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Abstract 
Humans navigate the social world by rapidly perceiving social features from other people and 
their interaction. Recently, large-language models (LLMs) have achieved high-level visual 
capabilities for detailed object and scene content recognition and description. This raises the 
question whether LLMs can perceive nuanced and tacit social information form images and 
videos, and whether the high-dimensional perceptual structure aligns with that of humans. We 
collected social perceptual evaluations for 138 social features from GPT-4V for images 
(N=468) and videos (N=234) that are derived from social movie scenes. These evaluations 
were compared with human evaluations (N=2254). The comparisons established that GPT-
4V can achieve human-like social perceptual capabilities at the level of individual features as 
well as at the level of high-dimensional perceptual representations. We also modelled 
hemodynamic responses (N=97) to viewing socioemotional movie clips with feature 
annotations by human observers and GPT-4V. These results demonstrated that GPT-4V can 
also reproduce the social perceptual space at the neural level highly similar to reference 
human evaluations. These human-like social perceptual capabilities of LLMs could have wide 
range of real-life applications ranging from health care to business and would open exciting 
new avenues for behavioural and psychological research. 
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Introduction 
Humans encounter complex social situations every day and fast perception of the social 
context is vital when navigating in the social world. Rapid social perception is based on eight 
main social dimensions allowing quick inference and reacting to changes in the dynamic 
situation (Santavirta, Malén, et al., 2023). Rapid extraction of social information is necessary 
for understanding others’ intentions, predicting their behaviour and adapting dynamically to 
the social environment. Large-language models (LLM) have developed rapidly in recent years 
for chat-based interaction with humans and they have shown promising capabilities across 
disciplines including social cognition. LLMs excel in complex knowledge tests such as Uniform 
Bar Examination (Katz et al., 2024), the United States Medical Licensing Exam (Kung et al., 
2023) and also general IQ tests (King, 2023). Currently, OpenAI’s GPT-4 model is one of the 
most widely used and researched model that is capable of achieving high and near human 
performance across disciplines (Bubeck et al., 2023) and outperforms other state-of-the-art 
models in many psychological tasks (Almeida et al., 2024). Recent studies have explored how 
the LLMs can be used for advancing behavioural science (Demszky et al., 2023). With the 
increase of the “humanness” of the models, psychological research has been starting to 
explore whether AI models can even replace human participants (Dillion et al., 2023; Horton, 
2023). Studies have found that LLMs can infer emotions from text input (Huang et al., 2023; 
X. Wang et al., 2023), simulate collective intelligence of multiple humans (Aher et al., 2023), 
simulate opinions of different sociodemographic groups (Argyle et al., 2023), make human-
like economical choices (Horton, 2023), reach human-like performance in many cognitive 
tasks (Binz & Schulz, 2023) and even simulate human-like theory of mind (Strachan et al., 
2024).  
 
However, a large bulk of human social cognition is based on audiovisual input from the 
environment, rather than written text. Recently, LLMs have been coupled with advanced vision 
and speech-to-text models which enable them to describe the contents of images and videos. 
Popular models with vision capabilities are currently OpenAI’s GPT-4V (Yang et al., 2023) and 
Google’s Gemini 1.5 (Gemini Team et al., 2024). Recently developed visual LLM models 
based on coupling the LLMs with the state-of-the-art computer vision models provides 
perceptual capabilities to these models. This raises the question of whether social perceptual 
capabilities of LLMs is limited to directly observable features, such as detecting humans, 
animals and objects, or whether LLMs are already capable of inferring complex social 
characteristics (such as dynamics of social interaction) that are based on contextual and 
indirect inference from the scene. Such human-like high-level social perception from videos 
and images could have significant applications. AI could, for example, monitor patients’ 
physical and psychological well-being in healthcare. In customer service, AI could even 
replace the common customer satisfaction inquiries and instead extract this information from 
the interaction between customers and their services or products. In turn, AI-based video 
surveillance could identify conflicts and anticipate them even before they occur.  
 
For research purposes the scalability of the LLMs would allow unprecedented efficiency in 
data collection that could be used for generating large-dimensional stimulus models for new 
and retrospective datasets. It is suggested that LLMs could transform the computational social 
science with its scalable ability to annotate any kind of textual input, opening the current 
bottleneck of data annotations of large datasets (Ziems et al., 2023). Functional brain imaging 
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has previously mapped the high-dimensional brain representations for multiple cognitive and 
social phenomena (Huth et al., 2016, 2012; Koide-Majima et al., 2020; Lettieri et al., 2019; 
Saarimäki et al., 2023; Santavirta, Karjalainen, et al., 2023; Tarhan & Konkle, 2020). Such 
large-scale analyses for mapping high-dimensional neural representational spaces require 
pooling massive amounts of human evaluations from the stimulus contents for setting up the 
stimulation models for functional imaging experiments. Stimulus annotation is however 
extremely labour intensive and repetitious especially when high temporal resolution (e.g. video 
stimuli) is needed. High-dimensional annotations (also those used in the present study) for 
mapping the representational space for social perception in images and videos required 
approximately 1100 hours of labour from the volunteers (Santavirta, Malén, et al., 2023). 
Augmenting human ratings with automated image or video evaluation would massively scale 
up the possibilities to map high-dimensional representations in the brain. Importantly, this 
would also allow re-analysis of many already acquired functional imaging datasets which 
however lack detailed annotation of the stimuli and thus detailed high-dimensional stimulus 
models.  
 
Here we show that GPT-4V can reproduce human social perceptual spaces at 
phenomenological and neural levels with high agreement compared to human subjects. We 
asked GPT-4V to provide evaluations for 138 social perceptual features from 468 static 
images and 234 short video scenes depicting people in different social situations. We 
compared how similarly GPT-4V evaluated the features compared to the reference human 
evaluations pooled from 2254 human observers. We also demonstrate that the agreement 
between GPT-4V and humans is reflected in the neural level in a large fMRI dataset of 97 
subjects watching short videos with social content (N = 96) by comparing the neural response 
profiles based on stimulus models derived from GPT-4V versus human observers. The results 
show high consistency in social perception between GPT-4V and humans supporting the 
advanced capabilities of GPT-4V in extracting even subtle social information from audiovisual 
input. 
 

