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a b s t r a c t 

Humans rapidly extract diverse and complex information from ongoing social interactions, but the perceptual 

and neural organization of the different aspects of social perception remains unresolved. We showed short movie 

clips with rich social content to 97 healthy participants while their haemodynamic brain activity was measured 

with fMRI. The clips were annotated moment-to-moment for a large set of social features and 45 of the features 

were evaluated reliably between annotators. Cluster analysis of the social features revealed that 13 dimensions 

were sufficient for describing the social perceptual space. Three different analysis methods were used to map the 

social perceptual processes in the human brain. Regression analysis mapped regional neural response profiles for 

different social dimensions. Multivariate pattern analysis then established the spatial specificity of the responses 

and intersubject correlation analysis connected social perceptual processing with neural synchronization. The 

results revealed a gradient in the processing of social information in the brain. Posterior temporal and occipital 

regions were broadly tuned to most social dimensions and the classifier revealed that these responses showed 

spatial specificity for social dimensions; in contrast Heschl gyri and parietal areas were also broadly associated 

with different social signals, yet the spatial patterns of responses did not differentiate social dimensions. Frontal 

and subcortical regions responded only to a limited number of social dimensions and the spatial response patterns 

did not differentiate social dimension. Altogether these results highlight the distributed nature of social processing 

in the brain. 
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. Introduction 

Humans live in a complex and ever-changing social world, but how

o we make sense of the high-dimensional and time-variable informa-

ion constantly conveyed by our conspecifics? Prior functional imaging

tudies have localized specific aspects of social perception into different

rain regions ( Brooks et al., 2020 ). Fusiform gyrus (FG) is consistently

nvolved in the perception of faces ( Haxby et al., 2000 ) and lateral occip-

totemporal cortex (LOTC) in the perception of bodies ( Downing et al.,

001 ). Temporoparietal junction (TPJ) is in turn involved in reflect-

ng the mental states of others ( Saxe and Kanwisher, 2003 ) as well as

n processing of social context and in focusing attention ( Carter and

uettel, 2013 ). Polysensory areas in the superior temporal sulcus (STS)
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ave been associated with multiple higher-order aspects of social per-

eption ( Deen et al., 2015 ; Isik et al., 2017 ; Lahnakoski et al., 2012 ;

ummenmaa and Calder, 2009 ), while medial frontal cortex (MFC) has

een extensively studied in the context of self-representation and theory

f mind ( Amodio and Frith, 2006 ). Finally, speech-based social commu-

ication is accomplished by a network consisting of superior temporal

yrus (STG) and its proximal areas STS (Wernicke area in left pSTS),

PJ, angular gyrus, middle temporal gyrus (MTG) and inferior frontal

yrus (Broca’s area in the left IFG) ( Price, 2012 ). 

Humans can however reliably process numerous simultaneously oc-

urring features of the social world ranging from others’ facial identities

nd emotions to their intentions and mental contents to the fine-grained

ffective qualities of the social interaction. Given the computational
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7  
imits of the human brain, it is unlikely that all features and dimen-

ions of the social domain are processed by distinct areas and systems

 Huth et al., 2012 ). Although the brain basis of perceiving specific iso-

ated social features has been successfully delineated, the phenomeno-

ogical as well as neural organization of the different social perceptual

rocesses have remained poorly understood and neural responses to

omplex stimuli cannot necessarily be predicted on statistical combi-

ation of responses to simple stimuli ( Felsen and Dan, 2005 ). Therefore

tudies based on neural responses to isolated social features may not

eneralize to real-world social perception ( Adolphs et al., 2016 ) where

ocial features such as facial identities, body movements, and nonver-

al communication often overlap with distinct temporal occurrence pat-

erns. 

In psychological domains including actions ( Huth et al., 2012 ), lan-

uage ( Huth et al., 2016 ), and emotions ( Koide-Majima et al., 2020 ),

euroimaging studies have tackled this issue by first generating a com-

rehensive set of modelled dimensions for the complex dynamic stimu-

us. Then, using dimension reduction techniques, they have assessed the

epresentational similarities of the modelled dimensions, or the repre-

entational similarities of the brain activation patterns associated with

ach dimension. For example, a recent study found that linguistic and

isual semantic representations converge so that visual representations

ocate on the border of occipital cortex while linguistic representations

re located anterior to the visual representations ( Popham et al., 2021 ).

owever, a detailed representational space for social features at both

erceptual and neural level is currently lacking. 

Commonly applied univariate analyses modelling the BOLD response

n each voxel or region separately cannot reveal the specificity of spatial

rain activation patterns resulting from the perception of different so-

ial features. Consequently, they do not allow testing whether different

erceptual features can be reliably discriminated based on their spatial

rain activation patterns. Multivariate pattern analysis (MVPA) allows

he analysis of information carried by fine-grained spatial patterns of

rain activation ( Tong and Pratte, 2012 ). Pattern recognition studies

ave established that regional multivariate patterns allow distinguish-

ng brain activation related to multiple high-level social features such as

aces ( Haxby et al., 2001 ) and their racial group ( Brosch et al., 2013 ) in

G and facial expressions in FG and STS ( Harry et al., 2013 ; Said et al.,

010 ; Wegrzyn et al., 2015 ). Perception of different goal-orientated mo-

or actions with different levels of abstraction can be decoded in LOTC

nd in inferior parietal lobe, suggesting that these regions process the

bstract concepts of the goal-orientated actions, not just their low-level

isual properties ( Wurm and Lingnau, 2015 ). Furthermore, decoding of

oal-orientated actions was successful in LOTC when subjects observed

he actions in both first and third person perspectives ( Oosterhof et al.,

012 ). It however remains unresolved how specific these regional re-

ponse profiles are across different social perceptual features. The per-

eption and interpretation of sensory social information is vital for plan-

ing social interaction in everyday life of people, and neuroimaging

tudies have also highlighted the centrality of social information in the

rain function ( Hari et al., 2015 ). Accordingly, it is important to estab-

ish how sensory social information is organized at the phenomenolog-

cal and neural levels. 

We define social perception as perception of all possible information

elevant to interpret social interaction. To our knowledge, there is cur-

ently no consensus on a combined taxonomy for this broad definition.

n social psychology, social situation has been described as a triad of

erson, situation and consequent behaviour ( Lewin, 1936 ) where these

lements have close interact between each other ( Funder, 2006 ). How-

ver, data-driven taxonomies have only been proposed for the elements

eparately. Person perception has been extensively studied and person

haracteristics can be categorised as a limited set of trait dimensions,

uch as Big Five ( Goldberg, 1990 ) or Big Six ( Lee and Ashton, 2004 ).

or psychological situations, data-driven lexical studies have proposed

imited dimensionality ( Parrigon et al., 2017 ; Rauthmann et al., 2014 ).

ecently, in behavioural domain categorization of human actions have
2 
lso been proposed ( Thornton and Tamir, 2022 ). For two reasons, these

stablished taxonomies are suboptimal for studying social perception as

hole. First, these taxonomical studies base their results on question-

aires regarding social situations or rated similarities of different words

escribing social situations instead of the actual perception of social

ituations in real-life dynamic environment. Second, since the three ele-

ents (person, situation, and behaviour) are intimately linked, it would

e sensible to study them together. Therefore, we selected a large set of

eatures from the person, situation, and behaviour domains, collected

erceptual ratings for these features from the stimulus used in this neu-

oimaging study and then limited the social perceptual space of the stim-

lus with clustering analysis. 

