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1. Introduction 

1.1 Brain basis of social communication 

Social interaction is the cornerstone of human behavior. We convey our 
thoughts, emotions and actions to others with, for example, gestures, facial 
and vocal expressions. Human brain has evolved under the evolutionary pres-
sure that supported social interactions and is wired for processing of social 
information. Multiple studies have shown that the relative size of the neocor-
tex is expanded in humans versus other primates, and its volume correlates 
with indices of complexity of social behaviour (for reviews see Dunbar, 2003; 
Dunbar and Shultz, 2007). Species living in large groups face different social 
and cognitive demands than those living alone. To sustain group cohesion, 
individual group members must coordinate their behaviour with the other 
members of the group. This also requires being sensitive to potential conflicts 
and being able to predict how different social interactions develop (Dunbar 
and Shultz, 2007). 

The better we can predict the behaviour of our peers, the more successful our 
interaction with them will be. Hence, one of the key functions of the social spe-
cies’ brains is the ability to make predictions in context of social interaction 
(Frith, 2007). Social cognition requires rapid and accurate recognition of and 
response to social stimuli, maintenance of long-term representations of social 
relationship status with different individuals, as well as emotional appraisal of 
the behaviour of conspecifics (Adolphs, 2009). Consequently, in the human 
brain there exist dedicated systems for face perception (Haxby et al., 2000) 
and social perception in general (Adolphs, 1999; Frith and Frith, 2010). Fur-
thermore, some regions such as amygdala or posterior superior temporal sul-
cus (pSTS) may serve as higher-order “hubs” for social information processing 
(Lahnakoski et al., 2012a; Bickart et al., 2014). If we take a look at the meta-
analytic map of brain regions which were activated in studies under keyword 
“social”, we find that the regions included in that map are involved in various 
processes including conflict monitoring and resolution (ACC), memory (PCC), 
emotional processing (Amygdala) and others (Figure 1, based on the meta-
analytic database Neurosynth.org; Yarkoni et al., 2012) As multiple evidence 
shows, social processes are at the core of our behaviour and are supported by 
sophisticated brain network. 
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Figure 1. Brain regions mentioned in studies along the “social” keyword, extracted from Neuro-
synth.org database. The key areas include anterior and posterior cingulate cortex, insula, 
amygdala, pSTS, frontal and temporal poles and fusiform face area. 

While brain mechanisms supporting social perception, actions and emotions 
are understood increasingly well, the brain basis of actual social interaction 
remains poorly understood. For example, it is not known how social infor-
mation is exchanged between interacting individuals. Why is it sometimes so 
easy to understand the intentions, emotions and goals of individuals we inter-
act with, and sometimes there is a vast distance between us, and we can barely 
understand what the person is trying to communicate? Similarity of perspec-
tives and experiences enhance our ability to understand each other (Hari et al., 
2016). It is easier to understand others, who read the same books, empathize 
with us and feel similar emotions. It could be speculated that if we would in-
teract with an exact copy of ourselves, mutual understanding could be perfect 
because our own mental states would map exactly to mental states of our car-
bon-copy-interlocutor. Indeed prior research has shown that similarity in 
mental states is associated with similarity of neural activity (Hasson et al., 
2004; Hasson et al., 2012), suggesting that such neural similarity might sup-
port social communication. 

Verbal communication and observation of other's behavior are the key 
means to infer the thoughts, emotions, goals and intentions of our peers, yet 
the neural substrate of these processes in interaction remains unresolved. In 
the studies presented here, we investigated the brain basis of social communi-
cation from three different perspectives: action understanding, speech com-
prehension and emotional interaction. The overall theme we addressed in 
these studies concerned the role of similarity of brain activity in efficient social 
communication between individuals. 

1.2 Studying brain function under naturalistic settings 

Our brains have evolved in complex and dynamic world. It is thus not surpris-
ing that more complex, naturalistic stimuli, similar to what we experience in 
our normal everyday life, trigger stronger and more reliable cortical responses 
than highly controlled and simplified stimuli traditionally used in neuroimag-
ing experiments (Fox et al., 2009; Schultz et al., 2013). Laboratory experi-
ments have however most often utilized highly controlled stimulation models, 
where majority of spontaneous, variable aspects of human perception and / or 
behaviour are removed, and therefore allowing scrutiny of isolated functions 
and systems. It however remains unresolved whether models based on such 
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simplified stimuli accurately represent the brain functioning when applied to 
realistic human social behaviour (Felsen and Dan, 2005). Social psychological 
phenomena are often impossible to fit into a fully controlled stimulus envi-
ronment as they span multiple time scales (Hasson et al., 2008) and overlap-
ping features (Lahnakoski et al., 2012a). Constructing a model that could ex-
plain a complex social process is prohibitive and alternative data driven ap-
proaches had to be developed. 

Recent methodological developments in signal analysis and experimental de-
signs have however enabled researchers to adopt highly naturalistic paradigms 
for brain imaging experiments. For example, data-driven intersubject similari-
ty measures allow exploring the neural circuitry underlying human behavior 
by inspecting when and where is the neural activity similar across multiple 
subjects (Hasson et al., 2004; Jääskeläinen et al., 2008; Kauppi et al., 2010; 
Glerean et al., 2012). While controlled stimulation allows straightforward 
modeling of brain responses, naturalistic stimuli are high-dimensional and 
thus difficult to capture by specific stimulation models (Hari et al., 2016). 
When we are engaged in interaction, we see our interlocutors, hear their voice, 
and sometimes have tactile contact, that is, multiple events overlap in multiple 
modalities at the same time. However, with this tradeoff, naturalistic stimuli 
allow characterising neural response to such number of categories that would 
otherwise require multiple days with multiple experimental designs to collect 
(Huth et al., 2012; Lahnakoski et al., 2012a). For example, this type of studies 
have revealed that brains of speakers and listeners are spatially selectively syn-
chronized when they successfully understand each other (Stephens et al., 
2010), or when individuals share perspective on perceived behavior (Lahnako-
ski et al., 2012a). 

The studies included in this thesis adopt the naturalistic stimulation para-
digm to various extents to reveal the brain mechanisms subserving speech, 
emotional processing and action understanding during interaction in realistic 
environment. Naturalistic paradigm provides a powerful way for studying so-
cial and emotional processes, since these are inherently multimodal and they 
span long and variable time courses, thus they are hard to reduce to highly 
controlled stimuli. Actually, some aspects of brain functioning addressed in 
studies in this thesis are possible to study only in naturalistic setting. For ex-
ample, contextual understanding of connected speech requires naturalistic 
narratives to assess how the comprehension is supported by the brain during 
actual conversation. Moreover, previous research shows that prolonged natu-
ralistic stimulation enhances functional connectivity measures (Nummenmaa 
et al., 2014a). For similar reasons, to address neural synchronization during 
emotional interaction, rich and dynamic emotional content is required. 

1.3 The role of shared mental states in social communication 

Sharing knowledge, feelings and motor codes is fundamental to humans: ob-
serving emotions and actions of others has direct consequences for survival 
and enhances group cohesion. When we observe other people experiencing 



Introduction 

14 

fear, emotional contagion ensures that we engage in the corresponding surviv-
al behaviour too. Therefore rapid inference of other people's emotional states 
is a crucial mechanism promoting survival (de Gelder, 2006). Strong feelings 
of arousal elicited by emotional videos synchronizes viewers’ somatosensory 
cortex and attention networks, suggesting that highly stimulating experiences 
allow us to simulate bodily state of observed individual and enhance our joint 
attention towards salient features of environment (Nummenmaa et al., 2012). 
Joint attention guided by observing other individual allowed our ancestors to 
survive and possessing similar action knowledge allowed achieving goals as a 
group, therefore enhancing human abilities. 

When we observe actions of others, we may automatically simulate them in 
our brains to predict consequences, and infer goals and intentions by putting 
ourselves in the shoes of other (Rizzolatti and Sinigaglia, 2010). Together with 
emotional information and sharing the perspective of individual, this combi-
nation of action and emotion processes enables one to efficiently interact and 
predict behaviour of others. Revealing neural coupling associated with social 
interaction thus may reflect an automatic process of finding the closest match-
ing feeling or action program that would allow inference about mind state of 
other individual. 

1.4 Brain basis of action understanding 

Understanding others’ actions is crucial for social interaction. Without being 
able to understand our peers’ goals and intentions, we cannot infer whether a 
gesture is friendly or offensive. A fronto-parietal action–observation network 
(AON) has been proposed to support understanding others’ actions and goals 
(Kilner, 2011). This network is activated both during action execution and ob-
servation, suggesting a tight link between perception and action in the human 
brain. Studies with monkeys and humans have shown that this link may be 
subserved by special kind of sensory-motor mirror neurons. It has been pro-
posed that while viewing others’ actions, the observer automatically mimics or 
“mirrors” some aspects of motor activity of the actor (Gallese et al., 1996; Hari 
et al., 1998; Rizzolatti and Craighero, 2004; Gazzola and Keysers, 2009; Rizzo-
latti and Sinigaglia, 2010). This shared sensorimotor information may subse-
quently enable the observer to simulate motor actions and sensations of an-
other individual, possibly also supporting understanding of the other person’s 
actions or action goals (Rizzolatti and Craighero, 2004; Hari and Kujala, 
2009). 

Multiple studies using functional magnetic resonance imaging (fMRI) have 
found overlapping neural activation for action execution and observation in 
brain regions homologous to those where mirror neurons were found in mon-
key studies (Kilner et al., 2009; Gazzola & Keysers, 2009; for review see 
Heyes, 2010; Molenberghs et al., 2012). Furthermore, pattern classification 
studies have found overlapping neural signatures in frontal and parietal corti-
ces of individual subjects that encode both action execution and observation 
(Dinstein et al., 2008; Etzel et al., 2008; Oosterhof et al., 2010). However, it 



Introduction 

15 

remains unresolved, whether these overlapping neural signatures are general-
izable between individuals and whether they support action understanding. 
For example, direct matching hypothesis implies that action understanding is 
supported by simulating observed action in one's own motor cortex (Rizzolatti 
and Sinigaglia, 2010), suggesting that neural signatures for action execution 
and observation may be shared in the brains of interacting individuals. Several 
studies in other modalities suggest that such sharing mechanism is plausible. 
For example, brain responses during emotional experience in one subject's 
brain are predictive of activation in similar network in another perceiving sub-
ject perceiving the corresponding emotional expressions (Anders et al., 2011). 
Another study showed that somatosensory activation while being touched al-
lowed accurate classification the type of observed touch (Keysers et al., 2004). 
Mirror neurons may be related to sensorimotor experience, which is primarily 
coming from interaction with others. This way, the mirroring systems could be 
a product, as well as a process, of social interaction (Heyes, 2010). While mir-
roring systems concern primary sensory-motor neurons, similar principle may 
work also in other modalities (Nishitani et al., 2005; Hari and Kujala, 2009). 

