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Abstract

Difficulties in social interactions characterize both autism and schizophrenia and are correlated in the neurotypical population. It is 
unknown whether this represents a shared etiology or superficial phenotypic overlap. Both conditions exhibit atypical neural activity 
in response to the perception of social stimuli and decreased neural synchronization between individuals. This study investigated if 
neural activity and neural synchronization associated with biological motion perception are differentially associated with autistic and 
schizotypal traits in the neurotypical population. Participants viewed naturalistic social interactions while hemodynamic brain activity 
was measured with fMRI, which was modeled against a continuous measure of the extent of biological motion. General linear model 
analysis revealed that biological motion perception was associated with neural activity across the action observation network. However, 
intersubject phase synchronization analysis revealed neural activity to be synchronized between individuals in occipital and parietal 
areas but desynchronized in temporal and frontal regions. Autistic traits were associated with decreased neural activity (precuneus and 
middle cingulate gyrus), and schizotypal traits were associated with decreased neural synchronization (middle and inferior frontal gyri). 
Biological motion perception elicits divergent patterns of neural activity and synchronization, which dissociate autistic and schizotypal 
traits in the general population, suggesting that they originate from different neural mechanisms.
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The disruption of social processes is evident across numerous 
neurodevelopmental, mental health and neurodegenerative con-
ditions (Cotter et al., 2018; Porcelli et al., 2019). Social behavior 
is considered a transdiagnostic domain characterized along a 
continuum of functionality encompassing affiliative, emotional, 
perceptual and cognitive processes relating to self and others 
(Kennedy and Adolphs, 2012; Uljarević et al., 2020; Förstner et al., 
2022) and the neural mechanisms that underpin them (Schilbach 
et al., 2016; Barlati et al., 2020; Lobo et al., 2023).

Both autism and schizophrenia are characterized by difficulties 
in social interactions (American Psychiatric Association, 2013), 
which are associated with atypical perceptual and cognitive pro-
cesses in response to social stimuli (King and Lord, 2011; Sas-
son et al., 2011; Abdi and Sharma, 2004; Hommer and Swedo, 
2015; Pina-Camacho et al., 2016). While these conditions can 

be distinguished by other core features (e.g. restricted interests 
and behaviors in autism and delusions and hallucinations in 
psychosis), the phenotypic convergence of social features con-
tributes to uncertain identification (Nylander, 2014), mutual co-
occurrence (Barneveld et al., 2011; Kincaid et al., 2017; Zheng et al., 
2018; De Crescenzo et al., 2019; Lugo-Marína et al., 2019; Kiy-
ono et al., 2020) and heritability estimates (Sullivan et al., 2012; 
Wieckowski et al., 2017). The degree of autistic and schizotypal 
traits varies in the general population (Landry and Chouinard, 
2016; van Os and Reininghaus, 2016), and these dimensions are 
correlated, especially with respect to social behavior (Zhou et 
al., 2019; Isvoranu et al., 2021). However, it is unclear whether 
this convergence reflects a shared etiology or dissociable etiolo-
gies that manifest in overlapping phenotypes (DeVylder and Oh, 
2014; Chisholm et al., 2015). Difficulties in interpreting the agency, 
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intentionality, emotion and purpose of other’s behavior (Couture 
et al., 2010; Pinkham et al., 2019) may be the precipitating feature 
that makes complex social interactions more challenging (Froese 
et al., 2013; Gallagher and Varga, 2015). Social perceptual pro-
cesses may therefore provide the origin for the high-level social 
difficulties experienced and potentially present a point of diver-
gence between the autistic and schizophrenic neurophenotypes. 
A key issue is, therefore, to identify neurocognitive correlates of 
social behavior that may discriminate between these traits.

The distinctive kinematic profile of biological motion, and the 
social cues inherent in facial and bodily movements, allows one to 
not only detect intentional agents but spontaneously and implic-
itly infer the hidden mental states that are driving their behavior. 
The visual perception of social stimuli reliably elicits widespread 
neural activity in a distributed and hierarchical network of corti-
cal regions, from category-specific regions of early visual areas to 
motion-processing regions sensitive to the intentionality of other 
actions and visuomotor areas of the parietal and prefrontal cor-
tices (Decety and Grèzes, 1999; Caspers et al., 2010; Grosbras et al., 
2012; Pavlova, 2012). The neural activity is linearly related to the 
frequency and prominence of facial/bodily motion that can be 
seen (Bartels and Zeki, 2004; Lahnakoski et al., 2012). Furthermore, 
the neural activity becomes synchronized between individuals 
in many of these areas during the perception of complex social 
interactions (Hasson et al., 2004; Bolt et al., 2018). Neural synchro-
nization reflects the extent to which voxel-specific neural activity 
correlates between individuals. A high degree of synchronization 
suggests a population-wide similarity in the neural response to a 
common stimulus and may provide the basis by which we share 
an understanding of the world with other people that is neces-
sary for many key high-level social functions (Zaki and Ochsner, 
2009; Adolphs et al., 2016; Hasson and Frith, 2016; Nummen-
maa et al., 2018; Hudson et al., 2020; Redcay and Moraczewskib, 
2020). A low degree of synchronization reflects a variable neu-
ral response that suggests a more idiosyncratic perception or 
interpretation of a stimulus that is particular to that individual. 
However, it is unknown whether the synchronization of neu-
ral activity correlates with the extent and intensity of biological 
motion being observed and how this may differ from the magni-
tude of activity typically assessed as a neural correlate of social
perception.