Figure 1. Analytical workflow of the study. GPT-4V and humans evaluated the presence of 
138 social features from images and movie clips and the similarity of the evaluations between 
GPT-4V and humans was investigated. We then tested the similarity of the perceptual ratings 
and the perceptual structure between humans and GPT-4V (136 features were analyzed since 
human did not perceive two features in the stimuli at all.). These evaluations were then used 
to generate stimulus models for mapping neural representations of social perception in a large 
fMRI dataset (n=96) and to compare the resulting mappings between humans and GPT-4V. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608741doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.20.608741
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Methods 
The stimulus, evaluated social features, human data collection procedure, human sample size 
estimation and data quality control are described in detail in the previous publication of the 
social perceptual taxonomy in humans (Santavirta, Malén, et al., 2023). Figure 1 shows the 
analytical workflow of the study. 
 
Stimulus 
To estimate whether GPT-4V can retrieve social features from videos and images similarly as 
humans, we tested its performance in large datasets of images and videos containing 
socioemotional scenes. Movies are effective for studying social perception in controlled 
settings since movies typically present natural, socially important episodes with high affective 
intensity and frequency. Using movies as stimuli social neuroscience has successfully studied 
neural representations of social and emotional processing (Adolphs et al., 2016; Lahnakoski 
et al., 2012; Nummenmaa et al., 2023; Saarimäki, 2021; Santavirta, Karjalainen, et al., 2023). 
Hence, we selected short movie clips primarily from mainstream Hollywood movies (N=234) 
as the video stimulus. The same dataset was used previously for defining the basic eight 
taxonomy for social perception (Santavirta, Malén, et al., 2023). The average duration of the 
movie clips was 10.5 seconds (range: 4.1 - 27.9 sec) with a total duration of 41 minutes. The 
image dataset was generated by capturing two clear frames from each of the movie clips. A 
research assistant not familiar with the study was instructed to select two clear frames, 
preferentially from two different scenes if the clip contained more than one shot. The image 
stimulus set contained a total of 468 images. See Table SI-1 for the descriptions of the movie 
clips. 

Evaluated social features 

The initial feature set contained a total of 138 social features that were selected to cover a 
broad range of perceptual properties relevant for social interaction and to identify whether 
GPT-4V can evaluate the presence of some social features in the movie clips more 
consistently with humans than others. This feature set has been previously validated to 
broadly represent the human social perceptual space (Santavirta, Malén, et al., 2023). 
Features based on previous theories of social cognition were selected from the following broad 
perceptual categories: person's personality traits, person’s physical characteristics, person's 
internal situational states, somatic functions, sensory states, qualities of the social interaction, 
communicative signals and persons’ movement as the broad perceptual categories. See 
Table SI-2 for the full list of evaluated features. 

Human perceptual reference evaluations 

For each image and video, we collected 10 independent perceptual ratings for each social 
feature from human observers. Participants were instructed to evaluate the prominence of 
each feature on an abstract scale between end points “Not at all” and “Very much” using a 
continuous slider. To match the evaluations with the numerical evaluations of GPT-4V, the 
abstract slider responses were transformed to numerical values between 0 and 100. To 
minimize cognitive load and participant exertion, a single participant only evaluated 6 - 8 
features from a subset of the stimuli (39 videos or 78 images) which took approximately 30 
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minutes of each participant's time. The order of the images and videos was randomized for 
each participant to ensure that the evaluation order does not bias the population level results. 
The dataset with images (i.e. movie frames) included 1094 participants from 56 nationalities 
with approximately 654 000 data points. 448 participants were female (41 %) and the median 
age of the participants was 32 years (range: 18 - 77 years). The reported ethnicities of the 
participants were: White (770, 70.4 %), Black (194, 17.7 %), Mixed (55, 5.0 %), Asian (51, 4.7 
%) and Other (20, 1.8 %). The dataset with video clip evaluations included 1 096 participants 
from 60 nationalities with approximately 327 000 data points. 515 participants were female 
(46, 9 %) and the median age of the participants was 28 years (range: 18 - 78 years). The 
reported ethnicities were: White (788, 71.9 %), Black (136, 12.4 %), Mixed (81, 7.4%), Asian 
(47, 4.3 %) and Other (30, 2.7 %). Based on the human evaluations, the stimulus did not 
contain “Coughing/sneezing” and “Vomiting/urinating/defecating” at all. These features were 
excluded from the analyses and the results are based on the comparison of perception in 136 
social perceptual features. The reference data and its acquisition has been reported in detail 
previously (Santavirta, Malén, et al., 2023).  

GPT-4V image perception experiment 

We designed the input prompts for GPT-4V to follow the human instructions as closely as 
possible, while assuring that the prompts were accessible by GPT-4V (see section “Defining 
the social feature evaluation instructions (prompt) for GPT-4V” in the Supplemental materials). 
The main difference compared to humans in the data collection was that GPT-4V was asked 
to output numerical ratings between 0 and 100 instead of using the abstract slider that humans 
used and GPT-4V evaluated all features at once from the given image (or video in the following 
video experiment). GPT-4V API was used to collect evaluations for each image one-by-one. 
Each image was added to the same prompt alongside with the instructions. While ChatGPT 
can remember previous conversations within a chat, the API should not have memory over 
consecutive requests (https://community.openai.com/t/does-the-open-ai-engine-with-gpt-4-
model-remember-the-previous-prompt-tokens-and-respond-using-them-again-in-
subsequent-requests/578148), which ensures that that GPT-4V rates each frame 
independently. Sometimes GPT-4V refused to provide ratings mainly for sexual stimuli 
presumably due to content moderation (Respond: "I'm sorry, but I can't provide assistance 
with this request") while being able to provide ratings with a new enquiry. Therefore, the failed 
images were fed to the API again until GPT-4V refused to return any new data. The still 
missing data points were excluded from the data before analyses.  
 
