !' ‘. [
0 - A
(MCI AB+) groups % 41'1’ - @ H ﬂ —§ : -
. .
-50 n=27 n=19 n=50 n=23 n=4 0 n=29 n=19 n=51 n=23 n=4 0 n=29 n=19 n=51 n=23 n=4
(] P| asma pTa u18 1 an d MCI AB-  pAD ADD Non-AD CU MCI AB-  pAD ADD Non-AD  CU MCIAB-  pAD ADD Non-AD  CU
pTau231 levels were D Plasma AB42/40 E Plasma pTaul8 F  Plasma pTau231
d .ff t b t Fersuatwans(3) = 760, p = 0.06, 82, = 0.06, Clyss, [0.03, 1.00), 7oy = 122 L wansl3) = 14.66, p = 2.138:03, %, = 0.12. Class, [0.07, 1.00]. nges = 122 e rvernranel3) = 14,66, p = 213603, 82 =0.12, Clggs, [0.07, 1.00], N = 122
Irerent netween . 152 = .
0.25 :l ‘ 50 —
147 L
prodromal AD and 0.24 —
ADD 0.100 95{ | 40
’;| 40 ﬁ E' .
o 0075 - . % " ’_l: E 30 .
= - e . o
* Plasma NFL and g % . H - le - 820 -
. . < 0050 3 B s i
AB42/40 did not differ - 2 A\ ® C
. L. s BT 7L =
among AD continuum 0028 101 % % ¢ ii -
: 0
groups. n=29  n=19  n=51 n=23  n=4 01 n=29  n=19  n=51 n=23  n=4 n=z8 n=1s n=50 n=22 n=4
MCIAB- pAD ADD Non-AD CU MCIAB- pAD  ADD Non-AD CU MCIAB- pAD  ADD Non-AD CU

ES pB B3 svD B3 FTD E3 NOS and other

MCI, Mild Cognitive Impairment; pAD, Prodromal AD; ADD, Alzheimer’s Disease Dementia; Non-AD, Non-AD dementias, CU, Cognitive Unimpaired.
DLB, Lewy Body Dementia; SVD, Subcortical Vascular Dementia; FTD, Fronto-Temporal Dementia; NOS, Not Otherwise Specified Dementia.
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Results (2)

In the whole group all
plasma BM except NFL
are increased in the
AB+ PET group
compared to AB- and
are associated to Af
PET Centiloids.

In the MCl group only
only plasma GFAP is

different between A+

and AB— PET groups
and associated with
Centiloids

Whole group

A Plasma GFAP

B Plasma pTau231

400
d
*RE 40- *k
300 =y
o E
£ B30
Ed £ .
by z i
g
ém 2
o }520
E k]
] 1
a £ |
10 d
100 h ‘
|
o H
] 50 100 150 NEG POS 0 0 80 100 150 200 NEG POS

Amyloid PET (Centiloid)

B Plasma pTau181

Visual Reads

153 ‘ H163
1511 151
96{ ‘ 96
aa| ad
40 -40
=5 *EE
Z 35
=
2 @ -30
)
B 25
oo 20
=
5 s 18
&
o
10 [1°
5 5
o ‘0
[] 50 00 150 NEG POS
Amyloid PET (Centiloid) Visual Reads
E Plasma NfL
75
g
g 50 '
§
4
25 -
(l
-8
€
[ 50 10 150 NEG POS
Amyloid PET (Centiloid) Visual Reads

Amyloid PET (Centiloid)
D Plasma AB42/40 ratio

0.26

025

)
g
2

plasma AB42/40 ratio
o
=4

e
=1
&

003 il

[} 50 180
Amyloid PET (Centiloid)

F Correlation Matrix
sen 028
Aga ol

Ap2pa s -0l

pTau2at ogiml)

prautsi pomt) @8 082 o8
- s
ceapiarl) O

50

Visual Reads

0.26

0.25

¥ jo0s
NEG POS
Visual Reads

Mild Cognitive Impairment (MCI) group

A Plasma GFAP (MCI)

