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A B S T R A C T

Background: Successful delineation of lesions in acute ischemic strokes (AIS) is crucial for increasing the likeli-
hood of good clinical outcome for the patient.
New methods: We developed a fully automated method to localize and segment AIS lesions in variable locations
for 192 multimodal 3D-magnetic resonance images (MRI) including 106 stroke and 86 healthy cases. The method
works based on the Crawford-Howell t-test and comparison of stroke images to healthy controls. We then devel-
oped a classifier to discriminate the images into stroke or non-stroke categories following the lesion segmenta-
tion.
Results: The mean Dice similarity coefficient (DSC) for the test set was 0.50±0.21 (min-max: 0.07 to 0.83) and
mean net overlap was 0.66±0.18 (min-max: 0.22–1). The experimental results for the classification of strokes
from non-strokes showed mean accuracy, precision, sensitivity, and specificity of 73 %, 0.77 %, 84 %, and 69 %,
respectively.
Comparison with existing method: The performance of our methods is comparable with previously published ap-
proaches based on machine learning and/or deep learning lesion segmentation techniques. However, most of
the previously published methods have yielded low sensitivity, are computationally heavy, and difficult to inter-
pret. The present approach is a significant improvement because it does not require high computation power and
memory and can be implemented on a desktop workstation and integrated into the routine clinical diagnostic
pipeline.
Conclusions: The current method is straightforward, fast, and shows good agreement with the lesions identified
by human experts.

1. Introduction

Magnetic resonance imaging (MRI) and computed tomography (CT)
have a critical role in diagnosis, triaging and treatment of acute is-
chemic stroke (AIS) patients (Powers et al., 2018). CT imaging is the
preferred method for patients whose stroke occurred at most 6h be-
fore imaging (Powers et al., 2018). In patients with stroke onset from
6–24h before imaging, diffusion-weighted imaging (DWI) has been suc-
cessfully used to select patients for endovascular therapy in recent tri-
als (Albers et al., 2017; Nogueira et al., 2018). The AIS lesions need
to be quickly and accurately detected and their volumes must be es-
timated to triage patients for treatment. Diffusion restriction caused

by acute ischemia can be identified using DWI in minutes after onset
and DWI is thus considered the gold standard in ischemic core detection
(Vert et al., 2017). This restricted diffusion is visible as elevated DWI
and lowered apparent diffusion coefficient (ADC) values (Barber et al.,
1998).

Currently, lesion localization is done qualitatively and manually by
trained professionals (Fiez et al., 2000; Maier et al., 2015a,b). Man-
ual lesion segmentation may take up to 15min per case (Martel et al.,
2020) and it suffers from inter-operator variability and operator bias
(Gillebert et al., 2014; Mah et al., 2014; Neumann et al., 2009). It is
thus not optimal in acute stroke management. Automated approaches
could, in theory, eliminate inter-subject variability due to their repro
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ducibility and provide fast results for patient care, as well as facilitate
automatic analysis of large datasets (Maier et al., 2015a,b).

Recently there has been a growing interest in the automated analy-
sis of neuroradiological images, particularly on AIS lesion segmenta-
tion (Maier et al., 2015a,b, Cl’erigues et al., 2019; Perez Malla et
al., 2019; Bhanu Prakash et al., 2006; Tsai et al., 2014; Mohd Saad
et al., 2011; Menze et al., 2014; Gillebert et al., 2014; Chen et al.,
2017; Mah et al., 2014; Boldsen et al., 2018; Stamatakis and Tyler,
2005a; Kamnitsas et al., 2017; Winzeck et al., 2019; Subbanna et al.,
2019). The literature on automated and semi-automated stroke lesion
segmentation mainly refers to machine learning and neural network
methods (Chen et al., 2017; Dou et al., 2016; Mah et al., 2014; Perez
Malla et al., 2019; Guerrero et al., 2018; Subbanna et al., 2019; Winzeck
et al., 2019; Kamnitsas et al., 2017). Most of these methods have still
yielded low sensitivity, are computationally heavy and sometimes dif-
ficult to interpret. Currently, widely used commercial software named
RAPID uses fixed ADC threshold to segment acute stroke lesions from
DWI images with reasonably good results (Straka et al., 2010). Yet,
fixed-threshold-method is sensitive to artifacts like T2-blackout, where
short T2 values impact even ADC intensity, resulting in false positives
for methods relying solely on ADC intensity. Considering all the com-
plications related to the nature of this problem and complexity and in-
efficiency of the available methods, efficient automatic localization and
segmentation of these lesions is still an open challenge.