.1. The current study 

In this fMRI study, we mapped the perceptual and neural represen-

ations of naturalistic social episodes using both univariate and multi-

ariate analyses ( Fig. 1 ). We used short movie clips as stimuli because

inema contains rich and complex social scenarios and as it also elic-

ts strong and consistent neural responses in functional imaging studies

 Hasson et al., 2010 ; Lahnakoski et al., 2012 ). We first aimed at es-

ablishing a perception-based taxonomy of the social dimensions that

uman observers use for describing social scenarios, and then mapped

he brain basis of this social perceptual space. We mapped the percep-

ual space of social processes based on subjective annotations of a large

rray of social features ( n = 112) in the movies ( n = 96). We then used

imension reduction techniques to establish the representational space

f social perception, and to reduce the multidimensional space into a

imited set of reliable perceptual dimensions of social features. Using a

ombination of univariate regression analysis and multivariate pattern

nalysis we established that posterior temporal and occipital regions

re the main hubs for social perception and that brain shows a gra-

ient in social perceptual processing from broadly tuned but spatially

imension-specific responses in posterior temporal and occipital regions

owards more selective responses in frontal and subcortical areas. 

. Materials and methods 

.1. Participants 

Altogether 102 volunteers participated in the study. The exclusion

riteria included a history of neurological or psychiatric disorders, alco-

ol or substance abuse, BMI under 20 or over 30, current use of medica-

ion affecting the central nervous system and the standard MRI exclusion

riteria. Two additional subjects were scanned but excluded from fur-

her analyses because unusable MRI data due to gradient coil malfunc-

ion. Two subjects were excluded because of anatomical abnormalities

n structural MRI and additional three subjects were excluded due to vis-

ble motion artefacts in preprocessed functional neuroimaging data. This

ielded a final sample of 97 subjects (50 females, mean age of 31 years,

ange 20 – 57 years). All subjects gave an informed, written consent and

ere compensated for their participation. The ethics board of the Hos-

ital District of Southwest Finland had approved the protocol and the

tudy was conducted in accordance with the Declaration of Helsinki. 

.2. Neuroimaging data acquisition and preprocessing 

MR imaging was conducted at Turku PET Centre. The MRI data

ere acquired using a Phillips Ingenuity TF PET/MR 3-T whole-body

canner. High-resolution structural images were obtained with a T1-

eighted (T1w) sequence (1 mm 

3 resolution, TR 9.8 ms, TE 4.6 ms,

ip angle 7°, 250 mm FOV, 256 × 256 reconstruction matrix). A to-

al of 467 functional volumes were acquired for the experiment with

 T2 ∗ -weighted echo-planar imaging sequence sensitive to the blood-

xygen-level-dependant (BOLD) signal contrast (TR 2600 ms, TE 30 ms,

5° flip angle, 240 mm FOV, 80 × 80 reconstruction matrix, 62.5 kHz
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Fig. 1. Analysis stream from data acquisition and processing to the univariate regression analysis, multivariate pattern analysis and intersubject correlation analysis. 
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andwidth, 3.0 mm slice thickness, 45 interleaved axial slices acquired

n ascending order without gaps). 

The functional imaging data were preprocessed with fMRIPrep

 Esteban et al., 2019 ) (v1.3.0), a Nipype ( Gorgolewski et al., 2011 )

ased tool that internally uses Nilearn ( Abraham et al., 2014 ). During

he preprocessing, each T1w volume was corrected for intensity non-

niformity using N4BiasFieldCorrection (v2.1.0) ( Tustison et al., 2010 )

nd skull-stripped using antsBrainExtraction.sh (v2.1.0) using the OA-

IS template. Brain surfaces were reconstructed using recon-all from

reeSurfer (v6.0.1) ( Dale et al., 1999 ), and the brain masque estimated

reviously was refined with a custom variation of the method to rec-

ncile ANTs-derived and FreeSurfer-derived segmentations of the cor-

ical grey-matter of Mindboggle ( Klein et al., 2017 ). Spatial normaliza-

ion to the ICBM 152 Nonlinear Asymmetrical template version 2009c

 Fonov et al., 2009 ) was performed through nonlinear registration with

he antsRegistration (ANTs v2.1.0) ( Avants et al., 2008 ), using brain-

xtracted versions of both T1w volume and template. Brain tissue seg-

entation of cerebrospinal fluid, white-matter and grey-matter was per-

ormed on the brain-extracted T1w image using FAST ( Zhang et al.,

001 ) (FSL v5.0.9). 

Functional data were slice-time-corrected using 3dTshift from

FNI ( Cox, 1996 ) (v16.2.07) and motion-corrected using MCFLIRT

 Jenkinson et al., 2002 ) (FSL v5.0.9). These steps were followed by

o-registration to the T1w image using boundary-based registration

 Greve and Fischl, 2009 ) with six degrees of freedom, using bbregis-

er (FreeSurfer v6.0.1). The transformations from motion-correction,

oregistration, and spatial normalization were concatenated and ap-

lied in a single step using antsApplyTransforms (ANTs v2.1.0) us-

ng Lanczos interpolation. Independent-component-analysis-based Au-

omatic Removal Of Motion Artifacts (ICA-AROMA) was used to de-

oise the data nonaggressively after spatial smoothing with 6-mm Gaus-

ian kernel ( Pruim et al., 2015 ). The data were then detrended using

40-s-Savitzky–Golay filtering to remove the scanner drift ( Cukur et al.,

013 ), and finally downsampled to original 3 mm isotropic voxel size.

he BOLD signals were demeaned to make the regression coefficients
 w  

3 
omparable across different individuals ( Chen et al., 2017 ). First and

ast two functional volumes were discarded to ensure equilibrium ef-

ects and to exclude the time points before and after the stimulus. 

.3. Stimulus 

To map brain responses to different social features, we used

ur previously validated socioemotional “localizer ” paradigm that

llows reliable mapping of various social and emotional func-

ions ( Karjalainen et al., 2017 , 2019 ; Lahnakoski et al., 2012 ;

ummenmaa et al., 2021 ). The experimental design and stimulus se-

ection has been described in detail in the original study with this setup

 Lahnakoski et al., 2012 ). Briefly, the subjects viewed a medley of 96

ovie clips (median duration 11.2 s, range 5.3 – 28.2 s, total dura-

ion 19 min 44 s) that have been curated to contain large variability

f social and emotional content. The videos were extracted from main-

tream Hollywood movies with audio track in English. To limit experi-

ent duration, a subset of 87 of the previously validated 137 clips were

elected. 71 of these clips contained people in various social situations

nd contexts (one person: 15, two people: 22, more than two people:

4). To distinguish person perception from other audiovisual percep-

ion, the stimulus contained four clips with animals and 12 control clips

ithout people (showing e.g. scenery and objects). Additionally, nine

rotic scenes showing heterosexual intercourse were added to broaden

he emotional content of the original stimuli. Short descriptions about

ovie clips can be found from Table SI-1 . Because this task was de-

igned to map neural processing of naturalistic socioemotional events,

he clips were not deliberately matched with respect to, for example,

uman motion or optic flow. The videos were presented in fixed order

cross the subjects without breaks to allow the brain synchronization

nalyses between subjects (see section 2.11). Subjects were instructed

o view the movies similarly as if they were viewing a movie at a cin-

ma or at home and no specific task was assigned. Visual stimuli were

resented with NordicNeuroLab VisualSystem binocular display. Sound

as conveyed with Sensimetrics S14 insert earphones. Stimulation was
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ontrolled with Presentation software. Before the functional run, sound

ntensity was adjusted for each subject so that it could be heard over the

radient noise. 