1.5 Brain basis of emotional communication 

Emotions are fundamental to human behaviour as they govern our actions in 
survival-salient encounters. Emotions are also social phenomena, and they are 
often communicated to others using facial expressions, postures, as well as 
semantics and prosody of speech. We also easily catch each other’s emotions: 
we cannot resist smiling when hearing newlyweds recalling how they fell in 
love with each other; similarly we often fail to hold back tears when hearing 
our friend telling us about the recent loss of a family member. When we ob-
serve other people experiencing fear, their faces and body postures immediate-
ly inform us about adequate adaptive behaviour. Therefore rapid recognizing 
of and responding to other people's emotional states is a crucial mechanism of 
survival (de Gelder, 2006). Indeed, high arousal during watching emotional 
videos synchronizes individuals' somatosensory cortex and attention networks, 
suggesting that highly stimulating experiences enhance our joint attention 
towards salient features of environment (Nummenmaa et al., 2012). 

Catching others’ emotional states – coined emotional contagion – may be as-
sociated with automatic ‘mirroring’ of emotional expressions, behaviour and 
physiology, i.e. interacting individuals synchronize with each other in behav-
ioural, psychological, physiological and even neural domain (Gallese, 2003; 
Lakin et al., 2003; Konvalinka et al., 2011). Such synchronization may enhance 
feelings of rapport and connectedness (Miles et al., 2009) and promote social 
bonding (van Baaren et al., 2004; Hove and Risen, 2009; Wiltermuth and 
Heath, 2009). Several studies have revealed neural activity in overlapping 
brain regions during observation and experience of various emotional states, 
including pain (Jackson et al., 2005; Singer et al., 2004), pleasure (Jabbi et al., 
2007) and disgust (Wicker et al., 2003). These findings bear strong conceptual 
resemblance to those stemming from motor action mirroring studies, which 
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shown coupling between action execution and observation (Rizzolatti and Si-
nigaglia, 2010). While ‘mirroring’ itself is primarily a motor phenomenon, 
emotional contagion is more somatic and the classical areas reported in mir-
roring studies are typically not observed in the emotion perception / contagion 
studies. The mapping between neural and emotional states across individuals 
may provide a shared framework, allowing individuals to infer feelings of oth-
ers, and mentally synchronize with them (Hatfield et al., 1994; Nummenmaa 
et al., 2012). Emotional brain responses also become synchronized across the 
members of a group exposed to similar emotional events in movies and narra-
tives (Nummenmaa et al., 2012; Nummenmaa et al., 2014a). 

Such emotion-driven neural synchronization might be a candidate mecha-
nism for explaining emotional contagion. Yet it remains unresolved whether 
similar synchronization actually occurs between interacting individuals trans-
mitting and decoding each other’s emotional states. Previous studies involving 
verbal (Stephens et al., 2010) and non-verbal (Schippers et al., 2010; Anders et 
al., 2016) communication showed that successful communication is associated 
with increased neural synchronization across the communicating individuals. 
Revealing the brain regions where the interacting individuals synchronize dur-
ing emotionally contagious events would also hint towards mechanisms that 
contribute to emotional contagion. 

1.6 Brain basis of contextual speech comprehension 

Speech is a fundamentally human way for communication. When we get en-
gaged in an already ongoing conversation, knowing the context in advance is 
crucial. Contextual knowledge of a narrative facilitates its comprehension and 
the effect of context on speech understanding has been established in several 
behavioural studies that show significant increase in recall and comprehension 
of narrative when pictorial or textual context clue was provided (Dooling and 
Lachman, 1971; Bransford and Johnson, 1972; Swinney, 1979). Speech com-
prehension recruits brain networks involved in auditory perception, attention, 
memory, phonological, syntactic and semantic processing. When we listen to a 
narrative, our mental lexicon is recruited, and word meanings are retrieved, 
selected and integrated into larger syntactic structures (unification), and at-
tention is recruited to control for errors (MUC model; Hagoort, 2005). As new 
information becomes available, it is integrated with existing knowledge as ear-
ly as possible (Wlotko and Federmeier, 2012), but as spoken discourse takes 
time to unfold, certain contextual information may not be immediately availa-
ble, unless one already knows the context in advance. When we join a conver-
sation without knowing the topic, it takes a significant effort to understand the 
meaning of sentences, even though speech is perfectly intelligible. However, 
when the contextual information is available, the sentences fall in place as a 
coherent narrative. 

Human language processing network encompasses multiple regions, howev-
er Broca's area in the left inferior frontal gyrus, as well as Wernicke’s area en-
compassed by left inferior parietal cortex (IPC) together with left middle 
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(MTG) and superior temporal gyri (STG), are the key linguistic components 
(Binder et al., 2009). Multiple studies have shown that Broca's area is involved 
in phonological, syntactic and semantic functions (for review see Bookheimer, 
2002). Wernicke׳s area is involved in both semantic access and integration 
during discourse processing (Jung-Beeman, 2005; Binder et al., 2009). Both 
Broca's and Wernicke's area activity is implied in contextual understanding. 
For example, it was shown that anterior part of Broca's area is more active 
when processing sentences with high versus low ambiguity (Rodd et al., 2005), 
and lesions in Broca's area are associated with failure to use contextual infor-
mation during word comprehension (Bedny et al., 2007). Activity in Wer-
nicke's area on the other hand was reported when relevant context was present 
with the text (Martín-Loeches et al., 2008), or during tasks involving integra-
tion of prior experience, such as future planning (Binder et al., 1999), memori-
zation of information (Hasson et al., 2007) and combinatorial processes 
(Humphries et al., 2007). It remains unresolved how the contextual infor-
mation affects speech processing of naturalistic narrative. Revealing how the 
linguistic brain network is affected by lack or presence of contextually relevant 
information supports our efforts at revealing brain basis of social communica-
tion.
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2. Goals 

Brain basis of human social communication has been extensively investigated 
using highly controlled and simplified stimulation paradigms. However, find-
ings from these studies may not necessarily translate to “real world” where 
individuals face multiple complex and overlapping social signals. Here we 
studied the brain basis of human social interaction in realistic settings, involv-
ing simulated (see methods for details) two-person social interactions. The 
overall goal of these studies was to test the idea that similarity of neural activi-
ty, shared prior knowledge, and shared neural encoding of actions between 
interacting individuals support social communication. The overall framework 
involves quantifying the similarity of two persons’ mental states by assessing 
the inter-subject similarity of their brain activity during real-world social per-
ception or social communication. Simulated two-person interactions were 
used for studying the neural dynamics of information exchange between indi-
viduals during social communication. 

Study I assessed whether mental simulation of others’ action synchronizes 
brains across observers viewing natural motor action sequences. It is known 
that simulation of mental and bodily states enhances understanding of others 
and helps to view the world in a similar fashion (Hari and Kujala, 2009; 
Nummenmaa et al., 2012). We expected that sharing a similar psychological 
perspective towards seen actions would lead to more similar experiences 
across observers, which would be reflected in increased synchronization of 
neural activation in action-observation network of observers. 

Study II tested whether observing and executing hand actions elicits similar, 
actions-specific motor codes across individuals. Mirroring systems support 
both action execution and observation (Rizzolatti and Sinigaglia, 2010), yet it 
remains unresolved whether these systems contain action-specific neural 
codes that allow direct matching between actor’s and observer’s actions. We 
hypothesized that action-related neural signatures would be shared between 
individuals executing and observing the actions. We tested this hypothesis by 
developing novel “hyperclassification” approach, where we trained a pattern 
classifier to recognize executed actions from neural activity of a subject execut-
ing the actions, and then validated classifier’s performance on neural data col-
lected from individuals observing the same actions. If such hyperclassification 
would be successful, it would confirm that neural signatures for executing and 
observing actions are similar across individuals. 
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Study III investigated whether similarity of emotional feelings between 
speaker and listener would result in increased neural coupling in brain’s emo-
tion processing circuits. Previous studies show that viewing emotional events 
in movies or listening to emotional narratives elicits synchronized neural re-
sponses in the limbic system across the groups of subjects (Nummenmaa et al., 
2012; Nummenmaa et al., 2014a) yet these studies have not actually measured 
transfer of emotional information from one brain to another. Such transfer of 
affective information between brains of interacting individuals might allow 
listeners to empathize with speaker. We hypothesized that stronger emotional 
feelings, indicated by subjective emotional valence and arousal, would enhance 
speaker-listener neural coupling in limbic and somatosensory circuits, as well 
as speech-related brain regions. We then tested this hypothesis in pseudo-
hyperscanning approach, where we collected the data from speakers and lis-
teners, and assessed how the intersubject similarity of their brain activity is 
modulated by felt emotions. 

Study IV tested which functional brain networks mediate the use of prior 
knowledge during complex speech comprehension. Previous research has 
shown that context is crucial for speech comprehension (Bransford and John-
son, 1972). Comprehension of naturalistic narrative involves multiple compo-
nents including speech processing nodes such as Broca’s area and Wernicke’s 
area, as well as error monitoring in anterior cingulate cortex (Hagoort, 2005; 
Binder et al., 2009). We expected knowing the context of the spoken narrative 
in advance would enhance semantic processing, promote comprehension and 
recall, and that this process will be accompanied with increase in functional 
connectivity of brain regions involved in semantic selection, integration and 
error monitoring. 
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3. Methods 

3.1 Magnetic resonance imaging 

Magnetic resonance imaging (MRI) was used to collect the neural data in all 
studies presented in this thesis. MRI is currently the dominant tool for non-
invasive brain imaging in humans (see Huettel et al., 2004 for review). The 
most abundant element in human body is hydrogen, and it is used as main 
target for human MRI. Therefore presence of water molecules is a required 
property of the imaged tissue. In a nutshell, MRI measures the interaction of a 
tissue with an electromagnetic field. The signal recorded by MRI is related to 
spin, a property of elementary particles. Unpaired spins can have a magnetic 
moment, which aligns with external magnetic field. When no strong external 
magnetic field is applied, spins are oriented randomly. In MRI imaging, 
strong, constant and homogenous magnetic field (B0, currently typically be-
tween 1.5 – 7T) is introduced in the MRI scanner bore, which aligns spins in 
directions either parallel or anti-parallel to the magnetic field. A slightly ex-
ceeding number of spins will align with the field, resulting in net magnetiza-
tion with external field. Stronger fields cause more spins to be aligned with 
external field, resulting in stronger signal. 