Here we developed a method, which takes into account both DWI
and ADC, to improve lesion segmentation by reducing the number

of false positives caused by fixed ADC thresholding method. The method
is based on the Crawford-Howell t-test and comparison of stroke im-
ages with healthy controls. In comparison with the computationally pro-
hibitive neural network based techniques, our approach imposes low
demands for CPU and memory, and can be implemented on an ordi-
nary computer to the routine clinical diagnostic pipeline in order to
avoid complications related to manual lesion segmentation. We exam-
ined the tendency of the method to make false positives by applying it to
non-stroke images (healthy controls). Consequently, we designed a clas-
sifier to filter out the real stroke cases from false positive (non-stroke)
cases. This filtration step is complementary to segmentation process and
plays an important role in reducing the number of false positives.

2. Methods

Our approach was based on three stages: 1) Image preprocessing, 2)
Automated lesion segmentation and parameters optimization step, and
3) Image classification based on the segmented lesions (Fig. 1). The ac-
curacy of the automated lesion segmentation was tested against manu-
ally delineated lesions drawn by human experts. We tested the tendency
of the method to make false positives by applying the automated lesion
segmentation method to healthy images. Finally, we trained a classifier
to distinguish strokes from non-stroke image masks and evaluated the
accuracy of the classifier.

Fig. 1. Overview of the analytic protocol.
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2.1. MR image collection and preprocessing

The study protocol was approved by the Hospital District of
South-Western Finland. Data (T1 and diffusion-weighted MR images)
were analyzed from 192 subjects including 106 patients with AIS and
86 healthy controls. The population included 116 males (mean age of
56.1 years) and 76 females (mean age of 54.5 years). A neuroradiologist
carefully screened patients to identify the true AIS cases. All the images
were acquired from the Turku University Hospital historical database.
For all subjects, the T1 and DW images were acquired on the same imag-
ing session. Images were anonymized prior to analysis. The images were
collected from Philips scanners (Philips Ingenia 3T) with the following
acquisition parameters: slice thickness: 2.5 or 4mm, slice spacing: 2.5
or 4mm, matrix size: 224/128×224/128×(30–50), pixel-size in x–y
plane: 1×1 or 2×2mm, field strength: 3T, percent phase field of view:
100 or 108, echo time: 85.5–98.78ms, repetition time: 3112–55091ms
and flip angle: 90°.

Prior to statistical analysis, the images were preprocessed using
SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) running on MATLAB
R2016b. First, the T1 and DW images were aligned using a rigid-ob-
ject transformation (Collignon et al., 1995). The T1-weighted images
were then spatially normalized via the unified segmentation method
(Ashburner and Friston., 2005) to a standard anatomical space from the
Montreal Neurological Institute (MNI-152). Spatial normalization was
crucial in our approach, because the proposed method compares voxels
intensities of a given individual to a population-derived distribution of
voxels intensities, and individual brains are highly different in terms of
size and shape. Accordingly, case and control images were transformed
into the common space (MNI) so that they were aligned with one an-
other. The obtained warps were then used for spatially normalizing the
DW images. All images were subsequently smoothed using an isotropic
Gaussian kernel to account for inaccuracies in normalization. Full width
at half maximum (FWHM) of 2−5mm was tested when optimizing the
segmentation parameters. Finally, voxels outside the brain were ex-
cluded (masking) as proposed by Abraham and coworkers (Ashburner
and Friston, 2005), so that extracranial signal would not confound the
analyses.

2.2. Automated lesion segmentation

Our primary endpoint was to develop a method to segment acute
infarct lesions automatically. The proposed method works by means of
a modified parametric t-test called Crawford-Howell, which is designed
for the comparison of a single case against a population of controls
(Crawford et al., 2009, 2011). In brief, the test assumes that the popula-
tion distribution of a variable (here MRI signal intensity in a particular
voxel in the healthy population), is known and follows a normal distri-
bution. Accordingly, it is possible to calculate how likely each observa-
tion is, and improbable events may signal the presence of lesions. The
output of this test are t-scores calculated as follows:

(1)

where x is the value for the individual voxel intensity, c⁠i is the value for
the i-th control voxels, and n is the number of control voxels.