.4. Stimulus features 

We collected ratings for 112 predefined social features (see Table

I-2 ) from the movie clips. We selected a broad range of socioemotional

eatures describing persons, social situations and behaviours from fol-

owing categories: sensory input (e.g. smelling, tasting), basic bodily

unctions (e.g. facial expressions, walking, eating), person characteris-

ics (e.g. pleasantness, trustworthiness) and person’s inner states (e.g.

leasant feelings, arousal), social interaction signals (e.g. talking, com-

unicating with gestures) and social interaction characteristics (e.g.

ostility, sexuality). Collecting perceptual ratings from a large set of in-

ividual social features enables reliable mapping of the whole social per-

eptual space that can be derived from the stimulus movie clips and en-

ures that the data-driven dimensionality arises from the used stimulus.

t was stressed to the observers that they should rate the perceived fea-

ures of the social interaction rather than the observer’s own inner states

such as emotions evoked by the movies). The ratings were collected sep-

rately for each video clip in short time intervals (median 4.0 s, range:

.1 – 7.3 s). Features were annotated in a continuous and abstract scale

rom “absent ” to “extremely much ”. For analyses the ratings were trans-

ormed to continuous scale from 0 (absent) to 100 (extremely much).

nnotators watched the video clips altogether 12 times, rating an aver-

ge of 10 features on each viewing to reduce the cognitive load. The rat-

ngs were done using an online rating platform Onni ( http://onni.utu.fi)

eveloped at Turku PET Centre ( Heikkilä et al., 2020 ). 

.5. Feature reliability 

We first evaluated whether the a priori features were frequently

nd consistently perceived in the stimulus movies. Features with low

ccurrence rate and/or inter-rater reliability were excluded, because

) high occurrence rate is needed to reliably estimate the stimulus-

ependant variation in BOLD signal, and ii) high inter-rater reliability

s necessary to study brain activity in a sample of participants inde-

endent from the raters. The occurrence rate was defined as the num-

er of time points where the mean rating (minus standard error of the

ean) over the annotators exceeded 5 (on a scale ranging from 0 to

00, 5% of the slider length). Features were included in the analyses

f they occurred at least five times throughout the experiment; this

as estimated to yield sufficient statistical power in the BOLD-fMRI

LM analyses. Inter-rater reliability of the features was assessed us-

ng intra-class correlation coefficient (ICC) as calculated in the R pack-

ge psych ( https://cran.r-project.org/package = psych ). ICC(A,1) was se-

ected as appropriate model for ICC since it treats both video clips and

aters as random effects and measures the absolute agreement between

aters ( McGraw and Wong, 1996 ). ICCs below 0.5 are considered poor

 Koo and Li, 2016 ), thus we only included features with ICC over 0.5.

 total of 45 features satisfied both criteria. The occurrence rate and

nter-rater reliability of each feature are shown in Figure SI-1 . 

.6. Reliability check for the social feature annotations 

Dynamically rating 112 social perceptual features from 96 movie

lips is extremely laborious (28 672 individual rating decisions). The

eliability of online data collecting platforms have also been questioned

 Webb and Tangney, 2022 ), thus we chose to recruit local subjects to

he laboratory for doing the annotations. The decision ensured that the

euroimaging subjects and annotators belong to the same population

nd that we could ensure that the annotators adhered to the instructions.

oreover, the fMRI analysis only focused on the social features that

ere perceived most coherently (based on ICC) between the raters. Prior
4 
igh-dimensional annotation studies have also used similar annotator

ools ( Huth et al., 2012 ). 

To further ensure the reliability of our ratings from a small subject

ool, we also compared the average perceptual ratings of our five an-

otators with an independent, significantly larger dataset collected for

nother study using the same stimulus deck. In this dataset we col-

ected ratings for a subset of the reliable social features in the cur-

ent study (33 out of 45) from the majority of the movie clips (87

ut of 96). These annotations were collected only once for each video

lip instead of shorter intervals used for generating the fMRI stimulus

odel. The validation data were collected using online platform Pro-

ific ( https://www.prolific.co/ ) and included ten ratings for each social

eature in each video clip. This dataset contained ratings from 1096

articipants (one participant annotated only few social features and few

ovie clips). The correlation of the population average ratings over all

3 social features between local and online data collection was high

 r = 0.78, p < 0.05, range: 0.60 – 0.97) confirming that social features

ith high ICC are perceived similarly between people. Hence, only five

nnotations were sufficient, and these independent annotations could

e used to model the brain activity of the neuroimaging subjects. 

.7. Dimension reduction of the social perceptual space 

The reliable 45 features were linearly correlated ( Fig. 2 ) and it is

nlikely that each social feature is processed in different brain regions

r networks. We performed dimension reduction with hierarchical

lustering on the correlation matrix of selected features to define the

erceptual dimensions that characterize different aspects of social

nteraction. Clustering was chosen over principal component analysis

or easier interpretation of the dimensions, because it is likely more

ensitive than principal component analysis (PCA) in finding perceptu-

lly important social features, or their combinations, that do not share a

arge proportion of variance with other social features. Initially we chose

earson correlation as the similarity measure because the co-occurrence

f features measured in abstract and possibly not strictly continuous

cale is more interesting than the absolute distance between them (con-

idered in PCA). Unweighted pair group method with arithmetic mean

UPGMA), as implemented in R, was used as the clustering algorithm

 https://www.rdocumentation.org/packages/stats/versions/3.6.2/ 

opics/hclust ). Other average linkage clustering methods implemented

n the R package (WPGMA, WPGMC and UPGMC) yielded highly similar

lustering hierarchy. Hierarchical clustering requires a desired number

f resulting clusters as an input for automatic definition of cluster

oundaries from hierarchical tree ( Figure SI-2 ). To estimate the opti-

al number of clusters we chose three criteria that the clustering result

hould satisfy. These were cluster stability, theoretically meaningful

lustering, and sufficient reduction in collinearity between the clusters.

o assess the stability of clusters we conducted a consensus cluster-

ng analysis with ConsensusClusterPlus R package ( Wilkerson and

ayes, 2010 ). Theoretically meaningful clustering was then assessed,

nd collinearity was measured using Pearson correlation and variance

nflating factor (VIF). Detailed information of the cluster analysis and

onsensus clustering results can be found in Supplementary Materials

see also Figure SI-3 ). Cluster analysis grouped social features into six

lusters and seven independent features not belonging to any cluster

 Fig. 2 ) and these social dimensions formed the final model for social

erception. The cluster regressors were created by averaging across the

ndividual feature values in each cluster ( Figure SI-4 ). 

.8. Modelling low-level sensory features 

Our goal was to map perceived social dimensions in the human

rain. The stimulus clips were not balanced with respect to their

ow-level audiovisual properties, thus these were controlled statistically

hen estimating the unique contribution of social dimensions to the

OLD signal. We extracted 14 different dynamic audiovisual properties

http://onni.utu.fi
https://cran.r-project.org/package=psych
https://www.prolific.co/
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/hclust
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Fig. 2. The results of the hierarchical clustering of reliably rated social features. The correlation matrix is ordered based on hierarchical clustering, and clustering 

results ( k = 13) are shown. The analysis suggested that the social perceptual space of the stimulus can be reduced to six clusters and seven individual features. 
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rom the stimulus movie clips including six visual features (luminance,

rst derivative of luminance, optic flow, differential energy, and spatial

nergy with two different frequency filters) and eight auditory features

RMS energy, first derivative of RMS energy, zero crossing, spectral

entroid, spectral entropy, high frequency energy and roughness). Optic

ow was estimated with opticalFlowLK -function with basic options

 https://www.mathworks.com/help/vision/ref/opticalflowlk.html ). 

ustom functions were used for estimating the other visual features (see

ode availability). Auditory features were extracted using MIRTool-

ox1.8.1 ( Lartillot et al., 2008 ). First eight principal components (PCs)

xplaining over 90% of the total variance were selected as regressors

or low-level audiovisual features. As the stimulus movie clips included

ontrol clips with no human interaction, we created a “nonsocial ” block

egressor by assigning a value of 1 to the time points where the stimulus

id not contain people, human voice, or animals. A low-level model

as formed by combining the eight audiovisual PCs, the nonsocial

egressor and subjectwise mean signals from cerebrospinal fluid (CSF)

nd white matter (WM). See Figure SI-5 for correlations between

ow-level features and social dimensions. 
5 
.9. Univariate regression analysis of social perceptual dimensions 