While in this strong field, protons (hydrogen nuclei) precess around the di-
rection of the external field with an angular frequency, also called Larmor fre-
quency, which depends on the strength of external magnetic field and gyro-
magnetic ratio of atom. If an electromagnetic radio frequency (RF) pulse at 
Larmor frequency is applied, protons can absorb that energy. This RF pulse 
“flips” net magnetization by a certain angle (flip angle) relative to the main 
magnetic field. This process is called excitation. When the RF pulse ends, the 
absorbed RF energy will be emitted at the Larmor frequency, as the protons 
recover to the equilibrium state. This process is called relaxation and it hap-
pens at different rates in the longitudinal (spin-lattice relaxation) and trans-
verse (spin-spin relaxation) directions in relation to the B0 field. The longitu-
dinal recovery rate towards equilibrium is characterized by tissue-specific time 
constant T1. Because this rate differs across tissues, T1 is the source of nuclear 
magnetic resonance signal and can be used to differentiate between tissue 
types such as grey and white matter in the acquired brain images. The trans-
verse recovery rate is characterized by tissue-specific time constant T2, which 
generally proceeds more rapidly than T1 recovery, and is useful for detecting 
white matter lesions. 
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To enable encoding spatial information from MRI, smaller linearly varying 
magnetic fields, called gradient fields, are applied. There are three sets of gra-
dients, each creating a magnetic field in X, Y or Z direction. These fields cause 
the magnetic moments of spins to precess around b0 field with different angu-
lar frequencies, depending on location of tissue within the field. Only protons 
that spin with the same frequency as the RF pulse will respond to that RF 
pulse. This allows designing RF-pulses in such a way that energy is deposited 
into specific locations and emitted from these locations at different RFs, allow-
ing slice encoding. 

3.2 Functional magnetic resonance imaging with BOLD contrast 

The most common technique to measure brain function with MR imaging is 
the blood oxygenation level dependent (BOLD) contrast, where the MR images 
are made sensitive to the state of oxygenation of hemoglobin (Ogawa et al., 
1990). The variation of the BOLD signal reflects the variations of the function-
al activity of neuronal populations (Logothetis et al., 2001). Hence, BOLD con-
trast can be used to map neuronal activity during various cognitive, motor and 
affective tasks. BOLD signal is based on the magnetic properties of hemoglo-
bin. Hemoglobin is a molecule that is contained in blood and transports oxy-
gen from lungs to the rest of the body. Oxygenated hemoglobin is diamagnetic 
thus it contains no unpaired spins that could have magnetic moment, resulting 
in null spin. Deoxygenated hemoglobin, on the contrary, is paramagnetic, hav-
ing a non-zero magnetic moment. When MRI signal is measured from the 
brain, certain areas show higher MRI signal, indicating more Hb / dHb ratio. 
Neuronal activity requires oxygen, resulting in increased supply of oxygenated 
blood to the active brain regions. Consequently, BOLD can be used as an indi-
rect measure of neuronal activity even though the signal comes from metabolic 
activity in the brain. While BOLD measures blood flow and blood volume, the 
dynamics of both of these phenomena are significantly slower than neuronal 
activity. Functional MR imaging requires multiple parameters to be taken into 
consideration, but perhaps the repetition time (TR) of the RF pulses that de-
fines temporal resolution - time period between two successive excitations, 
and TE, which defines the time period between excitation and data acquisition, 
are the most important for data collection. Shorter TR provides higher sam-
pling rates, allowing achieving higher temporal precision of collected data. The 
temporal precision of fMRI data has direct consequences for the statistical 
modeling of neural response, as higher precision enables more accurate mod-
els to be designed. 

3.3 MR Data acquisition 

MRI data for all studies were collected at the Advanced Magnetic Imaging 
(AMI) centre of Aalto University. Data for studies I and II were collected with 
General Electric Signa 3-Tesla MRI scanner. Data for studies III and IV were 
collected with Siemens Magnetom Skyra 3-Tesla MRI scanner. All data were 



Methods 

22 

collected with EPI pulse sequence sensitive to BOLD contrast with 64 x 64 
matrix, slice thickness of 3-4 mm, TR ranging from 1700 to 2000 ms and TE 
24 to 30 ms. High-resolution anatomical images with isotropic 1 x 1 x 1 mm3 
voxel size were collected using a T1-weighted MP-RAGE sequence. 

3.4 Preprocessing of fMRI data 

Preprocessing for all studies followed similar pipeline, with minor modifica-
tions related to smoothing kernels and high-pass filtering described in the 
original studies. Data were preprocessed using MATLAB (The MathWorks, 
Inc., Natick, Massachusetts, USA) and FSL (FMRIB's Software Library, 
www.fmrib.ox.ac.uk/fsl). After slice timing correction, the functional images 
were realigned to the middle scan by rigid-body transformations with 
MCFLIRT to correct for subject motion. Next, non-brain matter from func-
tional and anatomical images was removed using Brain Extraction Tool (BET; 
Smith, 2002). Functional images were registered to the MNI152 standard-
space template (Montreal Neurological Institute) with 2-mm resolution. The 
transformation parameters were acquired by first calculating transformations 
from structural MR image to standard space and from functional to structural 
space. Next, these transformation parameters were sequentially used to co-
register functional datasets to the standard space. Both registration steps were 
performed using FLIRT (Jenkinson et al. 2002). Motion artefacts were cleaned 
from the functional data using 24 motion-related regressors (Power et al. 
2014), signal from white matter, ventricles and cerebro-spinal fluid were also 
cleaned from the data as implemented in BraMiLa pipeline 
(https://git.becs.aalto.fi/bml/bramila). Finally, in studies I, II and IV addi-
tional spatial smoothing step with a Gaussian kernel of FWHM 8-10 mm was 
also applied. In study III spatial smoothing was not applied since pattern clas-
sification accuracy may suffer from losing information encoded in finer-
grained patterns. 

3.5 Modeling the brain response 

The most ubiquitous analytic method used in fMRI data analysis is the uni-
variate general linear model (GLM). In this method, stimulus model regressor 
is convolved with the canonical haemodynamic response function (HRF) and 
regressed against voxel-wise BOLD data. BOLD is an indirect measure of brain 
activity, since it measures metabolic changes associated with blood flow rather 
than actual neuronal activity. The relationship between BOLD and neuromod-
ulatory processes on the neuronal population level is approximated by HRF, 
which is represented by a linear combination of two gamma functions and al-
lows estimation of the BOLD response to stimulus events. 

The standard approach to model task- and stimulus-related responses is a 
two-stage random effects model. The first stage stimulation models are fitted 
to individual subjects data, thus relating stimulus regressor time series to 
BOLD activation. The second stage computes the group-level statistics, by re-
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lating combined individual activation estimates to a group parameter, e.g. 
mean activation level. Such two-stage approach allows inferences on popula-
tion level. GLM analyses presented here were implemented in either SPM12 
(www.fil.ion.ucl.ac.uk/spm) or FSL (study IV). 

GLM analysis is usually done independently for each voxel. A typical brain 
image contains more than 200000 voxels, therefore when a statistical test is 
performed for each of them, multiple comparisons need to be accounted for. A 
rather conservative Bonferroni correction is often used when number of com-
parisons is small, by dividing the p-value threshold by the number of compari-
sons. With fMRI data such test may be too conservative, so alternatives like 
false-discovery rate correction were proposed, which are designed to control 
the expected proportion of false positives (BH-FDR; Benjamini and Hochberg, 
1995). Another approach is to simulate the null hypothesis by shuffling the 
data, which is also called permutation testing, and derive significance thresh-
old from this simulated null distribution (Nichols and Holmes, 2002). Both of 
these approaches were used in all of the studies presented in this thesis. 

3.6 Intersubject correlation 

In contrast to GLM, inter-subject similarity metrics allow data-driven analysis 
of the brain activity patterns: they allow inference about brain regions involved 
in a task even when stimulation model is not specified or when it is unknown. 
This is achieved by assessing the similarity of regional neural activation across 
multiple individuals, revealing time-locked activity, for example when viewing 
movies or listening to narratives (Hasson et al., 2004; Wilson et al., 2008). As 
social interaction typically occurs in complex context and at multiple time 
scales, it is often impossible to represent it with specific stimulation models, 
hence ISC analysis is especially helpful in such cases. Mapping the brain areas 
where, for example, during emotional episodes the neural activity synchroniz-
es across subjects, allows revealing the areas supporting some aspect of behav-
ior that these subjects are involved in. 

In ISC analysis, correlation between the voxelwise time series is computed 
for every pair of individuals, separately for each voxel. Voxelwise correlations 
are subsequently averaged to produce group-level ISC maps. These maps show 
the regional reliability of the brain responses during particular stimulation. 
ISC also can be computed over sliding windows, providing time series of inter-
subject similarity in brain activity. Since correlation requires more than just 
one time point to be computed, windowed approach reduces the temporal res-
olution of data in comparison with BOLD GLM, as each timepoint in the new 
ISC time series contains correlation computed over multiple timepoints. In 
these studies we used ISC analysis as implemented in the ISCToolbox (Kauppi 
et al., 2008), which uses Pearson correlation coefficient with non-parametric 
tests for statistical significance. ISC analysis was used in the study II to quanti-
fy the similarity of the brain activation before and after the hyperalignment 
(see 3.12. for details) and in the study IV to quantify the similarity of brain 
activity with vs without contextual queues. 
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3.7 Intersubject phase synchrony 

ISC computed over sliding windows allows addressing dynamic changes in 
intersubject similarity of neural activity and reveal the brain regions where 
individual brains are activated more or less similarly depending on time-
specific stimulation parameters. However, the temporal accuracy of ISC suf-
fers from computing the ISC within a temporal sliding window to warrant suf-
ficient SNR. ISC approach has thus been developed further into inter-subject 
phase synchrony (ISPS), which allows increasing temporal accuracy up to 1 TR 
(Glerean et al., 2012). In these studies phase synchrony analysis was imple-
mented using FUNPSY toolbox (Glerean et al., 2012). It uses analytic signal 
which is acquired by rearranging the frequency content of the original time 
series using Hilbert transform. This analytic signal is converted into a product 
of amplitude and phase signals using Euler’s equation. The Hilbert transform 
requires signal to be narrow-band, hence band-pass filtering with the frequen-
cy range of 0.04 – 0.07 Hz is applied. This band is least affected by physiologi-
cal noise and contains majority of useful signal in BOLD (Glerean et al., 2012). 
After Hilbert transform, phase synchrony time series is computed between 
every pair of experimental subjects. The resulting time series provides a meas-
ure of dynamic (i.e. moment-to-moment) inter-subject similarity that can be 
modeled like any other signal with, for example, task regressor (Figure 2). 
ISPS method was used in study I to quantify the similarity of the brain activa-
tion across the viewers of the videos, and in study III to quantify the similarity 
of brain activation between speakers and listeners. 

 

Figure 2. (A) Blueprints of ISPS analysis pipeline and (B) and instantaneous SBPS analysis. t: 
Time; ϕ: phase; PS: phase synchrony; i,j: seed regions; b: BOLD signal. Adapted from Glerean 
et al., 2012. 

3.8 Functional connectivity analyses 

While the GLM reveals how each brain area separately responds to certain 
stimulation, functional connectivity analysis allows quantifying the task-driven 
changes in neural interactions between brain areas. Such functional connectiv-
ity analysis is motivated by studies demonstrating that almost every cognitive 
function is supported by interaction of multiple brain structures involved in 
distinct processes (Sporns et al., 2004; Bullmore and Sporns, 2009). 