Application of this test for the purpose of AIS lesion segmenta-
tion has been previously introduced on the CT images (Gillebert et al.,
2014). However, the presented method in this study mimics the cur-
rent golden-standard in DWI-based AIS lesions segmentation by human
operators. In this study, the lesion diagnosis is based on the co-occur-
rence of high-intensity signal on DWI and low-intensity signal on ADC

map. Accordingly, we applied the Crawford-Howell t-test separately to
the DWI and ADC images. Lesions were identified by thresholding the
t-scores produced by t-tests on DWIs and ADCs in high and low levels,
respectively. To reduce the number of healthy tissue voxels which were
identified as lesion by the algorithm (false positives), intensity of the
voxels selected by t-score thresholding were examined once again; if se-
lected voxels by t-scores thresholding were among the highest intensity
values of the individual’s DWI, these voxels were identified as lesion
otherwise as healthy tissue. In brief, voxels were identified as lesion if:
i) their intensity values were high on DWI and low on ADC compared to
healthy population distribution, and ii) the DWI-intensity within identi-
fied voxels was high relative to the individual’s DWI-intensity distribu-
tion. These thresholds (both t-scores thresholding and DWI-intensities)
were initially assessed empirically on a training set with 41 subjects.

2.2.1. Optimization of the automated method
A total of 3 parameters (thresholds) were optimized for the method;

t-scores from DWI, t-scores from ADC, and intensities of DWI. We de-
fined 8 parameter combinations (2 values for each parameter) of ini-
tially discovered thresholds that we thought could result the best. To
find out the best parameter combination among these, we divided our
data into a training and a test set. We explored different combinations
on the training set (41 stroke images) and calculated the spatial overlap
between automated and manually delineated lesion masks on this set of
data. The combination of parameters producing the best outcome was
selected. Next, we examined similarity scores for different smoothing
kernels including 2, 3, 4 and 5mm FWHM to see which FWHM yields
the best results. Finally, the performance of the method with optimized
parameters and selected FWHM was evaluated on an independent test
set (65 stroke cases) to quantify the generalizability of the method.

2.2.2. Lesion delineation by manual operators
The lesions were manually segmented by two researchers who were

first trained how to diagnose and segment the lesions by a neurora-
diologist (MN). The lesions were manually delineated using Carimas™
2.9 (Cardiac Image Analysis System) developed at the Turku PET Cen-
tre (available for download at www.turkupetcentre.net/carimasturku).
DWI and ADC images of each subject were orthonormalized and co-reg-
istered in Carimas. Both images were analyzed simultaneously
slice-by-slice axially for the lesion detection. The areas appearing bright
on DWI and dark on ADC were delineated as lesions. Finally, the man-
ually delineated lesion masks were spatially normalized to MNI space
using the transformations from the MR image normalization. Spatial
normalization was necessary because the automatic method works with
spatially normalized images and for the comparison of manually and
automatically created masks. The expert-delineated lesion masks served
as ground truth in this study and they were used to calculate the spa-
tial overlap with the automatically created lesion masks. To assess in-
ter-rater and intra-rater agreements, we randomly divided our data to
two parts (different from the first round division) and each operator de-
lineated the lesions on her part for the second time.

2.2.3. Validation of the automated lesion segmentation method
Three criteria were used to assess the performance of our lesion seg-

mentation method. First, we calculated Dice similarity coefficient (DSC).
The DSC metric measures the spatial overlap between the segmenta-
tions; the reference image (A) and estimated image (B) (Zou et al., 2004)
and is calculated as:

(2)

where ⃒A∩ B⃒ is the number of common voxels in images A and B and
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⃒A ⃒ and ⃒ B⃒ are the number A and B, respectively. DSC has a limited range
of [0,1], where DSC of 0 indicates no overlap between the images and
DSC of 1 indicates their perfect overlap. Consequently, higher DSC val-
ues correspond to the better match of the two segmentations (Zou et al.,
2004). DSC is sensitive to false positives. This is particularly problem-
atic when the lesion is small and only contains a few voxels (Chen et al.,
2017). Consequently, we also calculated net overlap based on the inter-
section of automated and manual lesion masks.
Net overlap = (3)

Net overlap essentially measures how well the method can segment
the lesions, without penalizing for false positives.

Finally, we calculated the detection rate (DR) of the lesions as de-
scribed by (Chen et al., 2017) as
DR=N⁠TP/N (4)
where N denotes the number of all the cases and N⁠TP is the number of
cases with any true positives (TP) lesion detection.