Differential patterns of neural magnitude and synchroniza-
tion in response to social stimuli may provide important insights 
into individual differences in social behaviors that are associ-
ated with autism and schizophrenia. Although individuals with 
either condition detect biological motion and discriminate dif-
ferent actions, such as dancing vs fighting (Cusack et al., 2015) 
and walking direction (Keane et al., 2018), they show a difficulty 
in making higher-level inferences regarding the emotional and 
intentional dispositions of people depicted (Corrigan, 1997; Kaiser 
and Shiffrar, 2009; Hudson et al., 2012a, 2021; Savla et al., 2013; 
Okruszek and Pilecka, 2017; Todorova et al., 2019). Moreover, these 
difficulties correlate with autistic and schizotypal traits in the 
general population (Gray et al., 2011; Hudson et al., 2012b; Blain 
et al., 2017). Those with autism and schizophrenia consistently 
exhibit atypical neural activity in the network of regions impli-
cated in social perception (Sugranyes et al., 2011; Philip et al., 2012; 
Mehta et al., 2014; Glerean et al., 2016; Yang and Hofmann, 2016; 
Jáni and Kašpárek, 2017; Barlati et al., 2020; Chan and Han, 2020), 
and descriptive comparisons between those with autism and 
schizophrenia have revealed comparably atypical neural activity 
when perceiving a range of social stimuli (for reviews, see Abdi 
and Sharma, 2004; King and Lord, 2011; Sasson et al., 2011). Direct 

comparisons between autistic and schizophrenic groups suggest 
quantitative, rather than qualitative, differences in neural activity 
in key brain regions involved in the perception of and reason-
ing about other people. Autistic groups exhibit a larger reduction 
in activity than schizophrenic groups in the prefrontal cortex, 
temporal parietal junction, amygdala and cingulate cortex but 
increased activity in the superior temporal sulcus (Pinkham et al., 
2008; Sugranyes et al., 2011; Eack et al., 2017). Neural activity asso-
ciated with biological motion perception is positively correlated 
with both autistic (Thurman et al., 2016; Puglia and Morris, 2017) 
and schizotypal traits (Platek et al., 2005; Hur et al., 2016). Fur-
thermore, there is a decreased neural synchronization with other 
people in both autistic (Hasson et al., 2009; Salmi et al., 2009) and 
schizophrenic groups (Lerner et al., 2018; Mäntylä et al., 2018) that 
may imply a more idiosyncratic and variable perception and inter-
pretation of the world, which may contribute to a difficulty in 
establishing shared perspectives with other people.

The current study
No studies have assessed neural synchronization in response to 
the perception of social stimuli and how this is related to atyp-
ical social behavior associated with autistic and schizophrenic 
traits. The aims of this study are 2-fold: first, to establish how 
the extent of neural synchronization between individuals dur-
ing the perception of biological motion converges or diverges 
from the magnitude of neural activity that traditionally defines 
the action observation network. Importantly, the degree of syn-
chronization is theoretically independent of the amplitude of the 
neural response, even if they are both associated with the same 
stimulus features (Nastase et al., 2019). An increase in synchro-
nization would suggest a stimulus-specific neural response that is 
shared across individuals, whereas a decrease in synchronization 
would suggest a stimulus-specific neural response that is distinct 
between individuals. Furthermore, measures of neural synchrony 
can reveal regions of neural response that general linear model 
(GLM) approaches do not show, where synchronization varies with 
the stimulus, but the overall neural amplitude does not vary 
(Hejnar et al., 2007; Pajula et al., 2012; Xu et al., 2020). There is, 
therefore, a compelling reason to establish how both the ampli-
tude and reliability of neural activity vary to reveal regions that 
are implicated in biological motion perception with either highly 
generic or individual neural profiles. To this end, we had partici-
pants who viewed a series of movie clips of complex and dynamic 
naturalistic social interactions in a magnetic resonance imaging 
(MRI) scanner. These clips were observed by a separate sample of 
participants who gave a continuous rating of the extent of biolog-
ical motion present, which provided a behavioral measure that 
was correlated with both the magnitude and synchronization of 
neural activity in each voxel.