.9.1. Overview of the regression analysis 

Ridge regression ( Hoerl and Kennard, 1970 ) was used to estimate

he contributions of the low-level features and cluster-based composite

ocial dimensions to the BOLD signals for each subject. Ridge regres-

ion was preferred over ordinary least squares (OLS) regression because

ven after dimension reduction, the social regressors were moderately

orrelated (range: − 0.38 – 0.32) and we wanted to include all percep-

ual dimensions in the same model to estimate their unique contribu-

ions to the BOLD signals. We also wanted to avoid overfitting while

etaining generalizability of the results. To conservatively control for

ow-level features, the demeaned BOLD signals were first predicted with

he low-level model and the residual BOLD signals were then used as in-

ut in the following regression analysis with the social stimulus model

see Fig. 1 ). The low-level regressors were still included as nuisance co-

ariates in the analysis of social dimensions for the possible interaction

etween the social dimensions and low-level features. In both consecu-

ive analyses ridge parameter was optimized using leave-one-subject-out

https://www.mathworks.com/help/vision/ref/opticalflowlk.html
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ross-validation. Prior to statistical modelling the regressor time series

ere convolved with the canonical HRF and the columns of the design

atrices were standardised ( 𝜇 = 0, 𝜎 = 1). 

.9.2. Ridge regression optimization 

Optimization of ridge penalty for each voxel separately could have

ielded in large differences in the penalty parameters values throughout

he brain thus making it more difficult to interpret the regional differ-

nces in the results. Thus, we selected an unbiased sample of grey matter

oxels for the optimization by randomly sampling 20% ( ∼5000) of grey

atter voxels uniformly throughout the brain. Only voxels within pop-

lation level EPI mask where the population level probability of grey

atter was over 0.5 were available for sampling. Detailed description

f ridge regression modelling is included in supplementary materials

 Figure SI-6 ). 

.9.3. Statistical inference in the regression analysis 

For the social perceptual model, the regression analysis was run both

t voxel-level and at region-of-interest (ROI) level. The population level

PI mask was used in all analyses to include only voxels with reliable

OLD signal from each subject and thus brain areas including parts of or-

itofrontal, inferior temporal and occipital pole areas were not included

n the analyses. In voxel-level analysis, subject-level 𝛽-coefficient-maps

ere subjected to group-level analysis to identify the brain regions

here the association between intensity of each social dimension and

aemodynamic activity was consistent across the subjects. Voxels out-

ide the population level EPI mask were excluded from the analysis. Sta-

istical significance was identified using the randomise function of FSL

 Winkler et al., 2014 ). Voxel-level FDR with q-value of 0.05 was used

o correct for multiple comparisons ( Benjamini and Hochberg, 1995 ).

natomical ROIs were extracted from AAL2 atlas ( Rolls et al., 2015 ).

OIs with at least 50% of voxels outside the population level EPI mask,

ere excluded from the analysis and only voxels within population level

PI mask were considered for the included ROIs. This resulted in inclu-

ion of 41 bilateral ROIs into the analysis. A parametric t-test on the 𝛽-

eights of a ROI was used to assess statistical inference across subjects.

OI-analysis results were considered significant with p-value threshold

f 0.05 Bonferroni corrected for multiple comparisons. The results for

OI analyses are reported as union of bilateral ROIs. 

.10. Multivariate pattern analysis of social perceptual dimensions 

.10.1. Overview of the multivariate pattern analysis 

To reveal the regional specialization in processing of different social

eatures, between-subject classification of 11 perceptual dimensions 1 

as performed in Python using the PyMVPA toolbox ( Hanke et al.,

009 ). The aim of the classification analysis was to complement univari-

te regression analysis by testing whether the human brain expressed

egional specificity for distinct social dimensions. This approach was

ased on classification of discrete social dimensions from brain activity,

ather than computationally more complex approach to predict actual

alues of multiple social predictors simultaneously based on brain activ-

ty. The classification was performed by i) first labelling each time point

ith only one social label, ii) then splitting the stimulus into time win-

ows and fitting general linear models separately for different social

abels within each time window and iii) finally running the between-

ubject classification on the subject level beta images labelled with so-
ial dimensions. 

1 Dimensions “Male ” and “Female ” were excluded from classification, because 

nlike the rest of the dimensions, they are genuinely binary features and thus 

ot comparable with the other dimensions in the implemented classification 

ramework (see Figure SI-4 ). 

h  

u  

o  

p  

s  

t

6 
.10.2. Discrete social labelling for each stimulus time point 

For discrete classification from mixed signal, only one dimension la-

el for each time point (each TR) could be given. For the continuous

ignal, the currently most salient category is not always unambiguous,

ecause more than one social feature could be present simultaneously

nd salient changes in social information may attract more attention

 “Somebody starts crying ”) than those occurring frequently ( “People are

alking ”). To resolve this issue, we first normalized the dimension rating

ime series ( 𝜇 = 0, 𝜎 = 1) and then, for each time point, chose the feature

ith the highest Z-score as the category label for that time point ( Figure

I-7 ). To ensure that the included time points would be representative

f the assigned categories, we chose only time points where Z-scores

or the chosen dimension were positive. This procedure ensured that

ach time is labelled with representative category and that infrequently

ccurring social information is weighted more than constantly present

ategories. 

.10.3. Time window selection and general linear modelling before 

lassification 

Classifying every time point separately would not be adequate since

ingle EPI scans are noisy and it cannot be assumed that adjacent time

oints assigned with the same label would be independent from each

ther. Accordingly, we split the data into 29 time windows and all time

oints with the same label within a time window were considered as

 single event of that class. The number of time windows was selected

ased on the response length of canonical HRF ( ∼30 s). Over 30 second

ime windows would be less dependant from each other than shorter

ime windows while the data would contain enough events for classi-

cation. The time window boundaries were adjusted so that adjacent

ime points with the same label would not be interspersed to different

ime windows because temporal autocorrelation of adjacent time points

ay yield in artificial increase in the classification accuracy. After ad-

ustment, the average time window length was 39 s (range: 34 s – 49 s).

he time windows were longer than the movie clips and therefore time

oints from different clips with similar social context could be judged as

ne event if they belong to the same time window. Altogether the data

onsisted of 87 events (Events: using an object: 16, communication: 15,

ntisocial behaviour: 11, feeding: 10, walking: 9, sexual & affiliative be-

aviour: 8, body movement: 5, crying: 4, play: 4, running: 3 and search-

ng: 2). 75 out of the total 87 events (86%) included only adjacent time

oints and the mean length of the events was ∼12 s. For generating

nput for between-subject classification an ordinary least squares (OLS)

LM without covariates was fit to the normalized ( 𝜇 = 0, 𝜎 = 1) residual

OLD time series (confound-controlled data) for each subject and each

vent. These subject-level beta-images and their social labels were used

s input for the classifier (see Fig. 1 ). 

.10.4. Classifier algorithm and cross-validation method 

A neural network (NN) model ( https://scikit-learn.org/stable/

odules/generated/sklearn.neural_network.MLPClassifier.html ) was

rained to classify the perceptual dimensions using leave-one-subject-

ut cross-validation, where the model was trained on the data from

ll except one subject and tested on the hold-out subject’s data; this

rocedure was repeated N times so that each subject was used once as

he hold-out subject. Such leave-one-subject-out cross-validation tests

he generalizability of the results across the sample of the subjects.

he analysis was performed using whole brain data (with non-brain

oxels masked out) and regional data using anatomical ROIs. In the

hole-brain analysis, an ANOVA feature selection was applied to the

raining set within each cross-validation and 3000 voxels with the

ighest F-score were selected. The regional MVPA was first performed

sing data form all voxels within a region. To control for the effect

f ROI size to the classification accuracy the regional MVPA was also

erformed with an ANOVA feature selection where the size of the

mallest ROI (lateral orbitofrontal cortex, 119 voxels) was selected as

he number of features for the feature selection. 