We also investigated how lesion size and contrast influence these
accuracy indices, with the expectation that large and/or high contrast
lesions would be more easily detected than small and/or low contrast
lesions. We measured the size of the expert-delineated lesion mask
(ground truth) volumes and calculated the correlation between volume
sizes and similarity scores. To evaluate the effect of contrast, we first
created mirror masks from manually drawn lesions and used those as
references. Reference masks were monitored and two cases with the ex-
pansion of the lesion in both hemisphere were excluded for this part
of the analysis. We calculated the average intensity of the both lesion
masks (I⁠lesion) and reference masks (I⁠ref). The ratio of the intensities
(I⁠lesion / I⁠ref) served as an indicator of the contrast of the individual le-
sions. Consequently, we calculated the correlation between intensity ra-
tios and similarity scores.

2.3. Image classification

Our secondary aim was to develop a classifier that could distin-
guish stroke cases from non-stroke ones. To this end, besides the 106
stroke cases, we applied our automated lesion segmentation method to
86 healthy MR images. Ideally, the method should not identify any vox-
els as an acute lesion in healthy humans, but in practice, the method
produces some false positives in non-stroke images. To refine the results
of the automated segmentation step, we developed a classifier to cat-
egorize stroke cases from non-stroke ones. As input, the classifier uses
the image masks created by the automated lesion segmentation method
from both stroke cases and healthy controls.

2.3.1. Feature extraction from image masks
We extracted several features from the image masks of both stroke

cases and non-stroke and fed them to the classifier. We expected that
signal intensity and geometry of the image masks could be used to clas-
sify the masks. Therefore, we made two main categories of features;
intensity-based features and geometric features. Intensity features in-
cluded mean, median, standard deviation, skewness, kurtosis and en-
tropy of the DW image mask’s intensities. Geometric features were
mainly image region properties such as area, centroid and bounding box
of the image masks (Legland et al., 2011).

2.3.2. Classifier algorithm, optimization and evaluation
The classifier was used to categorize the cases into either stroke

or non-stroke. We set up a support vector machine (SVM) classifier
with a linear kernel. To optimize the penalty parameter and to evalu-
ate the performance of the classifier, we applied nested cross-validation

(CV) (Cawley and Talbot, 2010). First, we split our data into four folds
(outer loop), run the inner cross-validation (four-folds) on three of the
folds (merged together) and evaluated the model on the fourth fold. This
was repeated four times so that every fold was used for testing once. In
this way, by inner loop, the optimal penalty parameter was assessed and
the independent testset from the outer loop was utilized to get an unbi-
ased estimation of the classifier performance. To examine the stability
of the method, the procedure was repeated over 30 iterations.

3. Results

Fig. 2 illustrates the segmentation algorithm applied on three differ-
ent patients. Fig. 2(A) shows the two corresponding inputs: DWI and
ADC variables. Fig. 2(B) shows the following preprocessing phase where
we applied spatial normalization, co-registration, and smoothing. Fig.
2(C) shows the resulting segmented lesions delineated by the experts
(red regions) and propose algorithm (blue regions). In Fig. 2(D), thresh-
old optimization is made by fine-tuning the statistical parameters. Fi-
nally, the overall overlap (DSC) between the expert and algorithm de-
lineated segmented regions is calculated (Fig. 2(E)).

The results of the DSC (overall overlap) and net overlap of the auto-
mated and manual lesion masks for the 8 different configurations (sets
of thresholds) are shown in Table 1. The third configuration yielded the
best net overlap (mean=0.59) and the eighth configuration resulted in
best DSC (mean=0.50) on the train set. Fig. 3 shows several examples
of lesion segmentation obtained by the third and eights configurations.
After finding the optimal configurations, we examined the results for
the smoothing values ranges from 2 to 5mm FWHM (Fig. 4(A)) in the
training set. In general, smoothed images with FWHM of 3mm yielded
the best results (DSC=0.50 and net overlap=0.61). Finally, we tested
the generalizability of the selected configurations and FWHM on an un-
seen test set (n=65). The average DSC on the test set was 0.50 (stan-
dard deviation=0.21) and mean net overlap was 0.66 (standard devia-
tion=0.18) (Fig. 4(B)).