In the study IV, we analyzed task-dependent functional connectivity using 
psycho-physiological interactions (PPIs; Friston et al., 1997; see also more 
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recent review in O'Reilly et al., 2012). PPI identifies brain regions whose activi-
ty depends on the interaction between psychological factors (the stimulation 
or task) and physiological factors (the neural activity time-series of a ROI). PPI 
assumes that if two areas are interacting, the level of activity in these areas will 
correlate over time. PPI analysis begins by defining (typically a single) “seed” 
ROI. Next, activity time course is extracted from this region by using the first 
eigenvariate from all raw voxel time series in ROI. The psycho-physiological 
interaction regressor (a PPI effect) is constructed as an element-by-element 
product of the mean-centered task or stimulation time course and the ROI 
time course. Finally, this PPI effect time series is used as a regressor in a GLM 
analysis to reveal the voxels where a task-specific increase in the relationship 
between brain regions (a PPI effect) is associated with a task-specific increase 
in the correlation, or exchange of information between the regions. PPI as a 
method has limitations: it does not make inferences about the causality, or 
direction of information flow between brain regions. Instead, PPI indicates 
task-specific increases in relationship between a seed region and the rest of the 
brain, and makes no implication whether the seed is the driver rather than the 
driven area (O'Reilly et al., 2012). 

In study I we also used phase synchronization to estimate functional connec-
tivity using seed-based phase synchronization (SBPS). In SBPS, first the dif-
ference between phase signals of two ROIs is calculated for every subject, and 
then the phase synchrony across all subjects is computed to represent the 
similarity or consistency between a pair of ROIs across the group (see Glerean 
et al., 2012 for details). SBPS preserves maximal temporal resolution of the 
data, as the phase synchronization is computed for each time point, rendering 
it especially useful for inferring task-dependent functional connectivity chang-
es. 

3.9 Representational similarity of emotional and neural time se-
ries 

Revealing that similarity of neural states is paralleled by similarity of subjec-
tive mental states would provide additional evidence that perceiving the world 
in similar manner really is associated with more similar neural functioning. 
Such neural and mental synchronization could support social interaction by 
providing interacting individuals with shared emotional and somatomotor 
framework. We investigated such representational similarity (RS; Kriegeskorte 
et al., 2008) between the synchronization of emotional states and neural syn-
chronization across speaker-listener pairs in the similar methodological ap-
proach as done by Nummenmaa et al. (2014). In Study III we used ISPS as the 
similarity metric for neural activity, and ISPS of continuous ratings of valence 
and arousal as the similarity metric for emotions. Two-stage approach was 
implemented in the analysis. In the first level analyses we used Pearson corre-
lation coefficient to estimate voxel-wise similarity between time series of neu-
ral and emotional synchronization for each speaker-listener pair. The voxel 
intensities on resulting maps reflect the degree to which brain-to-brain simi-
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larity between speaker and listener was associated with similarity of their emo-
tional feelings. Subsequently, mass-univariate t-tests were used in the second-
level analyses to estimate similarity at the population level. 

3.10 Two-person ‘pseudo-hyperscanning’ 

We wanted to study the human brains during the actual social communication 
process, however, MR imaging of two individuals at the same time is a chal-
lenging and often technically impossible task. The process of scanning multi-
ple subjects at the same time is called hyperscanning. While mostly done with 
EEG (for review see Babiloni and Astolfi, 2014), a handful of fMRI hyperscan-
ning studies were also performed in various contexts, e.g. interaction games 
(Montague et al., 2002), flow of affective information during facial communi-
cation (Anders et al., 2011), gestural communication (Schippers et al., 2010) 
and verbal communication (Stephens et al., 2010).To acquire the neural activi-
ty data matched in time between the subjects, we adopted “pseudo-
hyperscanning” paradigm, where we scanned subjects as pairs to address how 
the brains of interacting individuals subserve mutual understanding and shar-
ing of the emotions. This involved scanning the subjects transmitting and re-
ceiving information sequentially: during the first session one participant’s 
brain activity is recorded while she, for example, performed hand actions 
(study II) or narrated short autobiographical events (study III). Video and au-
dio were recorded, and subsequently presented to the next participant in an 
independent MR scan. This way, fMRI data of the individual transmitting the 
information is matched in time with brain data of the individual receiving the 
information, and only one fMRI scanner is required for the data acquisition. 

3.11 Multivariate pattern classification 

Pattern classification methods are generally used for discovering the regulari-
ties in multivariate data that enhance the predictive power of models, com-
pared to univariate models. In some experimental settings, the differences in 
brain responses in single voxel are often not large enough between experi-
mental conditions to detect different effects for those experimental conditions 
within a region (Kragel et al., 2012). The pioneering work by Haxby et al., 
(2001) demonstrated that a multivariate classifier can predict, after learning 
the pattern of brain activity during object observation, which object category 
the participant is currently viewing. Inspecting multiple voxel time series 
jointly allows pattern classifiers to substantially increase the amount of infor-
mation that can be derived from brain activity, increasing accuracy in classifi-
cation between brain states (Mitchell et al., 2004; Haynes and Rees, 2006; 
Norman et al., 2006; Pereira et al., 2009), and a wide range of pattern classifi-
cation algorithms has been introduced to fMRI data analysis (Haynes, 2015). 

Pattern classifiers typically are models that are trained to discriminate be-
tween the spatial activity patterns corresponding to a range of experimental 
conditions. The trained classifier is subsequently validated or “tested” against 
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new data not used in the training to avoid overfitting. For the classifiers that 
we used in study II, we evaluated the performance of the classification model 
in leave-one-run-out cross-validation framework, where one run was left out 
for testing, and all remaining runs were used to train the classifier, and the 
process was repeated iteratively for each run and separately for each subject. 

There are multiple different frameworks or pattern classification. Here we 
used logistic regression based approach, where the model predicts log-odds of 
dichotomous outcome variable as a linear combination of predictors. In multi-
class situations, where the predicted variable has more than two possible out-
comes, usually one outcome versus all classification is done iteratively. Specif-
ic implementation used in this work was Bayesian logistic regression with a 
sparsity promoting Laplace prior (Williams, 1995; van Gerven et al., 2010). In 
this model, each individual voxel weight was given a univariate Laplace prior 
distribution with a scale hyperparameter, which was optimized over multiple 
candidate values by maximizing the average accuracy over the subjects in 
leave-one-subject-out cross-validation (Lamnisos et al., 2012). Such model 
attempts to avoid overfitting, and results in a smaller set of voxels contributing 
to the predicted label. When testing the classifier performance, the data of a 
single subject were left out from the optimization. The multivariate posterior 
distribution was approximated using the expectation propagation algorithm 
(van Gerven et al., 2010) implemented in the FieldTrip toolbox (Oostenveld et 
al., 2001). The classification performance was tested by collecting the class 
probabilities for each pattern in the testing set using the binary classifiers, and 
assigning the class with the maximum probability to each pattern. 

Statistical significance of classification accuracy was tested by comparing 
mean (across subjects) accuracy against theoretical chance level, here defined 
as 100% divided by the number of class labels (such approach is valid only 
when the number of examples per class is balanced). Since empirical chance 
level accuracy can differ from theoretical chance level (Combrisson and Jerbi, 
2015), we verified it by constructing the null distribution by randomly shuf-
fling class labels to inspect accuracy produced by random classifier. As the 
classification accuracies were approximately normally distributed, the confi-
dence intervals for their means were obtained from Student's t-distribution. 

3.12 Functional realignment with Bayesian canonical correlation 
analysis 

Individuals differ in the functional and structural organization of the cerebral 
cortex; therefore it is not feasible to assume that activity in the anatomically 
identical region across two brains would necessarily reflect an identical under-
lying perceptual or cognitive process. Recent work has indeed shown that, for 
example, individual differences in functional and anatomical organization of 
the ventral visual cortex can be accommodated with a high-dimensional com-
mon-space (“hyperalignment”) model (Haxby et al., 2011; Yamada et al., 2015) 
that improves group-level estimates of hemodynamic responses and signifi-
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cantly improves the accuracy of pattern classification results in comparison 
with those acquired with anatomical alignment and spatial smoothing. 

We adopted a similar functional realignment approach, where we acquired a 
common functional space between two independent modalities: motor action 
and action observation. This approach aimed at improving the classification of 
seen actions on the basis of executed actions. Multiple methods can be used to 
find matching between two datasets, but intuition behind these methods is in 
general the same – we assume that both of the datasets contain some dataset-
specific information, and some shared information. These datasets can be 
viewed also as “rotations”, or transformations of some “unobserved” original 
dataset. This way, if the transformations are acquired, one dataset can be 
transformed into another, and such transformation can be validated by, for 
example, classification task. 

To account for differences in functional localization of action execution and 
observation across individuals in study II, we implemented this additional 
functional realignment step in our preprocessing pipeline. We used Bayesian 
canonical correlation analysis (BCCA; Klami et al., 2013) to perform the rea-
lignment step prior to hyperclassification. BCCA was implemented using R 
CCAGFA package (Virtanen et al., 2012; Klami et al., 2013). The BCCA model 
separates the correlation patterns in the simultaneous brain-activity spaces of 
the individual who executes an action and the individual who observes it into 
three types of components, also called views: actor-specific, observer-specific, 
and shared. The shared components provide a low-rank linear mapping for the 
realignment of the brain-activity spaces. The view-specific variation has to be 
modeled to avoid misinterpretation of strong view-specific components as 
shared effects (Klami et al., 2013). For each actor–observer pair, the total 
number of components was optimized together with scale hyperparameter for 
classifier over multiple candidate values. The model automatically assigns the 
components to the three types via a group-wise sparse automatic relevance 
determination prior (Klami et al., 2013). BCCA was done for each ROI in the 
cross-validation framework, where the mapping was estimated using four runs 
from both the actor and the observer, and, in the left-out runs, the shared acti-
vation was mapped into actor's space to produce representation of observer's 
data and used for testing the classifier. Classifier was trained on the actor's 
data from the four runs and tested on functionally realigned observer's runs. 

3.13 Validation metrics 

In hyperclassification framework, functional realignment is used to map data 
of one individual to another individual. Functional realignment may work and 
show above chance-level classification accuracy even when there is no real 
shared signal between two datasets. Simulations show that random noise fil-
tered with BOLD spectra can be transformed by some functional realignment 
methods (like procrustean transform) in a strongly overfitted way. We used 
three validation approaches to ensure that realignment achieved with BCCA 
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and the subsequent improvements of classifier performance do not reflect 
merely realignment of the noise present in the data: 

1. Temporal misalignment: properly working BCCA mapping should lead to 
chance-level hyperclassification when BOLD time series of training and 
testing data are temporally misaligned. On the contrary, if hyperclassifi-
cation accuracy stays above chance level for temporally misaligned data, 
the BCCA is realigning task-independent noise across the data sets. 

2. Realigning and classifying surrogate data: we also trained and tested the 
classifier with BCCA-aligned random noise filtered with BOLD spectra 
that were acquired from actual data recorded during the experiment. Da-
ta of real subject were used in training the classifier, and surrogate data 
were used in testing. While surrogate data retain the characteristics of 
real BOLD signals, they lack the temporal structure of the actual experi-
ment. In case the BCCA remapping would introduce a nonexistent tem-
poral structure to the data, this approach would result in above-chance-
level classification accuracy. 

