Second level analysis of fMRI

Severi Santavirta

PhD Candidate / Turku PET Centre

Theoretical framework of the group analysis

Multiple comparisons problem

Non-parametric tests

Region-of-interest (ROI) analysis

Whole brain analysis / voxel-level analysis

Temporal Johe	Temporal Pole Superior	
	Heschl	•
remporar ione	Temporal Superior	
	Temporal Middle	•
	Occipital Inferior	•
	Occipital Middle	•
	Occipital Superior	•
Occipital John	Lingual	
Occipital lobe	Calcarine	•
	Cuneus	•
	Fusiform	•
	Parietal Superior	*
	Parietal Inferior	
	Supramarginal	
	Rolandic Operculum	
Parietal lobe	Precuneus	
	Angular	
	Paracentral Lobule	
	Postcentral	
	Precentral	
	Supplementary Motor Area	
	Cingulate Posterior	•
	Cingulate Middle	•
	Cingulate Anterio	•
	Frontal Superior	
Eroptal John	Frontal Superior Medial	
Frontal lobe	Frontal Middle	
	Frontal Inferior Triangular	
	Frontal Inferior Operculum	
	Frontal Inferior Orbital	
	Orbitofrontal Posterior	
	Orbitofrontal Lateral	
	Olfactory	
	Parahippocampal	•
	Hippocampus	
	Insula	•
Subcortov	Amygdala	
Subcortex	Thalamus	
	Pallidum	
	Caudate	
	Putamen	

Theoretical framework of the group analysis

Multiple comparisons problem

Non-parametric tests

One sample *t*-test

$$t = \frac{\beta - 0}{\sigma / \sqrt{n}}$$

- β = mean beta coefficient ober subjects
- $\sigma ~=~ SD~(\sqrt{Var})$
- $n = sample \ size$

Sources of variation in fMRI (or hair length)

Var^W = within-subject variance Var^B = between-subject variance

(Poldrack, Nichols, & Mumford, 2011)

Fixed effects model

Mixed effects model

Var^w

Variance used in the analysis

Var^w + Var^B

Describe study sample only

Generalize to population

Combine repeated measures within subjects

Group analysis of fMRI

Summary statistics approach (mixed effect model)

First-level statistical parametric maps

Population level results

One sample t-test

- H: Brain activity is associated with the study condition somewhere in the brain, (beta /= 0)
- Significance of each voxel is tested independently
- Contrast
 - Main effect
 - Condition1 Condition2
- Covariates of interest [0 1] or [0 -1]
- Nuisance covariates [10]

Two sample t-test

- H: Brain activity different bewteen two groups of subjects (beta1 /= beta2)
- Group1 > Group2 with nuisances
 - [1-100]
 - "Whether males have increased brain response for the condition when we control age and BMI of the subjects"

Theoretical framework of the group analysis

Multiple comparisons problem

Non-parametric tests

Multiple comparisons correction methods

(Review: Lindquist & Mejia, 2015)

Voxelwise multiple comparisons correction

- Family-wise error rate (FWER) (Lindquist & Mejia, 2015)
 - Probability of making one or more false positives
 - Bonferroni correction
 - "There is a 5% propability of making at least one false positive finding"
 - 0.05 / number of tests = corrected p-value threshold
- False discovery rate (Benjamini & Hochberg, 1995)
 - "No more than 5% of our findings are false positives"

Cluster-extend based correction (Lindquist & Mejia, 2015)

- Accounts for the spatial dependency between voxels
- "What is the probability to observe a activating cluster of this size under the null hypothesis of no activation"
- Three-step procedure
 - Choose primary voxel-level threshold e.g. p < 0.001
 - 2. Choose minimum size of the cluster e.g. 50
 - 3. Control for FWER on a cluster level
- The approach may be problematic

Main effect

Statistics:	n-values a	adiusted f	or search	volume
JUALISLIUS	p-values a	aujusteu i	or search	voiume