The median volume of the lesions delineated by two readers for in-
ter-rater correlation analysis was 3.32 cm3, ranging from 0.19–82.59
cm3 (IQR: 15.29) and 5.89 cm3 for the lesions delineated by the same
operators two times for the intra-rater correlation analysis, range from
0.10–239.40 cm3 (IQR: 17.98). The inter-rater and intra-rater correla-
tions coefficient were 0.949 (P<0.001) and 0.996 (P<0.001), respec-
tively. However, volume-based method is not the optimal approach for
the similarity assessment of the lesion segmentation, because volume
discards the location information. For example, the lesion masks may
have similar volumes but different shapes. To further qualify the consis-
tency of the lesion delineations, we calculated the DSC between the le-
sion masks delineated on both rounds. This yielded a mean DSC of 0.77,
with standard deviation of 0.12. This analysis further suggests that the
manual lesion segmentation suffers from operator-bias and lack of re-
producibility.

The detection rate of our method in the test data was 100 %; mean-
ing that in all the stroke cases the method identified some true positives
(TP) with net overlap ranging from 0.13 to 1.

Fig. 5 shows the linear relationship between the spatial overlap met-
rics and the lesion size and/or intensity ratios. The Pearson correlation
coefficient between spatial overlap metrics and size of the lesion was
0.26 (P=0.007) for the DSC and 0.21 (P=0.034) for the net overlap.
The correlation coefficient between spatial overlap and intensity ratio
were also 0.42 (P<0.001) and 0.30 (P=0.002) for the DSC and net
overlap respectively.

The experimental results for the classification of strokes from
non-strokes showed mean accuracy, precision, sensitivity, and speci-
ficity of approximately 73 %, 77 %, 84 %, and 69 %.
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Fig. 2. The full segmentation algorithm with examples of DSC results on three AIS subjects. Panel (A) shows the input images (the DWI and the ADC images). Panel (B) shows the pre-
processed variables, including alignment, spatial normalization, co-registration of ADC and DWI, and image smoothing. Panel (C) illustrates lesion segmentation delineated by experts (red
regions) and statistical model (blue regions) overlaying the original DWI. Panel (D) shows the fine-tuned output by optimizing the thresholds. Finally panel (E) shows the segmentation
performance by DSC.

Table 1
Overlap metrics for different configurations on train set with images smoothed by Gauss-
ian filter with FWHM of 4mm.

Configuration

Percentile of
t-map on
DWI (%)

Percentile of
t-map on
ADC (%)

Intensity
of
DWI (%)

DSC
mean
(SD)

Net
Overlap
mean
(SD)

1 95 1 95 0.40
(0.19)

0.45
(0.18)

2 95 1 99 0.43
(0.18)

0.39
(0.19)

3 95 5 95 0.40
(0.22)

0.59
(0.20)

4 95 5 99 0.47
(0.21)

0.49
(0.20)

5 99 1 95 0.43
(0.17)

0.44
(0.19)

6 99 1 99 0.45
(0.18)

0.39
(0.19)

7 99 5 95 0.47
(0.21)

0.56
(0.19)

8 99 5 99 0.50
(0.19)

0.49
(0.20)

4. Discussion

We developed a fully automated lesion segmentation method, which
relies on diffusion restriction characteristics of the acute stroke images.
The methodology has proven to perform relatively well with the acute
stroke cases with combinations of MRI modalities, namely DWI and
ADC. The presented approach yielded good agreement with the expert
delineated lesions, and high accuracy in classifying stroke images from
non-stroke ones. One of the main advantages of our technique is that
it mimics the current gold standard manual lesion delineation by con-
sidering both DWI and ADC images (rather than only using a fixed
ADC threshold). Although our method does implement a thresholding
step, it is important to note that the threshold is not fixed. Instead,
it is population-derived approach which was fairly optimized through-
out this study. Despite modest hardware requirements, the performance
of our method is comparable with those obtained by GPU-dependent
deep learning methods (Perez Malla et al., 2019; Subbanna et al., 2019,
Clérigues et al., 2019, Boldsen et al., 2018), which may also be difficult
to interpret.