The second aim was to investigate how differential patterns 
of neural magnitude and synchronization associated with biolog-
ical motion perception may differentiate the overlapping social 
difficulties characterized by autistic and schizotypal traits in 
the general population. Each participant completed the Autistic 
Spectrum Quotient (AQ: Baron-Cohen et al., 2001) and Oxford–
Liverpool Inventory of Feelings and Experiences (O-LIFE: Mason 
et al., 2005) to measure autistic and schizotypal traits, respectively. 
Previous research has shown that the AQ and O-LIFE correlate 
positively in the general population, especially with respect to the 
social skills and introvertive anhedonia subscales that measure 
social behavior (Russell-Smith et al., 2011). We were, therefore, 
specifically interested not only in the overall scores but also in the 
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subscales indicative of social behavior—the social skills subscale 
of the AQ and the introversion subscale of the O-LIFE—and the 
extent to which they were associated with individual differences 
in the magnitude of neural activity and neural synchronization in 
response to biological motion perception.

Method
Participants
Participants (N = 104) were recruited from the University of Turku 
and the wider community. After exclusions (two due to scanning 
artifacts, two due to gross brain abnormalities and three due to 
incomplete questionnaire data), 97 participants were included 
in the analysis (48 females, mean age = 31.3 years, s.d. = 9.4 and 
56% with higher education qualification). All participants were 
screened using standard MRI exclusion criteria, in addition to 
neurological, neuropsychiatric and psychotropic substance use–
related contraindications. Participants gave written informed 
consent prior to the study and were paid for participation. The 
study was approved by the ethics committee of the Hospital Dis-
trict of South West Finland in accordance with the Declaration of 
Helsinki.

Materials and stimuli
Questionnaires
Participants completed the questionnaires online after the scan-
ning session. The AQ (Baron-Cohen et al., 2001) is a 50-item 
self-report questionnaire that measures autistic traits in the gen-
eral population and contains five subscales relating to social 
skills, attention to detail, attention switching, imagination and 
communication. Responses are made on a 4-point scale (defi-
nitely/slightly agree and definitely/slightly disagree) and scored 
as 1 or 0 (26 reverse-scored items), with higher scores indicating 
greater autistic traits. The O-LIFE (Mason et al., 2005) is a 43-
item self-report questionnaire that measures schizotypal traits 
in the general population and contains four subscales relating to 
introvertive anhedonia, cognitive disorganization, unusual expe-
riences and impulsive non-conformity. Responses (yes/no) are 
scored as 1 or 0 (eight reverse-scored items), with higher scores 
indicating greater schizotypal traits. The Finnish language trans-
lations showed comparably high internal consistency (Cronbach’s 
alpha coefficient: AQ = 0.711; O-LIFE = 0.842) to previous English 
language versions (Baron-Cohen et al., 2001; Mason et al., 2005).

Biological motion stimulus
In the fMRI scanner, participants watched an audiovisual mon-
tage of 96 clips taken from popular movies with English speech 
(mean clip duration of 11.5 s and total duration of 19.6 min); the 
participants had no specific task other than to pay attention to the 
movie. The montage was designed to provide a high-dimensional 
representation of complex naturalistic social and emotional inter-
actions and has been validated in previous studies (Lahnakoski 
et al., 2012; Karjalainen et al., 2017, 2019). The clips were presented 
in a fixed order for each participant to allow for the intersub-
ject synchronization analysis. A fixation cross was presented at 
the start (5.2 s) and end (15.6 s) of the run. The stimulus video 
was displayed using goggles affixed to the head coil (NordicNeu-
roLab VisualSystem). The audio was played through SensiMetrics 
S14 earphones (100 Hz to 8 kHz bandwidth and 110 dB sound pres-
sure level). The volume was adjusted individually to a comfortable 
level that could still be heard over the scanner noise.

The montage was viewed by five separate neurotypical par-
ticipants who provided a continuous rating for the presence of 
biological motion, reflecting the extent and frequency of move-
ment (Figure 1). The stimulus was presented on a computer 
monitor and headphones, while the participant provided ratings 
by moving the mouse forward for the increased presence or back-
ward for the decreased presence. Ratings were taken at 0.25 Hz 
intervals and downsampled to match the repetition time (TR) 
of the fMRI time series to be used as a regressor of interest to 
establish the relationship between biological motion perception 
and the magnitude and synchronization of neural activity. Inter-
class correlation analysis (r = 0.57) indicated moderate reliability 
between raters.