3. Realigning and testing classification in control ROI data: finally, if func-
tional realignment would allow successful classification in a region unre-
lated to stimulus or task of interest, the model would not be robust 
against noise. Functional remapping between these regions should not 
give above-chance-level accuracy for hyperclassification. Consequently, 
ROIs for these regions were generated using the Jülich Histological Atlas 
in FSL (Eickhoff et al., 2007), and hyperalignment and classification 
were then attempted for this set of ROIs. 

3.14 Visualization of functional realignment consequences 

Visualization of components involved in functional realignment of two da-
tasets is complicated and requires additional work and research. However, we 
used two approaches that allow to some extent to characterize how the func-
tional realignment improved the data used for testing the classifier. We first 
calculated ISC between the brain signals of individuals, whose data was rea-
ligned, before and after realignment, assuming that successful realignment 
would increase ISC in brain regions where shared information between indi-
viduals increased. Because we allowed remapping of voxel activation to any 
place within the ROI, this step allowed us to quantify whether remapping 
would be specific to some regions or randomly distributed across the multi-
node ROI. In the latter case the realignment model would be theoretically 
meaningless as, correlation would increase and decrease randomly across the 
brain. Pearson correlation coefficient was used to calculate the intersubject 
correlation for each voxel for each actor–observer pair before and after the 
realignment. The resulting R-statistic maps were Fisher transformed and 
compared using t-test to show which regions became statistically significantly 
more similar after the realignment. 

Second, to reveal brain regions where realignment would increase hyperclas-
sification accuracy, we used a k-nearest-neighbour (kNN) classifier (Fix and 
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Hodges, 1951; Lahnakoski et al., 2014) based on ISC matrices of spherical 
searchlights, containing 19 voxels (6 mm3) over three TRs, with k-values rang-
ing from 1 to 120 with a step of 6. We used mean classification accuracy over 
all k-values to control for possible sensitivity of kNN classifiers to noise at low 
k-values (Mitchell et al., 2004). We calculated hyperclassification accuracy for 
spherical neighbourhood of each voxel before and after functional realignment 
and tested the difference using permutation-based t-test. Statistical threshold 
was set at p < 0.05, FDR-corrected (Benjamini and Hochberg, 1995). Resulting 
statistical maps show brain regions where searchlight classification accuracy 
increased after functional realignment. In principle, any classification algo-
rithm could be used for this step, and our choice is guided just by the conven-
ience of implementation. 

3.15 Eye-tracking data 

Eye-tracking data was recorded for studies I and IV with a SMI 60Hz Eye 
Track long-range eye tracking system (Sensomotoric Instruments GmbH, 
Germany). A five-point calibration and validation was performed prior to the 
experiment. In study IV, eye-tracking was used to collect pupil size data as a 
marker of cognitive load. Participant’s pupil size was measured as an index of 
attention and cognitive load. To get an absolute scale for pupil diameter, we 
used a reference “fake pupil”, a piece of paper with a black circle of known di-
ameter painted on it. This fake pupil was placed in front of participants’ eye at 
the beginning of the experiment, and a conversion factor was acquired. This 
conversion factor was subsequently used to convert the pupil diameter from 
pixels to millimeters. In study I, the eye-tracking data was used to investigate 
the spatiotemporal intersubject synchronization of eye movements.
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4. Summary of the original studies 

4.1 Study 1: Mental action simulation synchronizes action-
observation circuits across individuals. 

4.1.1 Aims of the study 

Study I investigated how active mental simulation (“empathizing”) of seen 
actions synchronizes action-observation network in the brain across multiple 
individuals during attending to natural stimuli. We used videos of boxing 
matches as stimuli, as they contain large clear limb motions and strong emo-
tional feelings. 

4.1.2 Materials and methods 

Twenty right-handed healthy volunteers viewed short video clips depicting 
professional boxing matches during fMRI and concurrent eye movement re-
cording. Before each trial, participants were instructed to either view the video 
passively, or to mentally simulate a pre-specified boxer (Figure 3). The clips 
depicted typical highlights of the matches, in which one boxer was clearly win-
ning and causing pain to the losing boxer with his punches. All movies were 
presented with sound. Participants watched the films in a fixed, pseudoran-
dom order; two different counterbalanced orders of the instruction screens 
were used to control for possible order effects. 

ISPS analysis was used to analyze synchronization of brain activation across 
individuals and compare active simulation conditions to passive observation. 
The experimental-condition regressors were convolved with gamma function 
(θ = 1, k = 6) and used to predict voxelwise ISPS time courses in the general 
linear model (GLM). In addition, we analyzed functional connectivity within 
the AON. To this end, we estimated dynamic functional connectivity of region-
al time courses using instantaneous seed-based phase synchrony (SBPS; 
Glerean et al., 2012). Regions of interest (ROIs) were selected from meta-
analyses of the brain basis of action observation (Paus, 1996; Caspers et al., 
2010) and AAL atlas (Tzourio-Mazoyer et al., 2002). Spheres of 6 mm diame-
ter were drawn around these ROIs. SBPS was used as a group-level time-
varying connectivity measure between each pair of regions. The gamma-
convolved experimental-condition regressors were used to predict each con-
nection's time series in the GLM to assess the effects of simulation on AON 
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connectivity. To test the statistical significance of the ISPS maps and SBPS 
connections, we performed a fully nonparametric voxelwise permutation test 
for the r statistic (Wilson et al., 2008; Kauppi et al., 2010).  

 

Figure 3. Overview of the trial structure and illustrations of the stimuli. 

Because calculation of all possible time-shift combinations would be computa-
tionally prohibitive, we approximated the full permutation distribution with A 
= 1,000,000 realizations. Sampling was randomized over every brain voxel 
and shifting point without any restrictions. 

To test whether active simulation would enhance intersubject synchroniza-
tion of functional brain networks, the core intrinsic networks were delineated 
using seed-voxel correlation. Seeds were anatomical foci routinely used in 
seed-voxel correlation analysis (visual, sensorimotor, auditory, default-mode, 
dorsal attention, and executive control networks). Spherical ROIs with 6 mm 
radius were generated around these coordinates, and mean time-series were 
extracted for each ROI and participant. Means of each participant's regionwise 
time series were subsequently used to identify individual correlation maps for 
each of the six networks by correlating seed region time series with time series 
of all other voxels in brain. To analyze whether the regional synchronization in 
each network would be modulated by the simulation task, a spatially averaged 
ISPS time series was extracted for each statistically thresholded network ROI. 
These time series were correlated with the experimental time series of explicit 
simulation versus passive viewing. 

In addition, a two-stage random-effects model was implemented to estimate 
regional effects of passive viewing and simulation conditions. At the first level, 
GLM with boxcar regressors was used to assess task-dependent BOLD activa-
tion for each participant. Model included three experimental conditions 
(watch, lose, win) and effects of no interest (motion realignment parameters). 
The second-level analysis was used to generate group-level statistical paramet-
ric maps. Statistical threshold was set at T > 3.0 and p < 0.05, FDR corrected 
at cluster level. 
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Spatiotemporal intersubject synchronization of eye movements was meas-
ured by computing subjectwise heatmaps for each trial. Mean intersubject cor-
relation index was computed for a sliding window (length 1 s, step size 100 
ms), and average intersubject similarity scores were computed for the different 
experimental conditions (lose, win, watch). This synchronization time series 
was also used to predict cerebral ISPS to test whether synchronization of visual 
attention across subjects would be associated with enhanced intersubject syn-
chrony of brain activation. 

4.1.3 Results 

Brain activity during passive observation was similar across subjects only in 
lower-level sensory areas and motion-sensitive temporal cortex, while during 
active simulation of other' mental state increased synchronization in parieto-
temporal components of AON, somatosensory cortex and components of dor-
sal and ventral fronto-parietal attention networks (warm colors, Figure 4). We 
also analyzed the data with ISC to confirm that ISPS produces similar out-
comes, and found that ISPS was more sensitive in the frontal areas of the brain 
(white outline, Figure 4). Eye movements were strongly synchronized across 
participants throughout the experiment. However, synchronization of eye 
movements was not associated with intersubject synchronization of brain ac-
tivity in any region. 

Synchronization in intrinsic networks during simulation contrasted with 
passive viewing, resulted in stronger mean ISPS in auditory, dorsal attention, 
sensorimotor, and visual networks, but not in default-mode or in executive 
control networks. Moreover, during simulation compared to passive viewing, 
SBPS analysis revealed increase in large-scale dynamic connectivity of left-
hemispheric components of AON, suggesting that sharing others' action plans 
synchronizes individuals' own brain systems supporting sensation and motor 
planning (Figure 5). 

Neither ISPS nor SBPS connectivity differed between simulating of losing 
versus winning boxers. However, regional effects estimated with GLM revealed 
stronger responses during simulating losing versus winning boxers in the right 
anterior insula, rolandic somatosensory cortex, temporoparietal junction, and 
bilateral fusiform gyri, whereas the opposite contrast revealed no significant 
clusters. 
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Figure 4. Brain regions showing statistically significantly stronger ISPS during simulation (aver-
aged across simulate winner and simulate loser) than passive viewing (red to yellow). White 
borders show regions with overlapping ISPS and ISC. The data were thresholded at p < 0.05 
(FDR corrected). 

 

Figure 5. Connectivity matrix for brain regions showing stronger instantaneous SBPS during 
simulation than passive viewing. The data are thresholded at p < 0.05 (FDR corrected). 

Finally, when compared against the passive viewing condition, both explicit 
simulation conditions (simulate loser and simulate winner) resulted in wide-
spread activation in the emotion-related circuits (including thalamus, anterior 
insula, amygdala) in superior and posterior parietal cortices as well as in bilat-
eral precentral gyri. 

 
 
 



Summary of the original studies 

35 

 

Figure 6. Brain regions showing stronger BOLD responses during simulation of a losing than a 
winning boxer. The data are thresholded at p< 0.5 (FDR corrected). Color bar denotes the T-
Statistic range.  

4.1.4 Conclusions 

Our findings reveal that when individuals are engaged in simulation of another 
person's actions and feelings, the neural activity in their attentional and ac-
tion-observation brain networks becomes synchronized. These findings sug-
gest that active mental simulation of other's motor actions and emotions pro-
vides observers with shared somatomotor framework, possibly allowing one to 
map mental and bodily states into one's own sensorimotor system and support 
mutual understanding. 
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4.2 Study 2: Brain-to-brain hyperclassification reveals action-
specific motor mapping of observed actions in humans. 