The performance of our method is comparable with the previous
studies, also with the state-of-the-art machine learning and/or deep
learning techniques. Accordingly, (Perez Malla et al., 2019), reported a
mean Dice similarity coefficient (DSC) of 0.34 by adapting a convolu
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Fig. 3. Examples of the manual and automated lesion segmentations. The first column shows the original DWI and the second column shows the manual delineation of the acute lesions.
The third and fourth columns demonstrate the results given by the proposed method with the third and eighth configurations, respectively. Panels A–C show cases where the algorithm
performs accurately, whereas panel D shows a subject where the segmentation works suboptimally due to variable lesion size, and lesions are partially missed.

tional neural network (CNN) pipeline including transfer learning and
data augmentation on 43 stroke patients, Subbanna et al. (2019) pro-
posed a Markov random field model based approach which revealed an
average DSC of 0.58 (tested on 151 multi-center datasets), and Boldsen
et al. (2018) suggested an automatic tree learning segmentation and re-
ported a median DSC of 0.61 on 108 patients. Recently, Cl’erigues et
al. (2019) and Kamnitsas et al. (2017) reported an average DSC of 0.59
and 0.66 (tested only on 30 stroke cases from Ischemic Stroke Lesion
Segmentation Challenge 2015) using a deep neural network frameworks
including conditional random field post processing, respectively.

Overall, cascade of convolutional neural networks seem to yield bet-
ter results for this purpose as, for example, (Chen et al., 2017) validated
a lesion segmentation framework consists of two convolutional neural
networks on DW images from 741 subjects which revealed a Dice co-
efficient of 0.67 in total. In a recent study, Winzeck et al. (2019) pre-
sented an ensemble of convolutional neural networks trained on multi-
parametric DWI, ADC, and low b-value-weighted images from 116 acute
stroke patients and achieved Dice scores up to 82.2 on a test set with
151 subject. Nonetheless, we believe direct and head-to-head compari-
son of these results would not be reasonable due to different datasets in
terms of sample size and lesion characteristics.
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Fig. 4. Overlap metrics of the lesion segmentation method with the proposed configurations (eighth configuration for the overall overlap and third one for the net overlap) for Gaussian
kernels with different FWHMs (from 2 to 5) on training set (A). Performance evaluation (net overlap and DSC) of the lesion segmentation method for the selected configuration and FWHM
on test set (B). Error bars indicate standard deviations.

Fig. 5. Correlation test between spatial overlap metrics, size of the lesions, and intensity ratio. The experimental results for the classification of strokes from non-strokes showed mean
accuracy, precision, sensitivity, and specificity of approximately 73 %, 77 %, 84 %, and 69 %.

We considered the impact of the image smoothing on the accu-
racy of lesion segmentation by applying Gaussian kernels with different
FWHMs (from 2 to 5) to our images. This was done because smooth-
ing the images with high FWHMs lowers the resolution and accord-
ingly small lesions (only a few voxels large) might not be identified. On
the other hand, the use of unsmoothed images or the ones smoothed
with a very low FWHM is not recommended for the group analysis be-
cause of the variations in brain anatomy among individuals. Our results
demonstrated that this method is robust to the FWHM used for smooth-
ing. However, slight smoothing (FWHM of 3) resulted in best segmen-
tation performance. This finding is close to what Gillebert and cowork-
ers (Gillebert et al., 2014) found in 2014 (FWHM of 5), but contrary

to that of Stamatakis and Tyler in 2005 (Stamatakis and Tyler, 2005b)
(FWHM of 8–12). However, as both studies commented, the size of the
smoothing kernel should be contingent on the size of the lesions that
need to be detected.

Our sample size was large and heterogeneous, with variable lesion
location, size, shape, and contrast. Consequently, it is difficult to de-
velop a method that works perfectly for all the cases. Accordingly, our
approach yields slightly variable accuracy from case to case, as can be
seen in Fig. 3(A–D). We found that lesion size and contrast affected
the performance of the segmentation model. Our method performed
better on larger lesions. This relationship may partly be explained by
the smoothing of the images which decrease the resolution and makes
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it more difficult to detect small lesions. This finding accords with pre-
vious observations (Gillebert et al., 2014; Perez Malla et al., 2019). Im-
age contrast also showed a positive correlation with the performance of
the method. Since this method works based on the detection of hyper
and hypo intensities on the DWI and ADC images respectively, it was
expected that sharper difference in intensities (contrast) between the le-
sion and healthy tissue lead to better performance of the method. Fu-
ture work with significantly larger and high contrast datasets could test
which lesion features are easiest to classify with the approach, allowing
fine-tuning of the protocol to accommodate more lesion subtypes.