Procedure
MRI data acquisition and preprocessing
MRI scanning took place at Turku PET Centre, University of Turku, 
using a Phillips Ingenuity TF PET/MR 3T whole-body scanner. 
High-resolution (1 mm3) structural images were obtained with a 
T1-weighted sequence (TR 9.8 ms, TE 4.6 ms, flip angle 7o, 250 mm 
FOV and 256 × 256 reconstruction matrix). A total of 467 functional 
volumes were acquired, with a T2*-weighted echo-planar imag-
ing sequence (TR 2600 ms, TE 30 ms, 75o flip angle, 240 mm FOV, 
80 × 80 reconstruction matrix, 62.5 kHz bandwidth, 3.0 mm slice 
thickness and 45 interleaved slices acquired in an ascending order 
without gaps).

Fig. 1. Average viewer ratings of the extent of biological motion in the stimulus. Representative frames are depicted at the top (in sequential order), 
with corresponding data points marked.
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Preprocessing of MRI data used fMRIPprep 1.3.0.2 (Esteban 
et al., 2019). The anatomical T1-weighted reference image was 
subject to correction for intensity non-uniformity, skull strip-
ping, brain surface reconstruction and spatial normalization to 
the ICBM 152 Nonlinear Asymmetrical template version 2009c 
(Fonov et al., 2009) using non-linear registration with antsRegistra-
tion (ANTs 2.2.0) and brain tissue segmentation. The functional 
data were subject to coregistration to the T1w reference, slice-
time correction, spatial smoothing with a 6-mm Gaussian kernel, 
automatic removal of motion artifacts using ICA-AROMA (Pruim 
et al., 2015) and resampling of the MNI152NLin2009cAsym stan-
dard space. Low-frequency drifts were removed with a 240-s 
Savitzky–Golay filter (Çukur et al., 2013).

Data analysis
All participants were scanned sequentially, and data analysis pro-
ceeded on the individualized time series. We conducted both GLM 
and intersubject phase synchronization (ISPS) analyses to estab-
lish how biological motion perception is associated with region-
ally specific changes in BOLD activity and neural synchronization 
between individuals, respectively. In addition, we repeated these 
analyses with questionnaire scores as participant-level regres-
sors to establish how BOLD activity and neural synchronization 
between individuals associated with biological motion perception 
vary with autistic and schizotypal traits.

Based on our hypotheses, we focused on two conjunctions of 
trait measures. First, the total AQ and O-LIFE scores were entered 
as orthogonalized regressors in the GLM and ISPS analyses. Sec-
ond, the social skills and introvertive subscales of the AQ and 
O-LIFE, respectively, were entered as orthogonalized regressors. 
That is, in each analysis, the two scores were entered as regres-
sors, with each acting as a regressor of no interest to the other. 
This enabled the investigation of the independent contributions 
of these traits to explain the neural response to biological motion 
despite the high covariance between the scores themselves. Fur-
ther exploratory analyses using subscale scores within each trait 
measure (e.g. all subscales of the AQ and all of the O-LIFE) 
and inter-trait relationships between subscales revealed to be 
highly correlated [e.g. between Communication (AQ) and Impul-
sive Non-Conformity (O-LIFE)] can be found in the Supplementary 
Materials.

GLM analysis
GLM analyses were conducted with SPM12 (www.fil.ion.ucl.ac.uk/
spm) with a two-stage random-effects analysis. The biological 
motion ratings were convolved with a canonical hemodynamic 
response function and entered as a regressor into the first-level 
GLM analysis, using a high-pass filter of 128 s. The results of each 
participant in the first-level analysis were entered into a second-
level random-effects analysis using a one-sample t-test, with a 
family-wise error (FWE) alpha threshold of P < 0.001. The ques-
tionnaire scores were entered as a participant-level regressor in 
the second-level analysis, with a cluster-level false discovery rate 
threshold after an uncorrected voxel threshold of P < 0.001.

ISPS analysis
The data were preprocessed for phase synchronization analysis 
using the FunPsy toolbox (https://github.com/eglerean/funpsy, 
see Glerean et al., 2012). For each participant, the voxel-specific 
time series was band-pass filtered (0.04–0.07 Hz), and the phase 
analytic signal (in radians) of the Hilbert transformed BOLD 

Table 1. AQ and O-LIFE scores in total and for each subscale

Mean (s.d.)

AQ Total 16.8 (5.8)
Attention to detail 4.6 (2.1)
Attention switching 4.2 (2)
Communication 2.2 (1.8)
Imagination 2.8 (1.8)
Social skills 3.1 (2)

O-LIFE Total 11.2 (6.6)
Cognitive disorganization 4.1 (2.9)
Impulsive non-conformity 2.2 (2)
Introvertive anhedonia 2.2 (1.8)
Unusual experiences 2.8 (2.6)

response of each voxel was calculated. The phase analytic sig-
nal at each timepoint was subtracted (and inversed) from that of 
the equivalent voxel from each of the other participants, and then 
averaged, to produce a 4D (space × time) measure of phase simi-
larity of each participant with the rest of the sample. As the phase 
similarity measure is instantaneous, it provides a more tempo-
rally precise indicator of neural synchronization than the sliding 
window analyses of intersubject correlation.