As a stochastic model GPT-4V does not provide the same output for a given prompt every 
time. Hence, it is suggested that pooling multiple responses, just like recruiting multiple human 
participants in traditional experiments, can increase the generalizability of the responses 
(Demszky et al., 2023).  Hence, we repeated the data collection procedure to get five full 
datasets of GPT-4V responses and found that averaging over multiple collection rounds 
increased the agreement in the ratings, while the agreement increase started to plateau after 
a few data collections rounds (see section “Collecting several rounds of GPT-4V data 
increases the agreement between GPT-4V and humans” in the Supplemental materials). After 
repeated data collection in five collection rounds GPT-4V failed to provide ratings for 22 out of 
468 images (4.7 %) for all five datasets, and these images were thus excluded from the further 
analyses. 11 of the failed images contained sex, 1 contained blood, 3 depicted animals and 
did not contain any humans and 7 were images containing humans in everyday activities. The 
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data were collected between March 2024 and May 2024 using the “gpt-4-1106-vision-preview” 
model (https://platform.openai.com/docs/models). The average ratings over the five collection 
rounds were used to compare the social perceptual capabilities of GPT-4V against the human 
evaluations.  

GPT-4V video perception experiment 

At the time of data collection (June 2024), GPT-4V could yet process video input directly. 
Therefore, we extracted two frames from video clips that were under 10 seconds long (from 
time points ¼ and ¾ of the clip duration) and four frames from video clips with longer duration 
(from time points ⅛, ⅜, ⅝, and ⅞ of the clip duration). The speech in the movie clips was 
extracted and transformed to text using the “whisper-1” model 
(https://platform.openai.com/docs/guides/speech-to-text). These transcripts did not contain 
any other descriptions about the sounds than human speech. For videos without any 
conversation, the model gave unreliable responses (e.g. “Thanks for watching”) which were 
manually removed. All transcripts were manually checked and confirmed that the videos with 
suspicious transcripts indeed did not contain any speech. The final “video perception” prompt 
for social feature evaluation included the transcript of the speech alongside the captured 
frames. The rating data were collected for each movie clip in separate GPT-4V API requests. 
GPT failed to give ratings for 1 - 4 videos in different data collection rounds in the initial try and 
these videos were fed to GPT-API once again. Five full datasets of GPT-4V responses were 
collected, and averaged over multiple collection rounds. Averaging increased the agreement 
between human and GPT-4V responses also in the video perception data (see section 
“Collecting several rounds of GPT-4V data increases the agreement between GPT-4V and 
humans” in the Supplemental materials). We were able to get full ratings data for all 234 videos 
in each data collection round. The data was collected between April 2024 and June 2024 using 
the updated “GPT-4-turbo-2024-04-09” model (https://platform.openai.com/docs/models). 

Analysis of the rating consistency between GPT-4V and humans for social perception 

First, we analyzed how similarly GPt-4V and humans perceive the social context in naturalistic 
scenes. Similar analysis protocol was used for analyzing the image and video datasets. Social 
feature ratings of GPT-4V were averaged over the five collection rounds prior to contrasting 
the ratings against the gold-standard human evaluations since it improved the consistency of 
the GPT-4V ratings with humans. To evaluate how similarly GPT-4V perceived social features 
compared to humans we calculated “the agreement of GPT-4V” -index as the Pearson 
correlation between GPT-4V evaluations and the human average ratings individually for each 
social feature. Some social features are concrete (such as sex) and yield nearly 100% 
consistency across human observers whereas others are more ambiguous (such as moral 
righteousness) yielding larger variation. Still, in our neuroimaging dataset and commonly in 
other neuroimaging experiments, the neuroimaging data of independent participants are 
modelled with population average annotations derived from another sample of participants. 
Hence, the suitable benchmark for the agreement of GPT-4V is the “intersubject consistency” 
-index which was computed as the mean of Pearson correlations between individual 
observers’ ratings and the population mean of all other human participants. The intersubject 
consistency thus estimates how consistently single subjects’ perceptual ratings track the 
population average and was used as the benchmark against which the GPT-4V ratings were 
compared. 
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Consistency analysis of the social perceptual structure between GPT-4V and humans 

Humans show a generalizable low-dimensional perceptual structure over the analyzed 136 
features (Santavirta, Malén, et al., 2023). Following the dimension reduction methods 
developed previously (Santavirta, Malén, et al., 2023), we compared the similarity of the 
correlation matrices between GPT-4V and human social feature ratings by calculating the 
Pearson correlation between the GPT-4V and human correlation matrices of social feature 
ratings. The statistical significance of the correlation was tested with a non-parametric Mantel 
test with 1 000 000 permutations (Mantel, 1967) using the Ape R package 
(https://rdrr.io/cran/ape/man/mantel.test.html). Secondly, we used principal coordinate 
analysis (PCoA) to map the social perceptual structures based on GPT-4V and human ratings 
separately and then compared how similar is the social perceptual structure of GPT-4V with 
the human social perceptual structure. PCoA was implemented using the R function cmdscale 
(https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/cmdscale) with a 
Pearson correlation matrix of the individual social features as input. Correlation was selected 
as the distance metric for PCoA, since it measures the covariance of the ratings between 
features more accurately than Euclidean distance used in standard principal component 
analysis (PCA). PCoA transforms the original correlation structure into orthogonal principal 
components. Each original social feature contributes (loads) to the principal components and 
based on these loadings it is possible to infer which kind of social information the components 
contain. By correlating the component loadings between GPT-4V and human derived PCoA 
components, it is possible to investigate how similar the social perceptual structure is between 
the results. We hypothesized that the first eight principal components would show consistency 
between GPT-4V and humans since only the first eight components were identified to explain 
meaningful variance in the social perceptual structure in human data (Santavirta, Malén, et 
al., 2023).  