B Plasma pTau231 (MCI)

plasma GFAP (pg/mL)

*xx

0 40 80
Amyloid PET (Centiloid)

€ Plasma pTau181 (MCI)

120 NEG POS
Visual Reads

30
ry
E
gzu
2
5
a
a
a
a
E
&
210

€

] 40 80 120 NEG POS

Amyloid PET (Centiloid) Visual Reads
E Plasma NfL (MCI)

75
oy
2
o 50
Z
@
£
5
=
3 .
. 4
25 -
] 0
y e
e
] 40 8 120 NEG POS
Amyloid PET (Centiloid) Visual Reads

Marco Bucci*, Marina Bluma* et al, Trans. Psychiatry 2024

“ !
3 i
E H
& :
g s
B2 Poee \
g { P L ]
20 {
N !
0 40 80 120 NEG POS
Amyloid PET (Centiloid) Visual Reads

D Plasma AB42/40 ratio

0.08

o
9

plasma AB42/40 ratio
=
2

0.03

[} 40 80
Amyloid PET (Centiloid)

120 NEG POS
Visual Reads

F Correlation plot
F Correlation Matrix (MCI)

N (pgimi) oy a6 035 oe
Age i
PTauzH (pgml s @ or |
oo N
—— ® u

Amyiond PET (Gontiont)
029

40



Results (3) In the MCI before PET group:

Plasma BMs combined has 100% Sensitivity and Negative Predictive Value.
Plasma GFAP results superior for AUC to others’ biomarkers but with low specificity.

Table 2. Diagnostic performance plasma BM: MCI before PET

B ROC curves comparison for distinguishing
PET AB+ from PET AB-(MCI before PET) Biomarker(s) AUC (%) | Specificity (%) | Sensitivity (%) NPV (%)
()
1000(’]0_ J 1 1 J
)_,_.—'—__j':‘i‘,.f
- ’,'
L 1 _jl f,
75% — L
= H Plasma pTau231 70.6 815 57.4 84 52
g‘:; 50% “ Plasma pTaul81/AB42 63.3 63.0 70.2 77 55
i
& Plasma pTaul81 64.7 74.1 59.6 80 51
25% 1 . Plasma BM combined”. AUC = 9385 % Plasma AB42 57.1 70.4 53.2 76 46
—— Plasma GFAP, AUC = 84.08 %
— gt - el
—— Plasma El-ram a1m542 AUC 63.28 % Plasma AB42/40 55.2 40.7 80.9 70 55
= Plasma NFL, AUC =
ol iE:gd%UgJCS? gg 24 %
0%1 . —— Plasma AB40, AUC = 55.16 % Plasma AB40 55.2 59.3 61.7 72 47
0% 25% 50% 75% 100%
TPP: 1 - Specificity Plasma NFL 58.6 70.4 55.3 76 48

* Combined via Lasso regression, which dropped AB40

Marco Bucci*, Marina Bluma* et al, Trans. Psychiatry 2024 41



Results (4) In the MCI before PET group:

Plasma biomarkers combined results superior for AUC to others’ biomarkers alone and
Plasma GFAP and Plasma pTau231 are important contributors to the pooled variable.

Plasma biomarkers combined with LASSO regression
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1.0+

Plasma biomarkers predicting amyloid PET
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NEG
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°  Plasma GFAP < 143 (pg/mL) (cut-off for NPV maximization)

Plasma GFAP >= 143 (pg/mL) (cut-off for NPV maximization)
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1st Apr 2022

Summary and conclusions

* Plasma BM (especially GFAP) are associated to accumulation of amyloid in the brain

in symptomatic clinical cases (especially in MCl)

* Plasma BMs when combined in a pooled variable (with also age and sex) resulted to

have the highest negative predictive value (NPP), minimizing the amount of false
negatives and being candidate for rule-out rule (if negative no A8 PET
accumulation)

e More studies are needed to confirm these results and evaluate the effect on follow-

up data on cognition and conversion to AD (our results on a small sub-sample
indicate plasma NFL as a biomarker of interest)
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Associations between PET and cognitive decline and atrophy