Two ISPS analyses were conducted. (I) The relationship 
between ISPS and biological motion perception was investigated 
by taking each participant’s voxel-specific phase similarity time 
series and correlating it with the HRF-convolved biological motion 
regressor for each voxel. The r values were Fisher z-transformed 
and entered into a second-level analysis in SPM12 using a one-
sample t-test and an FEW-corrected alpha threshold of P < 0.001. 
(II) The questionnaire scores were entered as a participant-level 
regressor to establish how neural synchronization (ISPS) associ-
ated with biological motion perception varies with autistic and 
schizotypal traits, with a cluster-level threshold after an uncor-
rected voxel threshold of P < 0.001.

Results
Questionnaire data
Descriptive statistics for the AQ and O-LIFE can be seen in Table 1. 
AQ scores were higher in males (m = 18.4, s.d. = 5.7) than females 
(m = 15.2, s.d. = 5.4, t(95) = 2.86, P = 0.005). There were no sex dif-
ferences in O-LIFE scores (t(95) = 0.419, P = 0.676). Age did not 
correlate with scores on either the AQ (r = −0.020, P = 0.843) or 
O-LIFE (r = −0.041, P = 0.690). The total autistic traits and total 
schizotypal traits were positively correlated [r = 0.305, P = 0.002, 
95% confidence interval (CI) = 0.111–0.499, BF10 = 12.03] and so 
too were the social skills and introversion subscales that may 
contribute to phenotypic convergence (r = 0.528, P = 2.78e-08, 95% 
CI = 0.355–0.701, BF10 = 503 158.12). Figure 2 shows the full inter-
trait subscale correlation matrix (Bonferroni P < 0.0025, see Sup-
plementary Figure S1 for the full correlation matrix between all 
subscales). 

The relationship between neural activity and 
biological motion perception
The biological motion was associated with a widespread and 
distributed increase in neural activity (Figure 3A, FWE P < 0.001, 
Supplementary Tables S1 and S2). The bilateral activation was 
evident in the lingual gyri; cuneus; precuneus; thalamus;
precentral gyrus; superior, medial and inferior frontal gyri; 
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Fig. 2. The inter-trait correlations between the subscales of the Autistic Spectrum Quotient and the Oxford–Liverpool Inventory of Feelings and 
Experiences. Correlations significant at Bonferroni-corrected P < 0.0025 are marked with an asterisk.

superior, middle and inferior temporal gyri; fusiform gyri; and 
lentiform nucleus. Unilateral activation was evident in the right 
superior and inferior frontal gyri. Cerebellar activation was 
observed in the bilateral cerebellar tonsil, uvula of vermis and 
right declive. Negative relationships between biological motion 
and neural activity were found in the bilateral caudate/parahip-
pocampus, bilateral post-central gyri, right thalamus and bilat-
eral middle insula.

The relationship between neural synchronization 
and biological motion perception
The biological motion was associated with an increase in ISPS in 
a similarly distributed but more discrete set of regions (Figure 3B, 
FWE P < 0.001, Supplementary Tables S3 and S4) than was 
observed in the GLM analysis. Bilateral increases were observed 
in the lingual gyri, inferior parietal lobes, superior parietal lobes, 
middle temporal gyri and anterior cingulate gyri. Unilateral syn-
chronization in the left hemisphere was observed in the cuneus, 
fusiform gyrus, precentral gyrus, superior frontal gyrus and infe-
rior frontal gyrus and in the right hemisphere in the inferior 
occipital gyrus, precuneus, post-central gyrus, parahippocam-
pus, posterior cingulate, middle cingulate gyrus, medial-frontal 
gyrus, claustrum, vulva of vermis and right declive. ISPS was neg-
atively associated with biological motion bilaterally in the lingual 
gyri, fusiform gyri, cuneus, superior and middle temporal gyri 
and superior parietal lobes. Right hemispheric decreases were 
evident in the pre- and post-central gyri, inferior parietal lobe, 
thalamus, parahippocampus and inferior frontal gyrus. Left hemi-
spheric decreases were evident in the inferior and middle occipital 
gyri, inferior temporal gyrus, precuneus, posterior cingulate and 
superior frontal gyrus.

Overlapping neural activity and synchronization 
associated with biological motion perception
Logical overlays of the maps generated by the GLM and ISPS 
analyses reveal the convergent and divergent patterns of neural 
activity and synchronization associated with biological motion 
perception (Figure 3C).