Neuroimaging experiment 

The neuroimaging dataset with 102 volunteers has been reported in detail previously 
(Santavirta, Karjalainen, et al., 2023). The exclusion criteria included a history of neurological 
or psychiatric disorders, alcohol or substance abuse, BMI under 20 or over 30, current use of 
medication affecting the central nervous system and the standard MRI exclusion criteria. Two 
additional subjects were scanned but excluded from further analyses because of unusable 
MRI data due to gradient coil malfunction. Two subjects were excluded because of anatomical 
abnormalities in structural MRI and additional three subjects were excluded due to visible 
motion artefacts in preprocessed functional neuroimaging data. This yielded a final sample of 
97 subjects (50 females, mean age of 31 years, range 20 – 57 years). All subjects gave an 
informed, written consent and were compensated for their participation. The ethics board of 
the Hospital District of Southwest Finland had approved the protocol and the study was 
conducted in accordance with the Declaration of Helsinki. To map brain responses to different 
social features, we used our previously validated socioemotional “localizer” paradigm that 
allows reliable mapping of various social and emotional functions (Karjalainen et al., 2017; 
Lahnakoski et al., 2012; Nummenmaa et al., 2021; Santavirta, Karjalainen, et al., 2023). The 
experimental design and stimulus selection has been described in detail in the original study 
with this setup (Lahnakoski et al., 2012). The subjects viewed a medley of 96 movie clips 
(median duration 11.2 s, range 5.3 – 28.2 s, total duration 19 min 44 s) and 87 of these movie 
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clips were included in the stimulus set for GPT-4V social feature evaluation enabling mapping 
the neural representations for GPT-4V social perception.  

Neuroimaging data acquisition and preprocessing 

MR imaging was conducted at Turku PET Centre. The MRI data were acquired using a Phillips 
Ingenuity TF PET/MR 3-T whole-body scanner. High-resolution structural images were 
obtained with a T1-weighted (T1w) sequence (1 mm3 resolution, TR 9.8 ms, TE 4.6 ms, flip 
angle 7°, 250 mm FOV, 256 × 256 reconstruction matrix). A total of 467 functional volumes 
were acquired for the experiment with a T2∗-weighted echo-planar imaging sequence 
sensitive to the blood-oxygen-level-dependent (BOLD) signal contrast (TR 2600 ms, TE 30 
ms, 75° flip angle, 240 mm FOV, 80 × 80 reconstruction matrix, 62.5 kHz bandwidth, 3.0 mm 
slice thickness, 45 interleaved axial slices acquired in ascending order without gaps). 

MRI data were preprocessed using fMRIPprep 1.3.0.2 (Esteban et al., 2019). The following 
preprocessing was performed on the anatomical T1-weighted (T1w) reference image: 
correction for intensity non-uniformity, skull-stripping, brain surface reconstruction, and spatial 
normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov et al., 
2009) using nonlinear registration with antsRegistration (ANTs 2.2.0) and brain tissue 
segmentation. The following preprocessing was performed on the functional data: 
coregistration to the T1w reference, slice-time correction, spatial smoothing with a 6-mm 
Gaussian kernel, non-aggressive automatic removal of motion artifacts using ICA-AROMA 
(Pruim et al., 2015), and resampling of the MNI152NLin2009cAsym standard space. 

Modeling the similarity of the neural representations for social perception between GPT-4V 

and humans 

To test whether GPT-4V derived stimulus models produce similar neural representations 
compared to those based on human observations, we first modeled the hemodynamic 
responses measured with fMRI separately with GPT-4V and human derived regressors for 
social features and then compared the similarity of the results. Some social features are 
evaluated inconsistently across human observers, which precludes reliable neural mapping of 
these features. Hence, we only mapped the neural representations of the features where the 
correlation of a single human participant’s ratings with the average of others was over 0.5. 
Simple regressions of 104 out of the 136 were conducted separately using SPM12 (Wellcome 
Trust Center for Imaging, London, UK, http://www.fil.ion.ucl.ac.uk/spm). Each social feature 
was convolved with a canonical double-gamma hemodynamic response function before 
analyses. Then, social feature regressors were independently fitted to each participant's voxel-
level fMRI data (first level analysis, massive univariate approach). The resulting subject-level 
β-coefficient-maps were subjected to group-level analysis to identify the population level 
association between social features and the hemodynamic response. One-sample t-tests 
were used to statistically threshold the population level results.  
 
The feature-specific similarity in the neural representations was assessed by i) correlating the 
unthresholded β-coefficient-maps between GPT-4V and humans for testing the overall spatial 
similarity of the result distributions, and by ii) calculating the positive and negative predictive 
values (PPV = TP / [TP + FP], NPV = TN / [TN + FN]) of the statistically thresholded GPT-4V 
results to assess the how reliable the thresholded GPT-4V response maps are for different 
social features. PPVs and NPVs were calculated for the positive main effect of the social 
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features considering the human derived results as the ground truth. They are reported for 
conservatively threshold results (voxel-level FWE-corrected, p < 0.05) as well as for results 
with lenient statistical threshold (p < 0.001, uncorrected). To reveal the general social 
perceptual network, we calculated the social cumulative map as the sum of social features 
that were positively associated with the hemodynamic response (p < 0.001, uncorrected) in 
each voxel and compared the cumulative maps between GPT-4V and human derived results.   
 

Results 
Agreement between GPT-4V and human social perceptual evaluations of images 
To estimate the agreement between GPT-4V and human social perceptual ratings, we 
calculated the Pearson correlation between the GPT-4V ratings and the average ratings of 
humans which we simply call “the agreement of GPT-4V”. To compare to agreement of GPT-
4V with the consistency of ratings between different human individuals, we calculated the 
Pearson correlation of a single human participant’s rating with the average ratings of others, 
which we call “intersubject consistency”. Hence, the comparison between the agreement of 
GPT-4V and intersubject consistency estimates the accuracy of social perception of GPT-4V 
against to that of a randomly chosen human participant. Figure 2 shows the agreement of 
GPT-4V against the intersubject consistency, and the top scatterplot shows the results for 
image perception. The average agreement of GPT-4V over all social features in image 
perception was 0.61 and feature specific correlations ranged between 0.08 (Whispering) and 
0.92 (Nude) while the average intersubject consistency was 0.56. For 65 % of the features (89 
/ 136) the agreement of GPT-4V was higher than the intersubject consistency. This indicated 
that for more than half of the features GPT-4V derived ratings were already more reliable 
population level estimates than subjective evaluations of a single human participant. Notably, 
the agreement of GPT-4V was higher than the intersubject consistency for features with 
moderate-to-low intersubject consistency (intersubject consistency < 0.6). For example, 
features Agentic, Conscientious, Neurotic, Creative and Loyal showed moderate GPT-4V 
agreement (correlation 0.58 and 0.63) while the intersubject consistency was much lower 
(correlation between 0.37 and 0.39). For Blinking, Submissive, and Whispering the GPT-4V 
agreement was very low (correlation < 0.25), while the intersubject consistency was slightly 
higher (correlation between 0.35 and 0.40). Overall, there was strong association between the 
agreement of GPT-4V and the intersubject consistency - the same features were evaluated 
with high or low correlation relatively similarly in both data (Figure 2). 