4.2.1 Aims of the study 

Here we tested whether action observation and execution share neural signa-
tures in the same brain regions across different individuals. While it has been 
established that mirroring systems can subserve both action execution and 
observation, it remains unresolved whether brains of interacting individuals 
share action-specific neural codes. We hypothesized that action-specific neural 
signatures are shared between individuals and observing executing actions. To 
test this hypothesis, we trained a pattern classifier to recognize executed ac-
tions from neural activity of an “actor” subject, and then successfully validated 
its performance on neural data collected from independent “observer” subjects 
viewing the actions. Successful cross-subject, cross-modal classification would 
provide support for existence of shared, action specific neural signatures of 
actions in interacting individuals that might promote action understanding via 
actions-specific motor simulation. 

4.2.2 Materials and methods 

We adopted pseudo-hyper-scanning paradigm, where we asked two healthy 
right-handed volunteers (“Actors”) to perform four types of hand actions, 
which were videotaped while the actors were scanned with fMRI. The actions 
included two object-directed actions (power grip of a soft spiky ball and preci-
sion grip of a plastic pen) and two non-object directed actions (soft slap on the 
table; and a pointing gesture). In the second stage of experiment, fifteen inde-
pendent volunteers (“Observers”) watched the videotaped actions (Figure 7). 
In a control experiment, one actor performed the hand actions with eyes 
closed, and five additional observers viewed the resulting videos. Both actor 
and observer subjects performed two functional localizer tasks: a motor 
squeeze and action observation localizer. These data were used to create indi-
vidual localizer ROIs. For each individual, two ROIs were generated: main 
effect of action execution from action execution localizer, and action observa-
tion versus rest observation contrast from action observation localizer. In hy-
perclassfication analyses, intersection of subject-wise localizer ROIs was gen-
erated. We also generated a meta-analytic ROI consisting of regions systemati-
cally activated during action execution and/or observation in previous fMRI 
studies using Neurosynth.org database. 
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Figure 7. Experimental design and sample trials of action execution and observation. A) The 
actor performed four different actions (power grip, precision grip, slap and pointing) in the scan-
ner. An actor in the control experiment kept her eyes closed and could not see her own hand 
actions. B) Trial structure for the actor subjects. C) Trial structure for the observer subjects. 
Green outline shows the trial portions used for classification. 

We assumed that the information represented in brain signals in observers 
corresponds to the information in actor's brain, but it may be aligned differ-
ently. To account for differences in functional localization of action generation 
and observation across individuals, we used Bayesian canonical correlation 
analysis (BCCA; Virtanen et al., 2012; Klami et al., 2013) to realign observer's 
brain data to actor's brain data space. We next performed conventional within-
subject classification, where both the training and testing data sets came from 
each subject. In between-subject classification the training data came from 
actor, and test data from corresponding observers. Hyperclassification used 
actor data for training, and functionally realigned observer's data for testing. 
Classification in all three approaches was accomplished with Bayesian logistic 
regression.  

We characterized the effect of functional realignment by estimating intersub-
ject correlations (ISC) between the brains of actors and observers before and 
after realignment, assuming that successful realignment would increase ISC in 
brain regions where shared information between actors and observers in-
creased. Functional realignment for this analysis was done in similar cross-
validated fashion as for classification analyzes. Additional searchlight classifi-
cation analysis was used to compare voxelwise change in predictive accuracy 
before and after the functional realignment. 
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Figure 8. Means and 95% confidence intervals for hyperclassification and between-subject 
classification accuracy of seen actions in different regions of interest (ROIs). Dashed line indi-
cates the chance level. 

4.2.3 Results 

Conventional within-subject classification results showed significantly above 
chance accuracies for both localizer and meta-analytic ROIs (66% and 70% 
respectively). Hyperclassification accuracy for localizer overlap and meta-
analytic ROIs was significantly above chance level (44% and 47% respectively), 
and also significantly higher than between-subject classification without func-
tional realignment (Figure 8, right). After functional realignment, mean hy-
perclassification accuracy of a model trained on the closed-eyes actor and test-
ed on five observers significantly exceeded chance level in both meta-analytic 
and action-execution and action-observation localizer overlap ROIs (43% for 
meta-analytic and 42% for localizer; Figure 8, left). 

Finally, intersubject correlation across actor–observer pairs before and after 
the realignment highlighted the regions where similarity between the actor 
and the observers increased due to hyperalignment. Significant increases were 
observed in bilateral lateral occipital cortex (LOC), supplementary motor area 
(SMA), and more profoundly in left superior parietal lobe (SPL) and premotor 
cortex. KNN searchlight classifier in the meta-analytic ROI revealed that hy-
peralignment increased classification accuracy statistically significantly in all 
regions within the ROI, with premotor cortex, right pSTS, bilateral SPL, bilat-
eral inferior frontal gyrus and LOC showing more than 5 percentage points 
increase (Figure 9). 
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Figure 9. A) Cortical regions showing significant increase of intersubject correlation (ISC) be-
tween actors and observers after functional realignment. Colorbar denotes the difference in ISC, 
indicated with T-statistic. Green outline indicates the regions included in meta-analytic ROI. B) 
Cortical regions showing significant increase in searchlight kNN classification accuracy after 
functional realignment thresholded with increase of accuracy of more than 5 percentage points. 
Colorbar denotes the difference of kNN accuracy. Green outline as in A). 

4.2.4 Conclusions 

Action observation and execution are tightly linked in the brain and share ac-
tion-specific neural codes, yet these codes are anatomically misaligned across 
different individuals and are only discernible following functional realignment. 
Consequently, functional realignment is required to reveal the neural codes 
shared by the actor and the observer that may provide basis for inference of 
another person’s motor goals and intentions. In agreement with previous find-
ings, we found that both action execution and observation are supported by 
activity in an extensive brain network beyond the core mirroring systems 
(Evangeliou et al., 2009; Molenberghs et al., 2012): hyperclassification follow-
ing functional realignment allows successful differentiation between observed 
actions using activation patterns within a distributed network of bilateral LOC, 
SMG, SPL and precentral and postcentral cortices. Such mapping of seen ac-
tions into one’s own motor system might also promote mutual understanding, 
as it provides the observers with a somatosensory / sensorimotor framework 
that is shared with the actor (Rizzolatti and Sinigaglia, 2010; Kilner, 2011). 
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4.3 Study 3: Speaker-listener emotional contagion synchronizes 
brain activity across individuals  

4.3.1 Aims of the study 

Study III investigated whether emotional contagion via speech enhances syn-
chronization of brain activity between the speaker and the listener. We hy-
pothesized that emotional valence and arousal conveyed by the speech seman-
tics would enhance speaker-listener neural coupling in limbic and somatosen-
sory circuits, as well as speech-related brain regions. To test this hypothesis, 
we implemented pseudo-hyperscanning experimental paradigm, where one 
individual told emotional stories, and another individual listened to these sto-
ries and empathized with speaker. 

4.3.2 Materials and methods 

In the first fMRI phase, two healthy right-handed female volunteers (“speak-
ers”) narrated a set of thirty-five 1-minute, pleasant, neutral, and unpleasant 
emotional stories. The stories were based on pre-selected topics (Pleasant: I 
was lying on a blanket underneath a tree with my lover. We were kissing pas-
sionately, and I felt I was so much in love with him. Neutral: I was spending 
an afternoon at home. There was nothing particular to do, so I went to the 
kitchen. I opened the fridge and started wondering what I should eat for din-
ner. Unpleasant: I was sitting with my mother on her hospital bed. She fell 
into a coma during an unsuccessful operation. She could no longer talk to me, 
and I knew she would never recover).  

 

Figure 10. Overview of the experimental design and data analysis. Two individuals told 35 
stories while being scanned in fMRI, and 16 listeners heard those stories while also being 
scanned in fMRI. ISPS was used to estimate intersubject similarity of brain signals between 
speakers and listeners. 

The speaker subjects were asked to prepare a short story on each topic based 
on their autobiographical events before the fMRI experiment. The stories were 
recorded with a MRI-compatible microphone, cleaned from noise and pre-
sented to the sixteen healthy right-handed female listeners. After the scanning, 
speakers and listeners were presented with the recorded stories, and asked to 
rate continuously how pleasant versus unpleasant (valence) and aroused ver-
sus calm (arousal) they felt while listening to the stories. These data were orig-
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inally collected at 5 Hz but resampled to 0.59 Hz (1 / TR) and rescaled to range 
from 0 (displeasure / low arousal) to 1 (pleasure / high arousal). 

 

Figure 11. Self-reported valence and arousal time series of speaker and listener subjects. Solid 
black line indicates speaker’s behavioural ratings, and shaded area indicates SEM, derived 
from listener’s data. 

We first analyzed the effects of valence and arousal on BOLD responses with 
GLM implemented in SPM12. A two-stage random effects model was used. For 
each participant, we used the GLM to assess regional effects of the valence and 
arousal parameters on BOLD indices of activation. Data were modeled sepa-
rately for speaker and listener subjects, using the corresponding valence and 
arousal time series as regressors. Individual contrast images were generated 
for main effects of story as well as for valence and arousal. Next, a second level 
(random effects) analysis was applied to these contrast images in a new GLM. 

ISPS (Figure 2) was used to quantify similarity of the time series of BOLD 
signals for the speaker and the listeners (Figure 10). Because we were interest-
ed in speaker-listener synchronization, only speaker-listener pairwise ISPS 
time series were used in the analyses. We first calculated mean speaker-
listener ISPS to reveal brain regions where the listener’s and speaker’s neural 
activity was synchronous regardless of their emotions. Only data acquired dur-
ing speaking / listening to speech were used in the analysis. To estimate how 
emotions modulate speaker-listener ISPS, we next regressed the voxelwise 
speaker-listener ISPS time series with valence and arousal time series. Mean 
valence and arousal time series were z-transformed and convolved with a 
gamma function (θ = 1, k = 6) to account for the hemodynamic lag. We next 
calculated voxelwise Pearson’s correlation coefficient between speaker-listener 
ISPS and valence and arousal time series. This analysis was used to reveal 
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brain regions where reported similarity in feelings was associated with neural 
synchronization. 

Finally, to test whether similarity of speaker-listener emotional states would 
be associated with similarity of brain states, we used representational similari-
ty analysis (RSA). In addition to the voxel-wise neural speaker-listener ISPS 
time series, we also computed ISPS for speaker-listener self-reported arousal 
and valence time series to index similarity of emotional feelings between 
speaker-listener pairs. Using analysis similar in spirit to RSA (Kriegeskorte et 
al., 2008), we then compared the voxel-wise neural ISPS time series with ISPS 
time series of valence and arousal. These results indicated where the brain 
activity became similar, when emotional feelings became similar between 
speakers and listeners. 

4.3.3 Results 

The narratives successfully elicited strong and time-variable emotional reac-
tions, correlated strongly between speaker-listener pairs (Figure 11). 