In this study, we measured the detection rate. This metric does not
take the spatial overlap of the manual and automated masks into ac-
count. Instead, it examines if the method has been able to pinpoint the
location of the lesion, though it could not delineate the boundaries per-
fectly. Due to the high detection rate (100 %) of our method, it can be
used for automatic processing of DWIs in picture archiving and commu-
nication system (PACS) to alert the radiologist and clinicians if needed.
This may yield significant savings in radiologists’ workload, as poten-
tially lesion-containing images can be automatically flagged for prior-
itized human validation. Furthermore, the method can be accommo-
dated to the routine diagnosis pipeline of the hospitals for the initial
screening followed by supervision of clinicians to refine the automatic
segmentation. Finally, the method can be implemented in large-scale
neuroinformatics studies where large number of images essentially pre-
cludes human delineation approach. From practical point of view, this is
beneficial and could save time and energy for the clinicians and radiolo-
gist, as the algorithm can be used in conjunction with human operators
for pinpointing the suspicious sites likely containing lesions.

4.1. Limitations and future directions

Certain limitations of the study should be acknowledged. First, the
scope of this study was limited in terms of acute lesion segmentation.
The reason is that in subacute lesions diffusion restrictions – seen as
hyperintensity on DWI and hypointensity on ADC in the acute phase –
are already resolved. Another limitation of this study is that our frame-
work might be sensitive to DWI artifacts such as magnetic suscepti-
bility artifacts at air-bone interfaces and/or from blood products re-
sembling areas of restricted diffusion. In fact, these artifacts and in-
farcts pose similar imaging characteristics that can potentially lead to
false detection of true lesions. However, this issue is not only occurring
in intensity-based methods, such as current study, but also state-of-art
neural network-based methods have reported similar limitation (Bhanu
Prakash et al., 2006).

None of our optimization configurations were able to create lesion
masks by which a generalized high DSC is achieved for all the study
subjects. In fact, it was possible to individually optimize the configura-
tions to obtain high DSC between the automated and manually delin-
eated lesion masks, but having a fixed configuration that can lead to
best DSC for all the subjects seemed impossible. This lack of general-
izability might be due to the fact that MRI intensity values are usually
considered unbounded.

Furthermore, we found a number of inaccurate segmentations in the
border of the lesions, as shown in Fig. 3. This discrepancy, possibly due
to the spatial normalization, smoothing of the images, and different con-
trast of the images, has been remarked in the earlier studies (Gillebert et
al., 2014; Cl’erigues et al., 2019). Finally, manually segmented lesions
by human experts, which served as the golden-standard in this study,
may lead the model to include a systemic error in estimation of the le-
sion size (Ay et al., 2008; Campbell et al., 2010). Our automated seg-
mentation method revealed small lesions in several cases in which man-
ually drawn lesions failed to show (see Fig. 3, row D). However, as pre-
viously addressed by Boldsen et al. (2018), currently there is no substi-
tute to circumvent this problem.

The method could be further improved. For example, providing
more none-stroke images as a baseline may benefit the model decreas-
ing the number of false positives due to the differences in individual’s
brain anatomy; therefore, resulting in a more stable model. Having more
data for the model training might also reveal generalized and more opti-
mal configuration. Second, to circumvent the difficulties associated with
intensity-based methods, state-of-the-art methods (e.g. deep neural net-
works) could be applied to the data collected in this study. These meth-
ods mainly refer to the deep neural network (DNN) concept, which re-
quire a very large amount of data. In order to deal with the problem of
data insufficiency for these methods, one solution would be data aug-
mentation methods such as generative adversarial networks (GAN)(Yi et
al., 2018). Another solution is applying transfer learning by reusing a
model which is already trained by a large enough dataset (pre-trained
models). Transfer learning empowers to train DNN models with rela-
tively small datasets. An interesting future topic is to implement a mul-
ticlass classification set up to categorize stroke lesions into acute and
sub-acute or even more precisely into four groups including focal hem-
orrhage, extended hemorrhage, focal ischemic and extended ischemic.

5. Conclusions

Triaging AIS patients for treatment requires efficient detection and
segmentation of the AIS lesions. Manual lesion delineation on MRIs is
expensive in terms of time and effort. Therefore, computer-assisted le-
sion segmentation methods that can accelerate or replace manual lesion
delineation by experts are of interest. The current automated lesion seg-
mentation method showed good agreement with the expert delineated
lesions. The method is straightforward, fast, and does not require high
computing power and memory. We believe this is advantageous and al-
lows the technique to be implemented on an ordinary computer. How-
ever, further improvements and higher DSC are still desirable.
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