Agreement between GPT-4V and human social perceptual evaluations of videos 

Figure 2 (bottom row) shows the agreement of GPT-4V and the intersubject consistency in 
the video perception dataset. The average agreement of GPT-4V over all social features was 
0.53 and feature specific correlations ranged between 0.08 (Daydreaming) and 0.88 
(Eating/drinking). The intersubject consistency was 0.62 and for 22 % of the features (30 / 
136) the agreement of GPT-4V was higher than the intersubject consistency. This indicates 
that for ⅕ of the features GPT-4V derived ratings were more consistent population level 
estimates than subjective evaluations of a single human participant. For a few features the 
GPT-V4 rating agreement was considerably lower than the intersubject consistency (Introvert, 
Lazy, Ignoring someone, Daydreaming, Smelling something, Whispering, Harassing 
someone).  
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Figure 2. Feature specific rating similarity between GPT-4V and humans for images (top) and 
videos (bottom). X-axis shows the Pearson correlation of an individual human observers’ 
ratings (averaged over all individual participants) against the average ratings of all other 
observers (intersubject consistency) and Y-axis shows the correlation between the GPT-4V 
ratings and the human average ratings (agreement of GPT-4V). Features above the red line 
indicate that the GPT-4V ratings (averaged over five rounds of data collection) were more 
consistent estimates of the population level perceptual ratings than those of individual 
participants. 

Similarity of the social perceptual structure between GPT-4V and humans 

The social perceptual structure was consistent between GPT-4V and humans. Feature-wise 
correlation matrices were structurally similar between GPT-4V human observer datasets for 
both images and videos (rimage = 0.77, p < 10-6, rvideo = 0.67, p < 10-6, Figure 3, left panel). The 
principal coordinate analysis revealed that mostly similar principal components emerged from 
the correlation structure of GPT-4V and human social feature rating data. These similarities 
are indicated by significant correlations (0.4 - 0.85, p < 0.01) between the corresponding PC’s 
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loadings of GPT-4V and human observer data for first nine components (Figure 3, right panel, 
clear diagonal for first nine PCs). The original study showed that eight perceptual components 
emerge from this human data (Santavirta, Malén, et al., 2023) and rest of the PCs merely 
model random noise. Hence, it was expected that the link (diagonal correlations) between 
human and GPT-4V derived components should vanish after around eight PCs which indeed 
was the case. These results indicate that the social perceptual representation of GPT-4V 
follows closely the social perceptual representation of humans. 
 

Figure 3. Similarity of the social perceptual structure for images (top row) and videos (bottom 
row) between GPT-4V and humans. Leftmost plots show the pairwise correlations of all 136 
analyzed social features in the GPT-4V and human rating data. Note: correlation matrices are 
ordered separately for image and video data and thus the order in the top (image data) 
correlation matrices is not the same as the in the bottom (video data) correlation matrices. 
Rightmost plots show the similarity of the dimensionality in social perception based on 
principal coordinate analysis. Significant correlations of the loadings for 20 first principal 
components between GPT-4V and human derived results are shown (p < 0.01). Absolute 
correlations are plotted since either high positive or high negative correlation between the 
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component loadings between GPT-4V and humans indicate that the component contains 
similar information because signs of the components are arbitrary.  
 
The similarity of the neural representations for social perception between GPT-4V and humans 

To first evaluate the whole-brain similarity of the response patterns, we calculated the spatial 
correlations between the unthresholded population level beta coefficient maps between GPT-
4V and human based analyses (Figure 4, top barplot). The mean correlation across features 
was 0.80 (range: 0.13 [Harassing someone] - 0.99 [Moving their head]) and the correlation 
was over 0.5 for 95 % of the analyzed social features. Next, we calculated the agreement 
between the statistically thresholded GPT-4V results by calculating the PPVs and NPVs when 
considering the human derived results as the ground truth. For conservative threshold (voxel-
level FWE-corrected, p < 0.05) the mean PPV was 0.73 (range: 0.14 [Feeling calm] - 0.99 
[Authoritarian]) and for the lenient threshold (p < 0.001, uncorrected) the mean PPV was 0.76 
(range: 0.25 [Feeling calm] - 0.98 [Yelling]). The mean NPV for the conservative threshold was 
0.96 (range: 0.88 [Pursuing a goal] – 1 [Standing]) and 0.93 for the lenient threshold (range: 
0.80 [Panting / Short of breath] – 0.99 [Standing]). Figure 4 (bottom barplot) visualizes the 
feature specific PPVs. See Figure SI-4, for brain response patterns of selected social features. 
 