Regional effects analysis revealed overlapping brain activity in visual, audito-
ry and inferior parietal cortices as well as midline structures during storytell-
ing and listening. Valence and arousal of the speech modulated brain activity 
in overlapping regions for speakers and listeners. Specifically, overlapping 
activation modulated by arousal was found in visual cortex, SMA, premotor 
cortex, right TPJ, thalamus and temporal cortex. When modulated by valence, 
overlapping brain regions included bilateral temporal poles and precuneus. 
Irrespective of emotional content of the narratives, brain activity between 
speakers and listeners was synchronous in left inferior frontal gyrus (IFG), 
bilateral insula, left temporal pole, bilateral superior auditory cortex, bilateral 
AG/SMG, left V2, V3 and V4, precuneus, posterior and anterior cingulate cor-
tex, and medial prefrontal cortex (Figure 12). 

 

Figure 12. Mean speaker-listener synchronization throughout the experiment. 
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Valence and arousal dimensions of emotions were associated with spatially 
distinct patterns of increased speaker-listener neural synchrony (Figure 13). 
Arousal was positively associated with speaker-listener neural coupling in 
premotor cortex, left primary somatosensory cortex (SI), left middle frontal 
gyrus (MFG) left SPL, right pSTS and STG, left STG and Heschl’s gyrus, 
precuneus and SMA. Negative associations were observed in bilateral temporal 
pole, right AG, thalamus and lingual gyrus. Valence was positively associated 
with speaker-listener neural coupling in bilateral amygdala and hippocampus, 
lingual gyrus, precuneus, temporo-parietal cortex, right AG, left temporal pole 
and right IFG / frontal pole. Negative associations were observed in premotor 
cortex, left Heschl’s gyrus, right pSTS, left SPL and bilateral frontal pole. 

The RSA results revealed that similarity of emotional states was associated 
with similarity of neural states, that is, when emotional feelings are aligned 
across two individuals, their brain activity also becomes synchronized in spa-
tially selective manner (Figure 14). Similarity of arousal ratings was associated 
with increased neural similarity in visual and somatosensory cortex, bilateral 
fusiform cortex and right amygdala / hippocampus. Similarity of valence was, 
in turn, associated with increased neural similarity in ACC, left superior parie-
tal lobule (SPL) and precuneus, premotor cortex, bilateral AG/SMG, right 
temporal pole, right MTG and right amygdala. 

 

Figure 13. Enhanced speaker-listener neural coupling as a function of valence and arousal. 
Section A indicated regions, where neural coupling was enhanced as a function of arousal, and 
section B indicated regions, where neural coupling was enhanced as a function of valence. 
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Figure 14. RSA between emotional valence, arousal and brain activity (ISPS) between speak-
ers and listeners. Warm colour indicates increase in neural coupling between speakers and 
listeners associated with increase in similarity of valence ratings, and cold colour indicates in-
crease in neural coupling associated with increase in similarity of arousal ratings. 

4.3.4 Conclusions 

This study highlighted how speaker-listener synchronization in the brain’s 
somatomotor, sensory and emotional circuits was associated with the emo-
tional semantics of the speech. When hearing emotional speech, the listener 
automatically mimics the emotional state of the speaker in their own brain. A 
potential role for such synchronization of specific brain regions when emo-
tional feelings are similar could be to support more accurate inference and 
prediction of feelings of others. Such emotional contagion potentially allows 
listeners to replicate in part the mental and possibly somatovisceral state of 
the speaker, providing a framework that supports understanding of the feel-
ings of the other person. Previous studies have showed synchronization of 
brain activation between individuals exposed to similar emotional content 
(Nummenmaa et al., 2014a). Our results extend these findings including emo-
tional semantics of speech in addressing brain-to-brain coupling between in-
dividuals involved in spoken interaction. 
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4.4 Study 4: Fronto-parietal network supports context-dependent 
speech comprehension.  

4.4.1 Aims of the study 

In the final study we aimed at revealing the brain mechanisms that support 
speech comprehension based on prior knowledge (i.e. contextual understand-
ing). Knowing the context of a narrative facilitates its comprehension (Brans-
ford and Johnson, 1972), but the brain basis supporting contextual under-
standing of text or speech has remained unresolved (for review see Martin-
Loeches et al., 2008). While there is evidence for fronto-temporal and parietal 
regions contribution to linguistic processing (Binder et al., 2009; Price, 2012), 
the actual cortical network supporting contextual understanding remains un-
specified. Moreover, prior studies addressing contextual effects on compre-
hension have used highly impoverished linguistic stimuli, thus not represent-
ing the complex auditory communication used in everyday life (St George et 
al., 1999; Martín-Loeches et al., 2008). We also extended the previous re-
search on contextual effects and coherence of text and context (Maguire et al., 
1999, Martín-Loeches et al., 2008 and St George et al., 1999) by addressing 
both regional responses and functional connectivity of the brain׳s language 
network during naturalistic context-dependent speech processing. We hypoth-
esized that listening to ambiguous narratives with a semantically mismatching 
context would increase semantic selection demands due to lacking contextual 
cues, which would be reflected in increased activation in Broca’s area. In addi-
tion, we hypothesized that Broca’s area would function as the central “hub” for 
the fronto-temporo-parietal brain network for context-dependent speech pro-
cessing. 

4.4.2 Materials and methods 

During fMRI, twenty right-handed healthy volunteers listened to 20 52-72-s 
ambiguous narratives. Narratives described complex action sequences (such as 
fishing) in general terms that were ambiguous without any specific context-
clarifying cues, similarly as in the original Bransford and Johnosn (1972) 
study. For example, here is an excerpt of the narrative describing process of 
painting the walls: “It is quite clear, that the process should be done with ei-
ther great accuracy or a good skill. Then there will be no problem with finding 
a way of cleaning all the things. An additional trouble might be the tempera-
ture and general climate. Choosing a proper time for it might allow one to 
avoid a lot of potential problems.” Prior to listening to each narrative, partici-
pants were given a contextual cue regarding the upcoming passage (Figure 15). 
The cue was either matching (i.e. giving a correct context to the passage) or 
conflicting (i.e. giving an incorrect context to the passage). Participants lis-
tened to the narratives in a fixed, pseudo-random order while being scanned. 
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Figure 15. Sample trials with matching (top) and mismatching (bottom) contextual cues. Narra-
tives described complex action sequences such as fishing in general terms that were ambigu-
ous without the contextual cues. Before each narrative, participants saw a contextually match-
ing or mismatching visual cue. 

The picture-narrative congruency was counterbalanced so that every partici-
pant received exactly the same auditory stimulation, yet the picture context for 
each narrative was different across the two groups. Comprehension of narra-
tives was rated after the experiment on the scale from 1 to 4, and recall of the 
narratives was measured after the experiment as a ratio of recalled idea units 
to maximum idea units recalled for each trial. 

Regional effects were analyzed in GLM. Two boxcar regressors – matching 
context trials and mismatching context trials – were used to model subject’s 
fMRI voxel time series. The regressors included only time points when narra-
tive was presented. We also quantified the temporal similarity of brain activity 
across subjects during mismatching and matching cue conditions using inter-
subject correlation (ISC) analysis. ISC was calculated separately for each of the 
20 narratives for the two counterbalancings, including all time points when 
the story was told, resulting in a total of 40 ISC group maps. ISC values across 
conditions were linearly regressed with the average behavioral comprehensi-
bility ratings. Functional connectivity was estimated using PPI implemented in 
SPM8. Spheres of 5-mm radius were drawn around the mean stereotactic loca-
tion of Broca’s area (MNI coordinates: −44, 23, 15), as well as posterior and 
anterior parts of the Broca’s region (pars opercularis; MNI: −50, 14, 16 and 
pars triangularis; MNI: −46, 30, 6). These coordinates were taken from the 
middlemost voxel in corresponding region in Harvard-Oxford FSL atlas. 
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Figure 16. Means and standard errors of means for comprehension (left) and recall (right) rat-
ings. 

4.4.3 Results 

Matching contextual cues improved the comprehension and subsequent recall 
of the narratives (Figure 16). GLM analysis revealed significantly stronger 
task-evoked BOLD responses when listening to narratives preceded by contex-
tually mismatching compared to matching pictures in the cluster that covered 
left BA 44 and BA 45, as well as a portion of the left dorsal and ventral premo-
tor cortex (Figure 17). No significant differences were observed in this analysis 
or in the opposite contrast (matching versus mismatching). 

Functional connectivity analysis using PPI extended these findings to show 
how these areas are interacting with other brain structures during context-
dependent speech processing. Increased narrative comprehension and recall 
were paralleled by enhanced functional connectivity between Broca’s area and 
bilateral inferior parietal cortex, anterior and posterior cingulate cortices, and 
left anterior superior frontal gyrus (Figure 18). Importantly, in spite of its en-
hanced connectivity in the matching condition, hemodynamic activity in Bro-
ca’s area was stronger in conflicting condition. Regressing ISC against com-
prehension ratings revealed stronger ISC for lower comprehension ratings in 
anterior part of Broca’s area, left lobule VIIIa of the cerebellum and left middle 
temporal gyrus. 
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Figure 17. (A) and (B) Brain regions showing increased activity (cold colour) for narratives pre-
sented in mismatching versus matching context, and enhanced functional connectivity (hot 
colour) for narratives presented in matching versus mismatching context. Seed region in Broca’s 
area for connectivity analysis is denoted by the red circle in the volume renders. Data are 
thresholded at Z>2.3, and FDR corrected (p<0.05) at the cluster level. (C) Mean signal percent-
age change plot shows averages for BA 44 and BA 45 seeds. Error bars show standard error of 
the mean. 

 

Figure 18. Brain regions showing significant functional connectivity with posterior (hot colour) 
and anterior (cold colour) Broca׳s area (seeds indicated by orange and blue circles respectively) 
during matching versus mismatching trials. Overlap is indicated in purple. Connectivity from 
both seeds increases only in the right inferior parietal cortex (AG/SMG, indicated by purple). 
Data are thresholded at Z>2.3, and FDR corrected (p<0.05) at the cluster level. 

4.4.4 Conclusions 

This study highlights that Broca’s area and its connections with the inferior 
parietal and cingulate cortices play a critical role in context-dependent narra-
tive comprehension. Listening to narrative disambiguated with appropriate 
context facilitates access to and selection of relevant semantic information and 
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further integration of words and sentences into a coherent narrative. We pro-
pose that at the neural level, such contextual understanding is supported by 
enhanced connectivity of posterior and anterior portions of Broca’s area with 
fronto-parietal network of brain regions. Speculatively, we suggest that within 
this network a recurrent linguistic process involves inferior parietal cortex 
which participates in access to semantic representation (Price, 2012) of incom-
ing information which is further selected and unified into larger units in Bro-
ca’s area (Hagoort, 2005; Moss et al., 2005) on the basis of available context 
and later matched and updated to a new representation in inferior parietal 
cortex (Humphries et al., 2007; Binder et al., 2009), while the dACC monitors 
for consistency of narrative in relation to context (Paus, 2001; Hagoort, 2005). 
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5. Discussion 

5.1 Possible mechanism for matching intersubjective experienc-
es 

Altogether these studies show that when two individuals’ mental states become 
more similar, their brain activity becomes more synchronous. This effect was 
observed across multiple domains spanning from action observation to emo-
tional contagion and speech processing. 