GLM positive/ISPS positive
Both an increase in neural activity and ISPS were evident bilat-
erally in the precuneus, superior parietal lobe, precentral gyrus, 
cuneus/lingual gyri, posterior cingulate gyrus, inferior parietal 
lobe and left middle temporal gyrus and right claustrum.

GLM positive/ISPS negative
Several regions exhibited an increase in neural activity but a 
decrease in ISPS in response to biological motion, most notably 
in a large bilateral swathe along the superior temporal gyri, and 
also bilateral superior parietal lobe, bilateral fusiform gyrus, left 
cuneus and precuneus, right lingual gyrus, right middle temporal 
gyrus and right inferior frontal gyrus.

GLM negative/ISPS positive
Two small regions in the bilateral parahippocampus exhibited a 
decreased neural activity and an increased ISPS associated with 
biological motion perception.

GLM negative/ISPS negative
A prominent region in the left middle temporal gyrus exhibited 
both a decreased neural activity and ISPS with biological motion 
perception, as did small regions in the left posterior cingulate and 
right parahippocampus.

Autistic and schizotypal traits associated with 
neural activity in response to biological motion
We next conducted a GLM analysis to establish the extent to 
which autistic and schizotypal traits are associated with neural 
activity in response to biological motion (Figure 4A). The first-
level analyses with biological motion as a regressor were entered 
into a second-level analysis with trait scores as a regressor. Autis-
tic traits, with schizotypal traits as a covariate, were negatively 
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Fig. 3. The convergent and divergent patterns of neural activity and synchronization associated with biological motion. (A) Regions exhibiting an 
increase (red) or decrease (blue) in neural activity using GLM analyses with biological motion as a regressor (FWE P < 0.001). (B) Regions exhibiting an 
increase (red) or decrease (blue) in intersubject neural synchronization associated with biological motion (FWE P < 0.001). (C) Logical overlays of 
regions exhibiting both neural activity and synchronization associated with biological motion, with relationships being convergent (positive or 
negative for both neural activity and synchronization) or divergent (positive and negative for either neural activity or synchronization).

correlated with the neural response to biological motion in a 
cluster (k = 187) with two peak voxels in the left and right mid-
dle cingulate gyrus. The AQ subscale of Social Skills, with the 
O-LIFE subscale of Introversion entered as a covariate, was nega-
tively associated with the neural response to biological motion in 
a cluster (k = 157) with two peak voxels in the right precuneus. 
The converse analyses showed that neural activity associated 
with biological motion perception was associated neither with 
schizotypal traits (with autistic traits as a covariate) nor with 
the Introversion subscale (with the Social Skills subscale as a 
covariate).

Autistic and schizotypal traits associated with 
neural synchronization in response to biological 
motion
The relationship between ISPS and biological motion decreased 
with schizotypal traits, with autistic traits as a covariate, in a clus-
ter (k = 39) with two peak voxels in the right middle frontal gyrus. 
The O-LIFE subscale of Introversion, with the AQ subscale of Social 
Skills as a covariate, was negatively associated with the rela-
tionship between ISPS and biological motion in a cluster (k = 39) 
with a peak voxel in the left inferior frontal gyrus (Figure 4B). 
The converse analyses showed that neural synchronization in 
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Fig. 4. Patterns of neural activity and synchronization associated with biological motion, which dissociate autistic and schizotypal traits. (A) The neural 
activity associated with biological motion decreased with increasing autistic traits (with schizotypal traits as an orthogonal regressor) in the middle 
cingulate gyrus (MCG) and decreased with increasing atypical social skills (with introversion as an orthogonal regressor) in the precuneus (PreC). (B) 
Neural synchronization associated with biological motion decreased with increasing schizotypal traits (with autistic traits as an orthogonal regressor) 
in the middle frontal gyrus (MFG) and decreased with increasing introversion (with social skills as an orthogonal regressor) in the inferior frontal gyrus 
(IFG). For visualization purposes, these figures depict an uncorrected voxel threshold of P < 0.01, followed by an FWE cluster threshold of P < 0.05.

response to biological motion perception was associated neither 
with autistic traits (with schizotypal traits as a covariate) nor with 
the Social Skills subscale (with the Introversion subscale as a
covariate).

Discussion
While neural activity associated with the perception of biologi-
cal motion increases in a widespread network of brain regions, 
the synchronization of neural activity between individuals differs 
within this network. Biological motion perception was associated 
with increased neural synchronization in the visual and parietal 
regions, whereas desynchronization was evident in the temporal 
and frontal regions. Autistic traits are associated with changes in 
the overall neural activity related to biological motion in the pre-
cuneus and middle cingulate gyrus, while schizotypal traits are 
associated with changes in neural synchronization in the mid-
dle and inferior frontal gyri. These results suggest that correlated 
autistic and schizotypal traits, especially those relating to social 
behavior, are associated with different neural responses to social 
stimuli, namely the magnitude of neural activity for autistic traits, 
and the between-individual synchronization of neural activity for 
schizotypal traits.