 
Figure 4. Feature specific agreement between the brain activation patterns modelled by GPT-
4V and human observer responses. Upper plot shows the whole brain response pattern 
similarity (correlations between the population level unthresholded beta coefficients) between 
GPT-4V and human based analyses. Lower plot shows the statistically thresholded positive 
predictive values of the GPT-4V results (for the positive association between BOLD signal and 
social feature). PPVs are plotted for conservative threshold (p < 0.05, voxel-level FWE-
corrected) and for lenient threshold (p < 0.001, uncorrected). 
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Social perceptual network based on GPT-4V social perception 

Figure 5 shows the cumulative brain activation maps that were generated by calculating the 
sum of features that associated positively with hemodynamic response in each voxel (p < 
0.001, uncorrected). These maps thus reflect i) whether a given voxel responds to social 
information at all and ii) whether it’s tuning for social features is narrow (responds only few 
features) or wide (responds to multiple features). The cumulative map for GPT-4V was similar 
with the human derived social cumulative map (r = 0.97) highlighting the general social 
perceptual network involving lateral occipitotemporal cortex (LOTC), superior temporal sulcus 
(STS), fusiform gyrus (FG), temporoparietal junction (TPJ), inferior frontal gyrus (IFG) and 
visual & auditory cortices. While the overall similarity was high, the human cumulative social 
map showed more associations between social features and hemodynamic response in most 
areas of the social perceptual network, while the GPT-4V social cumulative map showed more 
associations mainly in the parietal cortex, particularly in precuneus (Figure 5, right flatmaps). 
 

Figure 5. Neural representational space for stimulus models derived via GPT-4V and human 
observers. The brain surface maps show how many social features (out of all 104 analyzed 
social features) were associated positively (p < 0.001, uncorrected) with the BOLD response 
in the given voxel. Leftmost column shows brain maps with GPT-4V-derived stimulus models 
while middle column shows results with stimulus models based on human observers. 
Rightmost column shows the absolute difference between cumulative maps highlighting areas 
where human (hot colours) and GPT-4V (cold colours) models produced a larger number of 
significant associations with social features. LOTC: Lateral occipitotemporal cortex, pSTS: 
posterior superior temporal sulcus, aSTS: anterior superior temporal sulcus, TPJ: 
temporoparietal junction. 
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Discussion 
Our main findings were that i) GPT-4V is capable of human-like perception of complex and 
dynamic social movie scenes, ii) the perceptual capabilities go beyond simple visual social 
features and, iii) the similarity between human and GPT-4V performance is observed at the 
perceptual and neural levels. Like humans, GPT-4V evaluated inferred and abstract features 
with low agreement with the humans while observable and concrete features were evaluated 
with high agreement. The structure of the social perceptual space aligned with the human 
social perceptual space and the perceptual similarities also yielded similar neural 
representations between GPT-4V and human based stimulus models for dynamic social 
stimuli. Previous psychological research with AI has mainly focused on text-based tasks for 
studying the similarity between LLMs and humans (Bodroza et al., 2023; Pan & Zeng, 2023) 
or has transformed behavioral tasks into textual vignettes (Binz & Schulz, 2023; Huang et al., 
2023; X. Wang et al., 2023). To our knowledge, our results are the first evidence of visual 
perceptual capabilities of LLMs in psychological context. These findings suggest that the 
current AI models have advanced social perceptual capabilities that exceed simple feature 
recognition, suggesting that these perceptual models could be used in numerous applications 
ranging from surveillance to patient monitoring, analysis of customer behaviour and social 
robotics. Our results also provide a framework for how the visual capabilities of GPT-4V can 
be utilized for studying social cognition both in perceptual and neural levels, potentially 
augmenting or even replacing human subjects in experiments (Dillion et al., 2023). 
  
Consistent social perception across GPT-4V and human observers 

The agreement of GPT-4V (the correlation between GPT-4V ratings with the average of 
humans) was close to the intersubject consistency (the correlation between a single 
participant’s ratings with the average of others) in social feature evaluations. This indicates 
that the GPT-4V ratings are generally equally accurate estimates of the population average 
as those of single human observers. For image perception, GPT-4V evaluations even excelled 
the intersubject consistency (mean rGPT-4V = 0.61, mean rhuman = 0.56, GPT-4V agreement 
higher in 65% of the features) while in video perception the GPT-4V were slightly inferior 
compared to single humans (mean rGPT-4V = 0.53, mean rhuman = 0.62, GPT-4V reliability higher 
in 22% of the features). These correlations were achieved by collecting GPT-4V data five times 
and by averaging the evaluations over the collection rounds. In image perception, same 
information was available for GPT-4V and humans, but the video perception experiment 
required simplifications of the stimuli for GPT-4V. The stimulus videos were decomposed into 
few images and into a transcript of the human speech and thus the input for GPT-4V lacked 
dynamic visual information, auditory context other than human speech, and the temporal link 
between visual and auditory input. Even with such simplifications, the results showed near 
human social perceptual capabilities. With the fast development of LLMs, we anticipate that 
more realistic video input to the LLMs is possible in the near future. 
 
Both image and video datasets revealed high concordance in the low-level dimensional 
representations of the social scenes between GPT-4V and humans (Figure 3). First nine 
orthogonal principal components derived from GPT-4V data in the principal coordinate 
analysis contained similar information with mainly one corresponding PC in the human results. 
Of the components, the first eight PCs explain meaningful variance in the perceptual data and 
the rest are likely modeling random noise (Santavirta, Malén, et al., 2023). As expected, there 
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was thus no clear correspondence between GPT-4V and human PCs in latter components. 
Based on the detailed examinations of the this human data in the original experiment, the eight 
identified perceptual dimensions were: Unpleasant - Pleasant (PC1), Empathetic - Dominant 
(PC2), Physical - Cognitive (PC3), Disengaged - Loyal (PC4), Introvert - Extravert (PC5) , 
Playful - Sexual (PC6), Alone - Together (PC7) and Feminine - Masculine (PC8) (Santavirta, 
Malén, et al., 2023). The first three to four PCs showed higher concordance than the rest, 
indicating that GPT-4V was able to pick the most fundamental components well. This may be 
due to the fact that the first three social perceptual dimensions have long been known to social 
psychology (Evans & Stanovich, 2013; Maner, 2017; Oosterhof & Todorov, 2008; Osgood & 
Suci, 1955; Zajonc, 1980). The similarity of the social perceptual structure was also high when 
measured as the raw correlation between the correlation matrices of the social features ratings 
(rimage = 0.77, p < 10-6, rvideo = 0.67, p < 10-6). Figure 3 (correlation matrices on the left) shows 
this high similarity visually, while it can also be seen that the human data has some more fine-
grained structure compared to the GPT-4V data. These results indicate that GPT-4V 
expressed a reliable social perceptual space that captured the main social dimensions 
similarly as humans do, while lacking some fine-grained details in the human perceptual space 
(at least in this population of human raters). Importantly, the results emerge from dynamic 
stimuli where people and faces can be presented in varying positions and orientations instead 
of e.g. standardized facial expressions commonly used in studies of social perception.   
 