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
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.10.5. Classifier hyperparameter tuning 

Hyperparameters of the NN algorithm were optimized within a lim-

ted set of predefined hyperparameter values in the whole brain analy-

is. Hyperparameter values reflecting the best prediction accuracy with

cceptable runtime were used in both full brain and ROI analyses (see

able SI-3 for hyperparameter tuning). The optimized NN included two

idden layers with 100 nodes in each (alpha = 1.00, max_iter 500, other

yperparameters set to default). In the model learning process, the or-

er of events was shuffled in each training iteration which minimized

he model’s ability to learn the order of the events in the stimulus. A

upport vector machine (SVM) classifier had similar classification accu-

acy in the whole brain analysis, but NN model was chosen because the

omputation time was shorter and the variance of classification accu-

acies between subjects were lower with NN model compared to SVM

lassifier. 

.10.6. Outcome measures of the classification analysis and statistical 

ignificance testing 

Classification accuracy was quantified by computing the propor-

ion of correctly classified events relative to the total number of events

i.e., recall). To estimate the null distribution, the following proce-

ure was repeated 500 times: we 1) randomly shuffled social class la-

els; 2) ran the whole-brain MVPA with 97 leave-one-subject-out cross-

alidations, where the classifier was trained on the data with shuf-

ed labels from N-1 subjects and tested on data with correct labels

rom the remaining subject; and 3) calculated the classification accu-

acies on each of the 500 iterations. The null distribution estimation

as computationally prohibitive as one iteration took approximately

ne hour, and we decided that 500 iterations would be sufficient to as-

ess the statistical significance of our findings. If the true accuracy was

arger than 99% of the accuracies obtained with the randomly shuf-

ed labels, the true accuracy was considered significant with an al-

ha of 0.01. We cannot assume that the null distribution of classifi-

ation accuracies for each class is equal and centre around the naïve

hance level because the number of events is unbalanced between

lasses. For this reason, we only report if the total accuracy of the

lassification is statistically significant. In the whole-brain classification

e also report the precision of the classifications which is the num-

er of correct predictions for a class divided by the total number of

redictions into that class. In ROI analyses, the statistical differences

etween regional classification accuracies were tested using paired t-

ests between subjectwise classification accuracies between each pair of

egions. 

.11. Intersubject correlation analysis 

Watching movies synchronizes brain activity between different indi-

iduals particularly in the occipital, temporal, and parietal regions of the

rain and the synchronization of brain activity can be quantified with

ntersubject correlation (ISC) analysis ( Hasson et al., 2004 ). As the only

ariable factor in the experiment is the time-varying audiovisual stim-

lus, ISC analysis captures the shared stimulus-dependant activation in

he brain. It is well known that ISC is greatest on the sensory cortices,

ut an important yet unresolved question is which variables drive the

egree of synchronization of BOLD response. Some prior studies suggest

hat emotions and top-down perspectives play a role ( Lahnakoski et al.,

014 ; Nummenmaa et al., 2014 ), but the role of social features remains

nknown. As a post hoc analysis, we assessed whether the regional differ-

nces in brain response profiles for social dimensions relate to the inter-

ubject response reliability of BOLD response. To this end, we calculated

he ISC across subjects over the whole experiment and compared the

egional ISC with the results from regression and MVPA analyses. ISC-

oolbox with default settings was used for ISC calculations ( Kauppi et al.,

014 ). 
7 
. Results 

.1. How people perceive the social world? 

A total of 45 out of the 112 social features had sufficient inter-rater

eliability and occurrence rate (see Figure SI-1 ). Hierarchical cluster-

ng identified six clusters that were labelled as “antisocial behaviour ”,

sexual & affiliative behaviour ”, “communication ”, “body movement ”,

feeding ” and “play ”. Seven perceptual dimensions did not link with any

luster and were analysed separately. These dimensions were “using an

bject ”, “crying ”, “male ”, “female ”, “running ”, “walking ” and “search-

ng ”. Fig. 2 shows the clustering of the dimensions. Median pairwise cor-

elation between any two of the 13 dimensions was 0.02 (range: − 0.38

0.32) and the maximum variance inflation factor (VIF) in the design

atrix excluding nuisance covariates was 3.3 (male regressor) while the

edian VIF value was 1.3. These diagnostics indicate that regression co-

fficients for the dimensions will be stable in linear model estimations,

nd they could thus be included in the same model. See Figure SI-4 for

isualized time series of social dimensions and Figure SI-5 for correla-

ions matrices for low-level features and social dimensions. 

.2. Cerebral topography of social perception 

Regularized ridge regression was used to establish the full-volume

ctivation patterns for the 13 perceptual social dimensions ( Fig. 3 ). So-

ial information processing engaged all brain lobes and both cortical

nd subcortical regions. Robust responses were observed in occipital,

emporal, and parietal cortices ( Fig. 4 ). There was a clear gradient in

he responses, such that posterior temporal, occipital and parietal re-

ions showed the strongest positive association with most of the social

imensions, with significantly less consistent activations in the frontal

obes and subcortical regions. Yet, frontal, and subcortical activations

ere also observed for some dimensions such as sexual & affiliative be-

aviour, antisocial behaviour, and feeding. 

In ROI analysis, broadly tuned responses for social dimensions were

bserved in STG and MTG with strongest responses for communication

nd antisocial behaviour, respectively. In parietal lobe, all regions ex-

ept angular gyrus and paracentral lobule responded to a wide range

f perceptual dimensions. In frontal regions the associations between

ocial dimensions and haemodynamic activity were less consistent than

n more posterior regions, yet still statistically significant in some of

he regions including IFG, cingulate cortex and precentral gyrus. Most

onsistent frontal effects were found for sexual & affiliative and antiso-

ial behaviour. For subcortical regions the observed associations were

enerally weak. Most notable subcortical associations with perceptual

imensions were seen in amygdala and thalamus. Consistent negative

ssociations were restricted to occipital lobe and were observed for com-

unication, crying, body movement and running. 

.3. Cerebral gradients in social perception 

Fig. 5 a shows the cumulative brain activation maps for all 13 per-

eptual dimensions. There was a gradient in the regional selectivity for

ocial dimensions. Posterior temporal and occipital cortices as well as

arietal cortices responded to most social dimensions, while responses

ecome more selective in the frontal cortex although IFG, precentral

yrus and the frontal part of the medial superior frontal gyrus (SFG) had

ome consistency in their response profiles. Because the same stimulus

as used across the subjects, we hypothesized that the brain activation

n the areas with the broadest response profiles would be temporally

ost synchronized across subjects. We thus calculated the ISC of brain

ctivation over the whole experiment ( Fig. 5 b ) and correlated the re-

ional ISC values with corresponding response selectivity values (i.e.

umber of social features resulting in significant activations in each re-

ion). Scatterplot in Fig. 5 c shows the association between ISC and cor-
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Fig. 3. Brain regions showing increased BOLD activity for the social dimensions. Results show the voxelwise T-values (FDR-corrected, q = 0.05) of increased BOLD 

activity for each social dimension from the multiple regression analysis. The results are also visualized on inflated cortical surfaces in Figure SI-8 . 
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esponding brain response selectivity for perceptual dimensions (Pear-

on r = 0.86). 