Convergent and divergent patterns of neural 
activity and synchronization in relation to 
biological motion perception
The perception of biological motion was associated with an 
increase in neural activity in an extensive network of regions 
encompassing the occipital, temporal, parietal and frontal cor-
tices, characterizing the well-established ‘social brain’ implicated 
in action observation (occipital cortex, posterior temporal regions 
and parietal and pre-motor regions) and mentalizing (anterior-
temporal, temporal-parietal junction and medial-frontal gyri) 
(Adolphs, 2009; Li et al., 2018). However, the distribution of neu-
ral synchronization between individuals during biological motion 
perception varied within this network. Regions in primary visual 
areas, face- and body-selective visual areas, inferior parietal lobe, 

precentral gyrus, temporal-parietal junction and cingulate cortex 
showed an increase in neural activity that is also highly syn-
chronized across individuals. In contrast, the superior parietal 
lobe, superior and middle temporal gyri, fusiform gyri and infe-
rior frontal gyri exhibited desynchronization of neural activity 
despite an overall increase in neural activity. Moreover, several 
regions exhibited either increases or decreases in synchronization 
despite no change in the overall neural activity. These regions may 
be involved in the perception of stimulus features that are not 
necessarily social in nature, such as motion itself, or subjective 
interpretations of the intentions and context that are informed 
by biological motion. These results highlight that analysis of inter-
subject similarity of the neural response provides complementary 
information by identifying regions that would not otherwise have 
been associated with the perception of social stimuli.

Broadly speaking, neural synchronization varied along a 
posterior–anterior axis, with increased synchronization observed 
in posterior visual areas and the parietal lobe, whereas decreased 
synchronization was observed in temporal association regions 
and frontal regions. This agrees with previous findings of a sys-
tematic gradient of neural reliability (Kauppi et al., 2010, 2017) that 
reflects a global cortical hierarchy of parsing, integration and pre-
diction of information at different timescales (Hasson et al., 2008, 
2010, 2015; Kiebel et al., 2008; Baldassano et al., 2017; Huntenburg 
et al., 2018). Disturbances in the extent of this gradient have also 
been observed in autism (Watanabe et al., 2019) and psychosis 
(Wengler et al., 2020). This dichotomy may provide a key insight 
into the neural mechanisms underpinning biological motion per-
ception. Sensorimotor areas operate at short timescales and are 
tightly coupled to stimulus features (e.g. moment-to-moment 
changes in visible body parts, the extent of motion or the spe-
cific action), therefore showing a high degree of neural reliability 
across subjects. Neural activity is less reliable in temporal and 
prefrontal regions (despite an overall increase in activity in the 
BOLD–GLM analysis), which operate at longer timescales and are 
involved in idiosyncratic and subjective interpretations and pre-
dictions of other’s behaviors and decisions about how to act in 
response to this.
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Neural activity and synchronization differentiate 
individual differences in autistic and schizotypal 
traits
Autistic and schizotypal traits were positively correlated, espe-
cially on measures of social behavior, and also on more general 
indices of cognitive organization and control. Only traits relating 
to imagination and unusual experiences (homologous to posi-
tive schizotypal traits) were negatively correlated. These findings 
support previous theoretical and empirical work suggesting an 
intersection of features of autism and schizophrenia and related 
traits in the neurotypical population (Russell-Smith et al., 2011; 
Zhou et al., 2019; Isvoranu et al., 2021). The divergent pattern 
of autism- and schizotypy-dependent neural activity and syn-
chronization in response to biological motion perception suggests 
that these traits reflect a phenotypic overlap with separate neural
bases.

Autistic traits, and social skills in particular, were associated 
with a decrease in the overall neural activity related to bio-
logical motion, whereas schizotypal traits, and introversion in 
particular, were associated with a decrease in neural synchro-
nization. The social difficulties associated with autism are, in 
part, reflected in reduced overall neural activity in response to 
the perception of complex social-emotional interactions, which 
may reflect or cause an insensitivity to such stimuli compared 
to those with schizophrenia (Sasson et al., 2007). However, while 
watching those same interactions, the social difficulties asso-
ciated with schizophrenia correspond to decreased neural syn-
chronization between individuals, which may reflect not only a 
reduction in short-term integration of stimulus features but also 
an inability to establish neural ‘rapport’ with others that enables 
mutual psychological states and may also contribute to spuri-
ous mental state attributions (Ciaramidaro et al., 2015). Moreover, 
the decreased synchronization associated with schizotypal traits 
was focused in frontal areas (the middle and inferior frontal 
gyri), which are associated in schizophrenia with high-level infer-
ences and decision-making in social interactions (Russell et al., 
2000; Li et al., 2012; Takei et al., 2013; Shin et al., 2015). In con-
trast, decreased neural activity associated with autistic traits 
was observed in middle cingulate gyrus and precuneus, both of 
which have been implicated in autism with a reduced aware-
ness of one’s own actions and decisions in social interactions 
and distinguishing self from others (Tomlinm et al., 2006; Chiu 
et al., 2008; Lombardo et al., 2010; Martineau et al., 2010; Just 
et al., 2014). These regions were not associated with the percep-
tion of biological motion at the population level (see also Puglia 
and Morris, 2017), suggesting that social difficulties experienced 
by autistic people and those diagnosed with schizophrenia may 
result from downstream or upstream secondary processes that 
rely on, but are not directly implicated in, the perception of other’s
behavior.