Neural representations of social perception modelled through GPT-4V and humans 

Similarity in social perception for GPT-4V and humans also extended to the neural level. The 
cumulative maps for social perception were very similar between GPT-4V and humans (r = 
0.97, Figure 5) highlighting the general social perceptual network involving lateral 
occipitotemporal cortex (LOTC), superior temporal sulcus (STS), fusiform gyrus (FG), 
temporoparietal junction (TPJ), inferior frontal gyrus (IFG) and visual & auditory cortices. 
Previous studies have shown that these regions are involved in social perception (Lahnakoski 
et al., 2012; Lee Masson & Isik, 2021; Nummenmaa & Calder, 2009; Pitcher & Ungerleider, 
2021; Santavirta, Karjalainen, et al., 2023), face perception (Kanwisher & Yovel, 2006; Kessler 
et al., 2011; Wegrzyn et al., 2015) and language and action perception (Lingnau & Downing, 
2015; Wurm & Caramazza, 2019; Wurm & Lingnau, 2015). The human evaluation based 
cumulative map showed more robust associations (more features associated with the brain 
response) in these core social perceptual regions indicating that human based results could 
still be slightly more reliable than the GPT-4V results of predicting the brain activation patterns 
of other people. Importantly, none of the fMRI participants took part in the perceptual 
annotation, so the human social feature evaluations and fMRI data acquisition were 
independent in the human sample.  
 
The feature-specific neural representations were also consistent between GPT-4V and 
humans for most social features (correlation of the unthresholded beta maps = 0.80) but for 5 
% of the social features the correlations were considerably lower than for others (r < 0.50, 
Harassing someone, Whispering, Feeling calm, Experiencing success, Motivated). These 
features had much lower agreement in the GPT-4V ratings compared to the intersubject 
consistency which most likely explains the weak consistency in the neural representations of 
these social features. The statistically thresholded results showed similar levels of consistency 
than the unthresholded results. On average, the positive predictive value for GPT-4V derived 
positive associations between social feature and voxelwise brain responses was 0.73 (voxel-
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level FWE-corrected, p < 0.05) and 0.76 (p < 0.001, uncorrected) and the average negative 
predictive values were 0.96 and 0.93, respectively. Together these results indicate that the 
GPT-4V derived social feature ratings from video stimuli were meaningful and produced 
similar neural representation than human evaluations for most rated social features. These 
results can be used as a reference for identifying social features that are reliably perceived by 
GPT-4V.  
 
Because the fMRI responses modelled by GPT-4V and human annotations show high degree 
of consistency, human annotations could be augmented or even replaced at least for most 
consistent features in future neuroimaging experiments warranting high-dimensional and 
labourious stimulus mappings.  Such automated annotation allows also generation of high-
dimensional stimulus models for already collected neuroimaging datasets currently lacking 
detailed annotations, which would enable efficient mapping of representational spaces with 
high statistical power (Huth et al., 2016, 2012; Koide-Majima et al., 2020; Lettieri et al., 2019; 
Saarimäki et al., 2023; Santavirta, Karjalainen, et al., 2023; Tarhan & Konkle, 2020). The 
benefits of the scalability should be carefully weighed against the downsides of bias or noise 
introduced by the use of LLMs for stimulus annotation before choosing not to utilize LLMs in 
future studies. The rating data collected with GPT-4V was significantly cheaper than the data 
collected from humans: The data collection cost for the 2254 online participants was over $10 
000 in participant compensations and required altogether over 1100 hours of labour from the 
volunteers (~ 30 min / participant). Collecting all perceptual ratings with GPT-4V only required 
a couple of hours of active work from the researcher and the cost to use the GPT-4V API for 
data collecting was around $200 (2 % of the cost and 1 - 2 % of the labour time compared to 
human dataset). This efficiency improvement would enable the collection of large high-
dimensional datasets with little effort and would also enable those with limited resources to 
scale-up their studies.   
 
Consistency across image and video stimuli 

The overall video perception agreement of GPT-4V was slightly lower than the overall 
agreement in the image perception data (mean rimage = 0.61 vs. mean rvideo = 0.53). This was 
expected since the decomposing of the videos for GPT-4V lost some information that was 
available for humans to perceive. Overall, image and video perception data indicated a similar 
gradient in both GPT-4V and human data from high agreement in more observable social 
features (Eating/drinking, Sitting, Talking, Laying down, Touching someone, Laughing, Crying, 
Making facial expressions) to low agreement in more complex inferred social features 
(Superficial, Submissive, Compliant, Acting reluctantly, Being morally righteous) (Figure 2). 
The perception of sexual features diverged between image and video perception for GPT-4V. 
GPT-4V failed to even provide ratings for most of the images that contained sexual content 
(see section “GPT-4V image perception experiment” in the Methods) and the agreement of 
sexually related features in the successfully evaluated images was only moderate. In the video 
perception dataset, GPT-4V did not fail to evaluate any movie clips and sexual features were 
perceived with high agreement (Figure 2). We anticipate that our protocol for video perception 
where multiple images and the transcript of the speech were fed simultaneously to GPT-4V 
escaped the internal content filters of the model. The other possible explanation for the 
difference is that the video perception data was collected with the updated vision model 
(modelimage: “gpt-4-1106-vision-preview”, modelvideo: “GPT-4-turbo-2024-04-09”).  
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Future directions 