set-leve	1		cluster-le	evel		peak-level							
р с		P _{FWE-co}	rr q _{FDR-cor}	r ^k e	p _{uncorr}	р _{FWE-co}	rr q _{FDR-co}	rr T	(Z _E)	p _{uncorr}			
9.000 10		0.000	0.000	453	0.000	0.014	0.507	14.69	5.04	0.000	48 -69	12	
						0.099	0.507	11.33	4.65	0.000	45 - 78	3	
						0.188	0.581	10.40	4.52	0.000	48 -72	-15	
		0.000	0.000	166	0.000	0.016	0.507	14.39	5.01	0.000	0 -24	27	
						0.242	0.581	10.06	4.46	0.000	-12 -51	27	
						0.593	0.581	8.91	4.27	0.000	0 -33	24	
		0.000	0.000	1011	0.000	0.019	0.507	14.10	4.98	0.000	12 -78	39	
						0.040	0.507	12.77	4.83	0.000	6 -81	51	
						0.061	0.507	12.06	4.75	0.000	3 - 78	9	
		0.000	0.000	202	0.000	0.296	0.581	9.79	4.42	0.000	66 - 39	45	
						0.296	0.581	9.79	4.42	0.000	57 - 27	24	
						0.425	0.581	9.32	4.34	0.000	57 - 33	30	
		0.000	0.000	57	0.000	0.536	0.581	9.03	4.29	0.000	-63 -30	24	
						0.999	0.606	7.34	3.94	0.000	-54 -27	45	
						1.000	0.824	5.45	3.43	0.000	-57 -33	33	
		0.000	0.000	68	0.000	0.764	0.581	8.61	4.21	0.000	-27 12	3	
						1.000	0.641	6.70	3.79	0.000	-30 3	3	
						1.000	0.719	6.05	3.61	0.000	-21 15	15	
		0.000	0.000	55	0.000	0.831	0.591	8.51	4.19	0.000	18 -66	-6	
						1.000	0.694	6.24	3.66	0.000	18 - 60	0	
						1.000	0.705	6.20	3.65	0.000	12 -72	-9	
		0.000	0.000	130	0.000	0.991	0.606	8.17	4.12	0.000	30 -60	57	

Main effect

Statistic	s: p-va	alues ad	juste	d for	search vo	olume							
set-level cluster-level						peak-level							
p c	P _{FWE-co}	rr q _{FDR-corr}	k _E	p _{uncori}	P _{FWE-cor}	$p_{\text{FWE-corr}} q_{\text{FDR-corr}} T$ (Z _E) p_{uncorr}							
1.000 3	0.000	0.000	18190	0.000	0.014	0.309	14.69	5.04	0.000	48	-69	12	
					0.016	0.309	14.39	5.01	0.000	Θ	-24	27	
					0.019	0.309	14.10	4.98	0.000	12	- 78	39	
	0.003	0.000	668	0.000	0.536	0.355	9.03	4.29	0.000	-63	-30	24	
					0.999	0.370	7.34	3.94	0.000	- 54	-27	45	
					1.000	0.503	5.45	3.43	0.000	- 57	- 33	33	
	0.893	0.253	163	0.013	1.000	0.490	5.60	3.48	0.000	-36	39	24	
					1.000	0.503	5.34	3.39	0.000	- 39	45	33	
					1.000	0.658	4.22	2.98	0.001	-24	42	33	

Threshold-free cluster enchancement (TFCE)

TFCE = h_p (voxelwise t-value) * e (amount of suporting voxels)

The voxelwise significance is adjusted by the amount supporting voxels Significance of each voxel is assessed with permutations and then corrected for multiple comparisons

(Smith & Nichols, 2009)

(randomise)

p<0.001,k=50

TFCE (randomise)

False negatives False positives

Conservative correction inflates effect size estimates

Theoretical framework of the group analysis

Multiple comparisons problem

Non-parametric tests

Non-parametric tests

- Motivation for non-parametric tests in group analyses (Eklund, Nichols, & Knutsson, 2016)
 - 1. Parametric tests may produce false positive findings in group level analyses after multiple comparisons corrections
 - 2. Voxelwise multiple comparisons methods may produce too conservative findings and cluster-based methods false positives
 - 3. Non-parametric tests have been shown to correct better for multiple comparisons.
- Tools for non-parametric tests
 - SnPM (Doc: https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/software/snpm)
 - FSL Randomise (Winkler, Ridgway, Webster, Smith & Nichols, 2014)
 - One and two sample (unpaired/paired) T-tests, repeated measures anova
 - Easy to output statsitical result maps with variuous differend multiple comparisons methods
 - Included TFCE method
 - Doc: <u>https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise</u>

References

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society Series B-Statistical Methodology*, *57*(1), 289-300. doi:DOI 10.1111/j.2517-6161.1995.tb02031.x

Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. *Proc Natl Acad Sci U S A, 113*(28), 7900-7905. doi:10.1073/pnas.1602413113

Lindquist, M. A., & Mejia, A. (2015). Zen and the art of multiple comparisons. *Psychosom Med*, 77(2), 114-125. doi:10.1097/PSY.0000000000000148

Poldrack, R. A., Nichols, T., & Mumford, J. (2011). Handbook of Functional MRI Data Analysis. *Cambridge: Cambridge University Press*. doi:10.1017/cbo9780511895029

Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. *Neuroimage*, *44*(1), 83-98. doi:10.1016/j.neuroimage.2008.03.061

Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. *Neuroimage*, *92*, 381-397. doi:10.1016/j.neuroimage.2014.01.060