Limitations
Autistic and schizotypal traits in the neurotypical population can 
be assessed in isolation, free of differences in cognitive devel-
opment and neurodevelopmental or mental health conditions 
that are associated with those who have received a diagnosis of 
autism or schizophrenia. Furthermore, it is possible to establish 
how neural activity correlates with variation in these traits in a 
large sample, which is not possible when looking at qualitative 
differences between diagnosed groups (Landry and Chouinard, 
2016). Nevertheless, the spectrum models of autism and psy-
chosis assume that these traits are conceptually aligned with 

these conditions in a linear and unidimensional distribution (Sas-
son and Bottema-Beutel, 2021). Autism and psychosis-spectrum 
disorders are multidimensional and exhibit qualitative differ-
ences in the traits measured in these surveys. The extent to which 
the current results can be extrapolated either quantitatively or 
qualitatively to those with autism or schizophrenia remains to be 
seen.

Furthermore, although we aimed to reflect naturalistic condi-
tions by having participants freely and passively view a complex 
and dynamic social stimulus, it is possible to interpret neither 
the functional significance of neural (de)synchronization associ-
ated with biological motion perception nor the activity of regions 
in which the neural profile was associated with schizotypal and 
autistic traits. These regions have been previously implicated 
in socio-cognitive performance in autism and schizophrenia, 
but how their differing neural profiles contribute to convergent 
behavioral phenotypes requires controlled experimental manip-
ulation. Moreover, as eye movements were not measured, it is not 
possible to assess the differing attention resources allocated to 
the stimulus and how these may be associated with autistic and 
schizotypal traits (although attentional and cognitive subscales of 
these trait measures did not correlate with those relating to social 
behavior and were associated with different neural responses, as 
reported in the Supplementary Material).

Lastly, the neurophenotypic profile of those providing the rat-
ings of biological motion was not recorded. Future studies should 
ensure that the ratings reflect a similar variation in the neu-
rotypical population as the neurological data to which they are 
compared.

Conclusion
The perception of biological motion elicits both overlapping and 
dissociable patterns of neural activity and neural synchronization 
between individuals. Increases in neural synchronization were 
observed primarily in regions associated with stimulus processing 
(visual and motor regions), whereas decreases in neural synchro-
nization were observed primarily in regions associated with inter-
pretation and decision-making (temporal and frontal regions). 
These differences correspond to a well-established posterior–
anterior axis of neural reliability implicated in temporal parsing, 
integration and prediction, which we can now apply to the percep-
tion of social interactions. Moreover, patterns of neural activity 
and synchronization differentiated the highly correlated indi-
vidual differences in autistic and schizotypal traits in a large 
sample of the neurotypical population in regions that were not 
directly implicated in biological perception but which have pre-
viously been implicated in social functions. The highly conver-
gent individual differences in social behavior that correspond to 
autistic and schizotypal traits, and by possible extension the com-
mon social difficulties encountered by those with autism and 
schizophrenia themselves, do not reflect a shared etiology but dis-
parate mechanisms that elicit superficially similar phenotypes. 
The use of complex and naturalistic social interactions provides 
new avenues for future research. Different temporal profiles of 
neural activity can be dissociated by the perception of other peo-
ple’s behavior, and this can reveal different neural mechanisms 
associated with autistic and schizotypal individual differences 
that cannot be distinguished at the behavioral level. Interper-
sonal synchronization, at the behavioral or neural level, may 
provide the basis for the reciprocal and coordinated interactions 
upon which social functioning ultimately relies and that are inor-
dinately affected in different ways across numerous diagnoses 
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(Schilbach, 2016). Establishing heterogeneity within conditions 
and homogeneity between conditions in the extent to which social 
functioning is affected, and the neurocognitive mechanisms that 
underpin them, may serve to identify difficulties and interven-
tions more specifically than traditional nosological descriptions 
(Cuthbert and Insel, 2013; Morris et al., 2022).
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