First, because human observers and GPT-4V provided inconsistent responses for some 
features, future studies need to quantify the sources of variation that would explain the 
differences between GPT-4V and human perceptual ratings. One possible way to increase 
the reliability of the LLM derived results could be to harmonize the perceptual data collection 
by assigning different sociodemographic or personality characteristics to the LLM (L. Wang et 
al., 2024) before collecting perceptual evaluations. This could yield even more reliable results 
in specific subpopulations and perhaps also for population level averages. By manual 
balancing of the studied subpopulations the results could generalize better to 
underrepresented groups in the LLM’s training data. Second, these findings show the potential 
of LLM vision in complex psychosocial phenomena and thus open new avenues for studying 
the LLM perception. Future research should investigate whether LLMs are able to reliably 
infer, for example, emotions or personalities just by perceiving them in dynamic settings. If 
LLM perception proves to be reliable, it could be used in countless ways to simulate 
experiments, which would free resources to confirm findings with human subjects only in the 
most potential study designs (Dillion et al., 2023; Horton, 2023). Ultimately, LLM perception 
could, for example, help medical professionals to identify the patients in acute distress or LLMs 
could monitor people in real-life to give physicians more insights of people's psychological and 
physical health by their behaviour in everyday situations. Previous machine learning models 
are trained for very specific purposes and their use require expertise. The potential in LLMs 
relies on the fact that they are accessible for wide audiences and can be used for many 
purposes without additional training and with little cost.  
 
Limitations 

We compared the agreement of GPT-4V social evaluations against the agreement of single 
human participants, yet single human participants ratings are usually not accurate population 
level estimates. However, this approach allows answering the question of whether GPT-4V 
performs at a level comparable to a subject randomly drawn from the sample, and the answer 
to this question is “yes”. Our data with 10 human ratings for each social feature and 
image/video is not large enough to enable random sampling of subsets to estimate the 
agreement between different subsets of participants. Importantly, the GPT-based stimulus 
model yielded comparable neural representations of social features as that based on humans, 
indicating population-level accuracy of the model.  
 
The specific details of the input prompt may influence the LLM’s output considerably (L. Wang 
et al., 2024). We cannot estimate how much the results would change and how with differing 
prompts. We designed the prompt to be as close to the human instructions as possible while 
at the same time ensuring that GPT-4V provides evaluations in structured format. In a pilot 
study, we showed that minor changes in the prompt did not have major influence on the 
evaluations (see section “The stability of GPT-4V outputs with slightly different prompts” in 
Supplemental Materials). Actually, the consistency between different collection rounds with 
the same prompt in the full dataset was similar to the consistency between slightly differing 
prompts in the pilot data. This suggests that the differences between slightly differing prompts 
may not be much due to differences in the prompt but due to the stochastic nature of the 
model. 
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LLM outputs are subject to the underlying biases in the training data. Therefore, the LLM’s 
output may only represent a specific sample of the population, and it cannot capture the 
opinion that is not represented in the training data (Demszky et al., 2023). For example, the 
unguided opinions of many LLMs are more inclined to reflect the opinions of individuals who 
are liberal, high income, well-educated and not religious in one study (Santurkar et al., 2023) 
and the opinions were interpreted as right-leaning in another (Park et al., 2024) while a recent 
study with GPT-4 model described the political views as moderate (Almeida et al., 2024). 
Nevertheless, LLMs can produce accurate opinions of different sociodemographic groups 
when guided to do so (Argyle et al., 2023). It is not known whether these biases majorly 
influence the current findings, since this study focuses on mainly observable and instant 
perceptions of social interactions, not political opinions that can differ drastically between 
people. Previous study of a taxonomy for social perception in humans could not find evidence 
that the sex, age or ethnicity of the perceiver would have major effect on the perceptual 
evaluations of the current movie clip stimulus (Santavirta, Malén, et al., 2023).  
 
It is likely that content associated with mixed moral opinions is deliberately left out from the 
training data of commercially available LLMs and the models also incorporate additional 
content filters to prevent harmful use (OpenAI et al., 2023). The GPT-4 model documentation 
reports several content filters for the input including “sexual”, “hate”, “harassment”, and 
“violence” filters (https://platform.openai.com/docs/api-reference/moderations/create). Due to 
these content filters, we could not collect data for most images containing sex (and for one 
image containing blood). However, sexual content was not an issue when collecting 
perceptual ratings for videos with decomposed video perception prompt. The outputs of the 
GPT-4 are also adjusted, for example, not to encourage people to commit crimes (OpenAI et 
al., 2023). These output moderations may have influenced the perceptual evaluations of some 
disturbing scenes. Content filtering most likely explains why the perceptual and neural 
representations for feature “Harassing someone” had the weakest correspondence of all 
features with human representations.  

Conclusion 
Our work provides first evidence of the advanced social perceptual capabilities of GPT-4V. 
The perceptual representation of GPT-4V for social features in images and videos aligned with 
the representations of humans and the alignment yielded in similar neural representations. 
The general human social perceptual network including mainly occipitotemporal brain regions 
was clearly identified by using stimulus model based on GPT-4V annotations. The results 
suggest that in the future, AI can be used for supporting a multitude of applications ranging 
from patient monitoring to surveillance and customer behaviour tracking. Our results also 
suggest that LLMs can be used for generating rich stimulus models for high-dimensional 
representational mapping of brain functions with fMRI, also allowing large-scale reanalysis of 
existing fMRI datasets where high-dimensional stimulus models can be retrieved post hoc 
using LLMs. However, caution is still warranted when generalizing LLM derived results of 
higher mental processes to reality and future research should experiment with LLM perception 
in other domains of social cognition, such as emotion and motivation.   
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Data and code availability 
The anonymized GPT-4V and human rating data are available in the project’s GitHub 
repository (https://github.com/santavis/GPT-4V-social-perception). According to Finnish 
legislation, the original (even anonymized) neuroimaging data used in the experiment cannot 
be released for public use. The voxelwise (unthresholded) result maps from fMRI analyses 
can be requested from the authors. The stimulus movie clips can be made available for 
researchers upon request, but copyrights preclude public redistribution of the stimulus set. 
Short descriptions of each movie clip can be found in the supplementary materials (Table SI-
1). 
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