.4. Multivariate pattern analysis 

Finally, we trained a between-subject neural network model to de-

ode presence of perceptual social dimensions from the spatial haemo-

ynamic activation patterns to reveal which social dimensions are con-

istently represented in each cerebral region. Whole brain classifica-

ion was performed in 3000 voxels that passed through the ANOVA

eature selection. Most of the selected voxels ( Fig. 6 a ) localized into

emporal (STG, MTG, Heschl gyrus and superior temporal pole), oc-

ipital (calcarine and lingual gyri, cuneus, FG, superior occipital gyrus

SOccG), middle occipital gyrus (MOccG) and inferior occipital gyrus

IOccG)) and parietal cortices (supramarginal, superior parietal gyrus

SPG) and inferior parietal gyrus (IPG)). The permuted chance level

or the total classification accuracy in the whole brain analysis was

.128 which is above naïve chance level ( 1 11 ≅ 0.09). At the whole

rain level, the NN model was able to classify all 11 social dimen-

ions significantly above chance level with the total classification ac-

uracy of 0.52 ( p < 0.01). Classification accuracies/precisions for each

ocial dimension were: walking: 0.49/0.51, using an object: 0.53/0.50,

earching: 0.70/0.69, running 0.56/0.62, sexual & affiliative behaviour

.45/0.48, play 0.53/0.51, feeding 0.46/0.48, crying 0.46/0.51, com-

unication 0.55/0.55, body movement 0.52/0.50 and antisocial be-

aviour 0.55/0.53 ( Fig. 6 a ). 

The classification was also performed within anatomical ROIs

 Fig. 6 b ). Most accurate classifier performance was observed in lingual

yrus (0.34, p < 0.01), calcarine gyrus (0.33, p < 0.01), cuneus (0.29, p

 0.01), SOccG (0.29, p < 0.01), MOccG (0.27, p < 0.01), STG (0.27, p <

.01) and MTG (0.25, p < 0.01). Although the prediction accuracies were

tatistically significantly above permuted chance level for each ROI, the
8 
radient in brain responses for social perception was also observed in

he classification accuracies so that highest accuracy was observed in

ccipital and temporal areas, followed by parietal cortices and frontal

nd cingulate cortices. Lowest accuracies were found in the subcorti-

al regions. ( Fig. 6 b ). We also validated that this gradient was not an

rtefact stemming from the sizes of the ROIs, as similar gradient was ob-

erved in the regional classification with ANOVA feature selection lim-

ted to the number of voxels in the smallest ROI ( Fig. 6 c ). Figure SI-9

hows the statistical differences of the classification accuracies between

ll pairs of ROIs confirming the observed gradient in classification accu-

acies. Occipital and temporal areas (excluding temporal pole) showed

ignificantly higher classification accuracy than frontal and subcortical

egions. 

.5. Relationship between classification accuracy and ISC 

Regional classification accuracy and ISC were positively correlated

Pearson r = 0.85, Fig. 7 a ). Most occipital regions, STG and MTG showed

igh synchrony (ISC > 0.1) and high classification accuracy (acc > 0.25).

ost parietal regions showed average ISC and average classification ac-

uracy while frontal and subcortical regions showed low ISC and low

lassification accuracies. The most notable exception to this pattern was

eschl gyrus which had high ISC (0.28) yet average classification accu-

acy (acc = 0.22). Fig. 7 b summarizes the results from separate regres-

ion, ISC and classification analyses where the findings overlap most in

emporal and occipital cortices. 

. Discussion 

Our findings provide the currently most detailed map of the social

erceptual mechanisms in the human brain using naturalistic stimuli.
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Fig. 4. Regional results from the multiple regression analysis. The heatmap shows T-values for regression coefficients for each ROI and social dimension. Statistically 

significant ( p < 0.05, Bonferroni-corrected for each dimension independently) ROIs are marked with an asterisk. 
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T  
he behavioural data established that 13 social dimensions reliably cap-

ure the social perceptual space contained in the video stimulus. The

erebral topography for social perception was organized along an axis,

here posterior temporal and cortical regions served a central general-

urpose role in social perception, while the regional selectivity for social

imensions increased towards frontal and subcortical regions. Multivari-

te pattern recognition established that particularly occipito-temporal

nd parietal regions carry detailed and spatially dimension-specific in-

ormation regarding the social world, as evidenced by the highest classi-

cation accuracies in the multi-class classification approach. Both clas-

ification accuracy and consistency of the responses for specific social

imensions were the highest in the brain regions having most reliable

indicated by ISC) activation patterns throughout the experiment. These

ffects were observed although low-level sensory features were statisti-

ally controlled for. Altogether these results show that multiple brain

egions are jointly involved in representing the social world and that

ifferent brain regions have variable specificity in their spatial response

rofiles towards social dimensions. 

.1. Dimensions of social perception 

The behavioural experiment established that the observers used con-

istently a set of 45 descriptors when evaluating the social contents of

he movies. Dimension reduction techniques further revealed that these

5 features could be adequately summarized in 13 social dimensions.

he largest clusters were organized along the valence dimension of the

ocial interaction containing sexual & affiliative (e.g., kissing, touching,
9 
exuality) versus antisocial (hurting others, yelling) behaviors indicating

 close link between emotion and social interaction. Social communica-

ive behaviors (e.g., eye contact, talking) and body movements (e.g.,

aving, moving a foot) also formed large clusters. Play-related behav-

ors (laughing, playfulness) as well as feeding-related actions (e.g., tast-

ng, eating) were also represented into smaller clusters. Notably, some

eatures such as presence of males versus females, walking, and using

bjects remained independent of any of the clusters. Average hierarchi-

al clustering algorithm was used because it yields clearly interpretable

lusters and because feature similarity could be measured with correla-

ion instead of absolute distance. Further research could establish how

ehavioural clusters found with hierarchical clustering relate to, for ex-

mple, principal components off the same data and how the clusters

eneralize to other naturalistic stimuli. 

The stimulus movie clips cannot portray all possible social scenarios

nd Hollywood movies are only a proxy of real-life social interaction.

till, 99 of the predefined 112 social features had sufficient occurrence

ate in the stimulus video clips ( Figure SI-1 ) which indicate that the

timulus contains a broad range of social information. The average du-

ation of movie clips was ∼10 s and we acknowledge that this timescale

oes not allow examination of social processes occurring at slower tem-

oral frequencies such as pair bonding and long-term impression for-

ation. However, social perception can be astonishingly fast. Semantic,

ocial, and affective categorization may happen in few hundred millisec-

nds ( Nummenmaa et al., 2010 ) and the judgements do not significantly

hange from the initial judgments after longer consideration ( Willis and

odorov, 2006 ). Electroencephalography (EEG) has also confirmed reli-
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Fig. 5. (a) Cumulative activation map for social dimensions. Voxel intensities indicate how many social dimensions (out of 13) activated the voxel statistically 

significantly (FDR-corrected, q = 0.05). White lines indicate the localizations of major gyri. (b) Significant ISC (FDR-corrected, q = 0.05) across subjects over the 

whole experiment (c) Scatterplot showing the association between regional ISC values and tuning for social perceptual dimensions. ISC is plotted in Y-axis and the 

X-axis shows the number of social dimensions (out of 13) associated significantly with the BOLD response. Regional values are calculated as the average over all 

regional voxels. CARET software ( Van Essen, 2012 ) was used for mapping results from ICBM 152 Nonlinear Asymmetrical template version 2009c space to the 

flatmap surface. 
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Fig. 6. Results from the multivariate pattern analysis of social dimensions. (a) Whole brain classification accuracies and the voxels used in the whole brain classifi- 

cation analysis (based on ANOVA feature selection). (b) Regional classification accuracies compared with the whole brain classification accuracy (the righmost black 

bar). The permuted chance level accuracy (acc = 0.128) is shown as a horizontal line. The mean prediction accuracy was significantly ( p < 0.01) above the chance 

level accuracy in the whole brain analysis and for each region-of-interest. (c) Regional classification accuracies using only 119 voxels (the size of the smallest region) 

with the highest F-scores as input for the classifier. 
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ble associations between social perceptual features and brain response

lready 400 ms after the stimulus ( Dima et al., 2022 ) concluding that

hort video clips can capture some temporal scales of social perception.

owever, the temporal resolution of fMRI is limited to the TR of the

canner (2.6 s in this study) and the social features were rated in approx-

mately 4 second time intervals. Therefore, our study do not measure in-

tantaneous brain responses for perceptual social features. Additionally,
11 
he haemodynamic response ( ∼ 30 s) is longer than the average length

f the movie clips, but the convolution of the predictors accounts for the

elayed response. 