[**F]THK5317 ["*FIFDG ["CIPIB

E R L I
r=0.291 r=0.670 r=0.281
0.03 [-0.031, 0.544] r [0.390, 0.846] [-0.085, 0.586]

Chiotis K et al. 2020

o —_
5 IROCE el

0.01 La Joie et al. 2020
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reversed average cortical jacobian

0.00 s
5
]
-0.01 L
Baseline PIB Baseline FTP Baseline cortical thickness
average cortical SUVR average cortical SUVR reversed Z-score
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Distinct trajectories of tau deposition in AD

Variation in tau pathology is common and systematic,
perhaps warranting a re-examination of the notion of

“typical AD”, and a revisiting of tau pathological staging

demographic profiles
Different /

—> cognitive profiles
subtypes 8 P

longitudinal outcomes

g Posterlor

" Ay
@ ow progressing S
Visuospatial Impairmen .
o ) & W bt /MTL-S arin
corticolimbic (anatomical) patterns Limbic 0, A APOE4-
T / ) Younger onset
APOE4+ (= - Dysexecutive
Less tau |
Amnestic L Tempora
Older onset Rapidly progressive
Multi-domain impairment
More tau

SuStalN method (Subtype and Stage Inference Model Analysis)

Asymmetric presentation

Vogel JW et al. 2021
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Brain Tau and Amyloid PET and ML: SuStAin
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Amyloid PET and ML: SuStAin

Probability assignment subtype

Subtype
& = Frontal
I t i . = Parietal
N . N = Occipital
: i
- !
] G Y
. L ]
0.2
0.0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Collij L etal. 2022

Assigned stage

Figure 4 Longitudinal Validation

Parietal Occipital No subtype
15 15
10 y 10
5 5
0 o 0

A B Frontal
g
X 100 15
2
L
® 80
2 0
= 1
4 o
g 6o 2
£ &
]
=5
w“
S 40
o 5
oo
£
S 20
£
&
0 n= 0
i 0,9,9.9 O
Frontal P;rie(al (:)ccipn;al No subtype NN
Subtype at baseline Time (years)
c Frontal Parietal Occipital No subtype
200
150 150
3
° 100
=
c
S
50
o .
0
—
AN N AN AN TN AIAN
Time (years) Time (years) Time (years) Time (years)

PR \09 Q.“W?),,,.Q,\‘:’\b? P42 @9
Time (years) Time (years) Time (years)
Subtype at follow-up
— Frontal
Parietal
— Occipital
— No subtype

(A) Subtype assignment at baseline vs at follow-up. Spaghetti plots illustrate the change in (B) stage and (C) Centiloid units per subtype as assigned at baseline.
Lines are color coded to show changes in subtype assignment at follow-up. Overall, changes in stage are associated with changes in Cen(ﬁi?nd yearly rates

of change were lowest for the frontal subtype.



Brain Tau and Cognition: ML clustering pipeline

Fig. 2: The clustering pipeline for the definition of SDs and FDs in the case of the ADAS-

Cog13 score.

From: Tau PET positivity predicts clinically relevant cognitive decline driven by Alzheimer's disease compared to comorbid cases; proof of concept in the

ADNI study
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Brain Tau and Cognition

Molecular Psychiatry wuew.nature.com/mp

ARTICLE OPEN M) Check for updates
Tau PET positivity predicts clinically relevant cognitive decline
driven by Alzheimer’s disease compared to comorbid cases;
proof of concept in the ADNI study

Konstantinos loannou (3, Marco Bucci (%', Antonios Tzortzakakis*®, Irina Savitcheva®, Agneta Nordberg (%)'2,
Konstantinos Chiotis ('™ and for the Alzheimer's Disease MNeuroimaging Initiative*

* Tau PET imaging showed high accuracy to predict the
subset of AB(+) individuals that will show AD-
relevant cognitive decline.

* Overall, tau PET can predict a population of high
clinical interest and should be considered as a
combined diagnostic and prognostic tool with both
clinical and research applications for the
management of cognitively impaired individuals.
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