Data-driven models for characterising social perception

 Adolphs et al., 2016 ) constitute an important and complemen-

ary alternative for the theory-based models for separate taxonomies of

erson, situation, and action perception since i) the clusters observed in
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Fig. 7. (a) Scatterplot showing the relationship between regional ISC and classification accuracy. (b) Additive RGB map summarizing the main findings. The overlap 

between activation patterns for perceptual dimensions in regression analysis is shown as blue (areas where at least 3 dimensions expressed FDR-corrected brain 

activation). Significant (FDR-corrected, q = 0.05) ISC across subjects is shown as red and the ANOVA selected voxels for the whole brain classification are shown as 

green. 
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ur data are based on the actual perception of the social context, ii) the

ata-driven model does not separate persons, situations, and actions

nd is based on the subjects’ net percept of the stimulus and iii) only

imensions actually present in the stimulus are considered. Importantly,

his data-driven model for social perception has many similarities with

reviously proposed taxonomies. The largest observed clusters (sexual

 affiliative and antisocial behaviour) closely relate to the emotional

alence which is at the core of human emotions ( Russell, 1980 ) and is

lso considered in taxonomies describing persons ( Simms, 2007 ) and

ituations ( Parrigon et al., 2017 ; Rauthmann et al., 2014 ). Clusters

ertaining to play and feeding closely relate to dimensions “humour ”

rom situation taxonomy ( Parrigon et al., 2017 ) and “food ” from

ction domain ( Thornton and Tamir, 2022 ), respectively. Mapping

f the neural space for social perception requires the social features

o be consistently rated amongst the independent set of annotators.

1 of the total 112 rated social features showed low between-rater

greement (ICC < 0.5, Figure SI-1 ) which is an important finding in

tself regarding the consistency of the perceptual taxonomy individuals

se for describing social events. The exclusion of these features had the

ffect that more abstract, or idiosyncratically judged dimensions cannot

e addressed in this experiment and pushed the studied perceptual

rocesses towards action and situation domains. Further research

hould nevertheless investigate the shared versus idiosyncratic social
12 
valuations across individuals, as this would be informative regarding

hat are the core building blocks of the social environment that are

hared across most observers. 

.2. Cerebral gradient in social perception 

The univariate BOLD-fMRI analysis based on social dimensions re-

ealed that a widely distributed cortical and subcortical networks en-

ode the social contents of the video stimuli. Most dimensions activated

OTC, STS, TPJ, as well as other occipitotemporal and parietal regions.

here was a gradual change from these unselective social responses in

ccipitotemporal and parietal regions towards more selective responses

n frontal and subcortical regions, suggesting that social perception is

ainly processed in lateral and caudal parts of the brain. This effect

as also confirmed by the ROI analysis. Most consistent responses were

bserved in all occipital regions and in temporal regions STG and MTG

which outline STS) and Heschl gyrus. In parietal cortex, most consistent

esponses were observed in supramarginal gyrus (a part of TPJ), SPG and

recuneus. The responses were less consistent in frontal cortex, although

rain activity in IFG, precentral gyrus and frontal part of medial SFG as-

ociated with a limited number of dimensions including sexual & affilia-

ive behaviour, antisocial behaviour, feeding and using an object. These

ata are consistent with previous univariate studies addressing social
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unctions for LOTC ( Downing et al., 2001 ; Lingnau and Downing, 2015 ;

urm and Caramazza, 2019 ; Wurm et al., 2017 ), STS ( Deen et al., 2015 ;

sik et al., 2017 ; Lahnakoski et al., 2012 ; Walbrin et al., 2018 ), TPJ

 Carter and Huettel, 2013 ; Saxe and Kanwisher, 2003 ), and MFC ( de la

ega et al., 2016 ). The results were controlled with an extensive set of

CA rotated audiovisual features. A non-social regressor was also built

rom the stimulus time points where no social interaction was present,

nd this feature was added to the low-level model. The fMRI data were

ollected in one scan, hence ruling out the possibility to control for low-

evel features by cross-validation across scans. Therefor the separation

f social perceptual features from all possible low and mid-level fea-

ures is not possible. However, higher-level information such as body

arts and actions have already been shown to associate with BOLD re-

ponse better than low-level visual features in occipital cortex outside

1 ( Tarhan and Konkle, 2020 ). Additionally, it has been shown that so-

ial features of actions explain more variance of EEG responses to videos

han low-level visual features ( Dima et al., 2022 ) further supporting the

onclusion that the results reflect social information processing rather

han low-level audiovisual perception. 

.3. Decoding of perceptual social dimensions from brain activation 

atterns 

The univariate analysis revealed the overall topography and regional

revity of the tuning for different social signals. However, this analy-

is cannot determine whether a single anatomical region activated by

ultiple social dimensions reflects responses to shared features across

ll the dimensions (such as biological motion perception or intention-

lity detection; Allison et al., 2000 ; Nummenmaa and Calder, 2009 ),

r spatially overlapping yet dimension-specific processing. Multivari-

te classification analysis revealed that the answer to this question de-

ends on the region. The ANOVA feature selection for the whole-brain

lassification retrieved voxels from STS, LOTC, TPJ and FG ( Fig. 6 and

ig. 7 ) yielding classification accuracy exceeding 50% for the multi-class

lassification. Regional classification confirmed that occipital, tempo-

al and parietal regions showed average to high classification accura-

ies, whereas the classification accuracies diminished towards chance

evel in frontal and subcortical regions. These results show that even if

he regional univariate responses for social dimensions were overlap-

ing, the specificity of the spatial activation patterns was different be-

ween regions. Interestingly, the ANOVA selected voxels found to best

iscriminate social features closely resemble the network proposed for

ocial aspects of human actions in a recent study ( Tarhan and Kon-

le, 2020 ) with the exception that our results are more bilateral. Pre-

ious multivariate studies have also shown that individual social fea-

ures are represented in these regions. For example, specific response

atterns to pictures of faces versus animals, houses or man-made ob-

ects can be found in FG and LOTC ( Haxby et al., 2001 ) and semantic

nformation from different human actions judged from static images are

epresented in LOTC ( Tucciarelli et al., 2019 ). Subsequent classification

tudies have shown that, for example, different facial expressions can

e classified from activation patterns in FG, and STS ( Said et al., 2010 ;

egrzyn et al., 2015 ) and goal-orientated actions in LOTC and interior

arietal lobe ( Smirnov et al., 2017 ; Wurm and Lingnau, 2015 ). Impor-

antly, our results show that BOLD-fMRI can be used for classification

f multiple overlapping event categories from continuous naturalistic

timulation. Previous multivariate pattern analyses of social categories

ave used block designs and categorical stimuli matching the a priori cat-

gory labels. In addition, these studies have only focused on a certain

etailed aspect of socioemotional processing. The present results thus

nderline that even with high-dimensional naturalistic stimulus, the re-

ponse properties of certain brain areas show high degree of category

pecificity. 

The results from the classification analysis complement the results

rom the regression analysis with some limitations. To minimize the

utocorrelation between successive events while preserving sufficient
13 
umber of events for classification the data were split into 29 time win-

ows and the time points with the same social label were combined as

ne social event within each time window. The time window approach

n combination with the Z-score method for labelling each time point

plit the data into clearly consecutive events (86% events included only

djacent time points) rather than dispersed the social labels within the

ime window. The mean duration of the events was ∼12 s. These findings

ndicate that this data-driven approach split the data into representative

ocial events that could be used as input for classification. Nevertheless,

he capability of this event generating method is dependent on the tem-

oral dynamics of the stimulus and the time window length should be

djusted accordingly at the same time limiting the temporal closeness

etween two events with the same label. The results are an important

rst proof of concept for this type of category classification during nat-

ralistic and uninterrupted perception. 

The video clips were shown in the same order for all subjects, which

ay artificially boost classification accuracy, although the model should

ot learn the actual order of the events since the data were shuffled in

ach learning iteration. Regardless, the observed differences in classi-

cation accuracies in different brain regions should not be due to the

rder of the stimulus which is more interesting than the actual classifica-

ion accuracies. It is likely that people focus attention in the most salient

ocial details in the stimulus movies instead of continuously monitor-

ng for multiple sources of information with possibly low importance.

ence, we chose a classification approach where each time point was

abelled with the social dimension of the highest relative intensity in-

tead of trying to predict the values of all social features simultaneously.

uture studies could aim to predict multiple intensities from multiple

ategories in the stimulus set. Due to naturalistic and uncontrolled stim-

li the classification dataset was unbalanced. Even in regions with near

hance level total accuracy, some classes with large number of events

ere classified with relatively high accuracy ( Figure SI-10 ) which may

eflect the differences in the number of events in these classes and might

ot reflect the actual social information processing in the brain. Conse-

uently, regional differences in the prediction accuracies to individual

lasses cannot be addressed. 

.4. Reliability versus specificity of responses to social perceptual 

imensions 

We observed robust intersubject correlation of brain activity in tem-

oral and occipital regions while subjects viewed the video clips. Previ-

us studies have found that the ISC is in general the strongest in sensory

egions, and it progressively becomes weaker towards the polysensory

nd associative cortices ( Hasson et al., 2010 ). Regional ISC has been

hown to depend on features such as emotions conveyed by the film

 Nummenmaa et al., 2012 , 2014 ). The spatial ISC patterns also depend

n the structure of the narrative presented in the stimulus. Structured

lms with clear plot result in significantly larger ISC than unstructured

ideos that merely contain social signals ( Hasson et al., 2010 ). Our data

evealed that the strength of the ISC was contingent on the number

f social features each region responded to in the univariate analysis

 r = 0.86, Fig. 5 c ) and regional ISC was also associated with the corre-

ponding regional classification accuracy ( r = 0.85, Fig. 7 a ). These data

ighlight the relevance of the social domain to the cortical information

rocessing, as the consistency of the regional neural responses was as-

ociated with the brevity of the tuning for social signals in each region.

n other words, regions responding to multiple social signals also do so

n a time-locked fashion across subjects. Importantly, this effect was not

ust an artefact of the consistency of sensory cortical responses to social

ignals but was also observed in higher-order associative areas including

OTC and STS. The results indicate that social perception is a key fac-

or in synchronizing brain responses across individuals, supporting the

dea that “mental resonance ” underlies mutual understanding of social

nvironment and supports the centrality of social interaction in human

rain function ( Hari et al., 2015 ). 
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.5. Functional organization of social perception networks in the human 

rain 

The regional response profiles towards social signals can be sum-

arized based on the combination of the regional response consistency

univariate regression analysis), the spatial response pattern specificity

MVPA) and the reliability of the BOLD signal across subjects (ISC). First,

osterior temporal and occipital regions responded consistently to most

ocial dimensions, while the presence of specific social dimensions could

lso be classified accurately from these regions. High classification ac-

uracy suggests that these regions already hold dimension-specific and

ntegrated information regarding the social world. Additionally, these

egions responded consistently to the social stimuli (as indicated by

igh ISC) across subjects. LOTC, STS, TPJ, FG and occipital regions thus

onstitute the most fundamental hubs for social perception in the hu-

an brain and are likely involved in integration of the multisensory

nformation and semantic representations regarding the social events

 Allison et al., 2000 ; Lahnakoski et al., 2012 ). 

Second, Heschl gyrus, the site of the auditory cortex ( Da Costa et al.,

011 ), responded consistently to social dimensions but the classifica-

ion accuracy was only moderate in that region while the ISC of the

esponse was the highest of all regions. This suggests that Heschl gyrus

rocesses domain-general social (most likely auditory) information but

oes not carry detailed information about the distinct social dimensions,

s evidenced by the relatively low classification accuracy in the region.

hird, parietal regions especially precuneus, supramarginal gyrus and

PG showed consistent responses with numerous social dimensions and

et their ISC and classification accuracies were only moderate. Previ-

usly, precuneus has been linked with attention and memory retrieval

 Cavanna and Trimble, 2006 ), supramarginal gyrus with phonological

 Hartwigsen et al., 2010 ) and visual ( Stoeckel et al., 2009 ) process-

ng of words, and SPG in visuospatial processing and working mem-

ry ( Koenigs et al., 2009 ). These parietal regions thus likely respond to

ome general features of the social signals or idiosyncratic brain states

ssociated with social dimensions. 

Frontal and subcortical regions responded only to a limited num-

er of social dimensions, and classification accuracy and ISC remained

ow. The regression analysis showed some consistency in IFG, precentral

yrus, the frontal part of the medial SFG, amygdala and thalamus, yet

he classification accuracies remained low. MFC has previously been as-

ociated with higher-level social and affective inference such as linking

ocial processing with decision making, affective processing and theory

f mind ( Amodio and Frith, 2006 ; de la Vega et al., 2016 ). However,

revious classification studies have not found specificity for responses

o social perceptual dimensions in the frontal cortex ( Haxby et al., 2001 ;

osterhof et al., 2012 ; Wegrzyn et al., 2015 ; Wurm and Lingnau, 2015 ).

hus, frontal areas may subserve higher-order social process by linking

ow-level social perception into more complex and abstract cognitive

rocesses such as making predictions of the next actions or linking per-

eption with the brain’s affective system. Indeed, there is evidence that

FC could be responsible in giving affective meaning for the ongoing ex-

eriences and that MFC processing is highly idiosyncratic ( Chang et al.,

021 ). Limbic regions such as amygdala and thalamus in turn have been

inked with processing of (negative) emotions ( Karjalainen et al., 2019 )

nd accordingly, they showed reliable responses primarily to percep-

ion of antisocial behaviours. Finally, frontal regions and thalamus have

een associated with felt, but not perceived emotions while general so-

ial hubs TPJ, STS, and LOTC associated with both perceived and felt

motions establishing distinction between emotion perception and emo-

ional experience in the human brain ( Saarimaki et al., 2023 ). 

The present study focused on the functional organization of social

erception. Still, passive observation is different from active engage-

ent in social interaction. Recently, this difference between spectator

ccounts versus truly interactive models of neural basis in social cog-

ition has been highlighted and researchers are increasingly interested

n measuring real interactive social processes in the brain ( Redcay and
14 
chilbach, 2019 ). An important yet challenging future question would

hus be mapping the organization of the building blocks of active social

nteraction in the human brain. 

. Conclusions 

Using a combination of data-driven approaches and multivariate pat-

ern recognition we established the perceptual space for social features

nd mapped the cerebral topography of social perception that can be

dequately described with 13 perceptual dimensions. Social perceptual

pace of the video stimuli included clusters of social features describing

exual & affiliative and antisocial behaviour, feeding, body movement,

ommunication, and playfulness, as well as individual dimensions male,

emale, running, walking, searching, crying, and using an object. Clear

radient in response selectivity was observed from broad response pro-

les in temporal, occipital and parietal regions towards narrow and se-

ective responses in frontal and subcortical regions. Perceptual social

imensions could be reliably decoded from regional activation patterns

sing multivariate pattern analysis. Both regression analysis and multi-

ariate pattern analysis highlighted the importance of LOTC, STS, TPJ

nd FG and other occipitotemporal regions as dimension-specific so-

ial information processors, while parietal areas and Heschl’s gyrus pro-

ess domain-general information from the social scenes. Additionally,

egional response profiles for social perception closely related to the

verall reliability of the BOLD responses. Altogether these results high-

ight the distributed nature of social processing in the brain as well as

he spatial specificity of brain regions to social dimensions. 
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