In the first study we discovered that active simulation of observed person’s 
mental states was associated with enhanced neural synchrony in brain net-
work supporting action execution and observation across multiple observers. 
It is crucial to understand the interlocutor’s goals and intentions during social 
interaction, and mapping of the mental and bodily states of others’ onto our 
own sensorimotor system may enable us to understand their actions via direct 
simulation mechanisms, also called direct matching (Rizzolatti and Sinigaglia, 
2010). Such direct matching may support social interaction by providing a 
somatomotor framework for understanding others’ actions. 

The study II extended the findings of study I to two-person interaction by 
showing that motor neural codes of actor are automatically mapped to observ-
er’s brain as corresponding action-related neural signatures. When individuals 
actively simulate the mental state of observed actors, their attentional and ac-
tion-observation brain networks synchronize. Previous research showed 
matching neural signatures between action execution and observation within 
single individuals (Kilner et al., 2009; Gazzola & Keysers, 2009; for review see 
Heyes, 2010; Molenberghs et al., 2012). Our study II for the first time has 
showed how these neural signatures are mapped between two individuals, ac-
tors and observers. During motor interaction, neural signatures between exe-
cuted and observed actions are likely shared in the brains of interlocutors. 

In the third study we investigated how emotional feelings synchronize atten-
tion, limbic and somatosensory networks across interacting individuals and 
revealed that emotional interaction was accompanied by spatially selective 
synchronization of brains of listener and speaker. Such neural synchronization 
was also associated with stronger and more similar emotional feelings in 
speakers and listeners. Previous research has shown that emotional brain ac-
tivity becomes synchronized across the individuals exposed to similar emo-
tional stimuli (Nummenmaa et al., 2012; Nummenmaa et al., 2014a). The 
study III extends these findings to speaker-listener interaction context and 
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confirms the hypothesis that emotional contagion is associated with both in-
creased similarity in emotions and neural activity of interacting individuals.  

Finally, study IV revealed that relevant contextual information enhances 
speech comprehension, due to increased functional connectivity between Bro-
ca’s area and regions involved in semantic access and error monitoring. The 
up-to-date mental representation of the semantic information is crucial for 
communication with our peers (Wlotko and Federmeier, 2012). Knowing the 
context of a conversation thus is key ingredient for mutual understanding dur-
ing social communication, and the findings of study IV revealed how contextu-
al understanding is supported in the brain during listening to a narrative. 

It was suggested that mutual understanding during social interaction is 
achieved by employing similar neural computations in similar regions and 
temporal scales across the interlocutors (Stolk et al., 2016). Neural processes 
coupled between the two individuals constrain and shape their behavior in 
interactive environment, and allow more complex joint modes of behavior 
than would have been possible for each isolated individual (Hasson et al., 
2012). Our studies support the general notion that neural coupling between 
human brains supports social interaction. Specifically, selective synchroniza-
tion of brain activity across the interacting individuals may reflect simulation 
of the interlocutor’s perceived mental, somatic, and motor state in one’s own 
brain. Such simulation allows direct matching mechanism to infer the feelings, 
goals and intentions of other, as well as predictions on how the interaction will 
develop. When we interact with others, we actively simulate their mental states 
in our own minds. In speech comprehension, action understanding and emo-
tional contagion, perception of motor actions such as hand and facial move-
ments allows individual to simulate the behavior of interlocutor and infer the 
possible feelings, goals and intentions, as well as anticipate the consequences 
of observed behavior. Neural coupling between interacting individuals may 
hint at an overarching functional pattern that allows mapping own experience 
to experience of other individuals (Gallese, 2003; Oosterhof et al., 2013) and 
under these circumstances support direct inference of others’ mental states. 

5.2 Analogous mechanisms supporting social interaction across 
action, language and emotions 

Multiple lines of evidence suggest that neural substrates for action perception, 
language, and emotions may indeed be shared. For example, core speech pro-
cessing region in Broca’s area also contributes to action planning, observation, 
understanding and imitation, and serves as a part of mirroring system in hu-
mans (for review see Nishitani et al., 2005). Pulvermüller (2005) has shown 
that perception and understanding of action words activates not only linguis-
tic, but also the action control and execution brain areas. Hearing a word is 
associated with activation of the related articulatory motor program, and in a 
similar fashion to mirroring, it seems that action word understanding triggers 
an automatic thought of the related action. In their fMRI study, Hauk et al., 
(2004) showed overlapping activation of somatotopic brain areas during ob-
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servation of finger, tongue and foot movements, and silent reading of action 
words related to face, arm and leg. Together, these studies suggest that motor 
system contributes to language processing, and vice versa. 

Action and language are also tightly linked with emotions. Ferry et al., (2013) 
revealed that action observation in emotional context was associated with 
stronger neural response in motor frontal cortex, temporal and occipital corti-
ces in contrast to observation of the same action in neutral context. Another 
study found that motor evoked potentials induced with TMS are larger during 
observation of pleasant and unpleasant versus neutral images (Hajcak et al., 
2007). In line with evolutionary research showing relevance of emotional 
stimuli for survival, Grecucci et al., (2011) has shown that imitative behavior is 
enhanced by negative stimuli. Moreover, Broca’s area activity becomes more 
synchronized across individuals during highly arousing events (Nummenmaa 
et al., 2014a). These studies suggest that emotions may modulate activity in 
brain regions involved in action understanding. Such modulation is highly 
relevant for survival – observation of negative emotion in other individual (e.g. 
fear or disgust) hints us towards potentially dangerous entities and suggests 
relevant action or behavior. All in all, our findings suggest that understanding 
and prediction of other’s thoughts, actions and feelings is supported by similar 
mechanisms involving sharing neural information between brains of interact-
ing individuals. 

5.3 Role of temporoparietal junction in social communication 

Our studies revealed that social interaction and perception recruit a widely 
distributed set of brain areas. To visualize the commonalities of the brain re-
sponses supporting action, speech, and emotion, we summarized the regional 
activation profiles from the studies included in this thesis. This summary 
shows that some regions have more task-specific responses (ACC, PCC, SI / 
SII, Insula, Temporal poles), whereas strikingly consistent activation patterns 
are found across the four studies in bilateral AG / SMG extending to pSTS 
(Figure 19). The parietal segment of this region is often referred to as tem-
poroparietal junction (TPJ; Binder et al., 2009). This pSTS / TPJ region is 
likely contributing to social communication process. Multiple studies show 
that pSTS is important hub for social neural processes (Lahnakoski et al., 
2012a) and is crucial for encoding others’ intentions (Nummenmaa and Cal-
der, 2009). Monkey studies show that inactivation of pSTS in macaques sup-
presses social gaze following (Roy et al., 2012). Role of SMG in social commu-
nication is also supported by a study showing that overcoming egocentrically 
biased empathetic judgments was associated with activation of rSMG, and 
suppression of activity in this region by rTMS caused increase in egocentric 
bias (Silani et al., 2013). Another study with brain-damaged patients has 
shown the necessity of left TPJ, including SMG, for reasoning about beliefs of 
others (Samson et al., 2004). 
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Figure 19. Brain regions involved in studies reported in this thesis. Black circles indicate clus-
ters from results of individual studies. Green circles indicate regions showing enhanced func-
tional connectivity with Broca’s area during contextual speech comprehension (Study IV). Red 
circles indicate enhanced neural coupling between speakers and listeners in emotional commu-
nication (Study III). Yellow circles indicate enhanced neural coupling between individuals empa-
thizing with observed boxers vs. neutral observers (Study I). Blue circles indicate regions where 
neural signatures of actions were shared among actors and observers (Study II). 

TPJ plays a significant role in reasoning about other's beliefs, emotions, goals 
and intentions (for review see Saxe, 2006; Seghier, 2013) but also in perspec-
tive taking (Ruby and Decety, 2003), empathy (Jackson et al., 2005), and ToM 
(Lawrence et al., 2006). Uddin et al. (2006) have shown that rTMS applied to 
rIPL suppressed distinction between self and other in perceptual task involv-
ing discrimination of one’s own face and other familiar faces. There is also ac-
cumulating evidence from neuroimaging and lesion studies showing that rTPJ 
is crucial region for distinguishing signals from self-produced actions and sig-
nals from environment (for review see Decety and Lamm, 2007). 

If shared representations of speech, action or emotion play a role in social 
perception, it would require some way of distinguishing between self and other 
(Lawrence et al., 2006). Decety and Lamm (2007) suggested that the TPJ ac-
tivity during social cognition may be based on lower-level mechanism that 
generates, tests and corrects internal predictions about external events, which 
is also in line with our findings in study IV, where we show increase in func-
tional connectivity with TPJ associated with efficient parsing of a narrative. 
Prediction of how our peers will behave, what emotions they will feel - is at the 
core of social behavior (Dunbar and Shultz, 2007). Social communication re-
quires understanding speech, intentions and feelings of others and when in-
ferred behavior could be explained by multiple competing options – TPJ may 
support selection of appropriate program. 

Together, the pSTS / TPJ are involved in a wide range of social interactive 
behaviors, and may serve as a source of information for successful parsing of 
socially relevant information in the environment, such as gaze, emotions, be-
liefs and intentions of others. 
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6. Highlights and future directions 

6.1 Statistical modeling of shared neural codes 

Multiple studies addressing similarity of neural activity patterns between ac-
tion execution and observation have not found shared action-specific signa-
tures between motor and seen actions (Dinstein et al. 2008; Etzel et al. 2008; 
Oosterhof et al. 2010). In our approach we took additional steps to model exe-
cution and observation-specific information, and separate it from the infor-
mation shared between modalities (Virtanen et al. 2012; Klami et al. 2013). 
This information allowed us to functionally realign the neural data of actors 
and observers and reveal that the action-related neural codes are indeed 
shared. Prior work has shown that such “hyperalignment” approaches allow 
realigning functional activity patterns between multiple individuals if they are 
initially misaligned due to differences in neuroanatomy and functional special-
ization of cortical patches (Haxby et al. 2011). However, this analytic approach 
proved to be challenging to interpret, since intuitive model visualization 
means were absent. As George Box (1976) said, all models are wrong, but some 
models are useful. Complex models require simple and intuitive results to be 
communicated; otherwise their explanatory potential is not useful. ROI-based 
approach adopted in study II allowed to both visualize subject-specific varia-
tion in regions involved in action encoding, as well as inspect how well does 
meta-analytic data map the regions participating in action execution and ob-
servation. While this method provided crucial details regarding effect of func-
tional realignment, informative visualization of shared components that con-
tributed to realignment remains an unsolved challenge. 

6.2 Advantages of the naturalistic paradigm 

Naturalistic stimuli are required to study realistic social behavior with high 
ecological validity. Previous research has shown that social context and per-
ception of life-like interaction are required to more strongly recruit the atten-
tional, mentalizing and reward networks involved in social interaction (for 
review see Rice and Redcay, 2015). Studies on multisensory perception and 
integration revealed that neural responses during, for example, audiovisual 
stimulation show super-additivity property: the joint response is larger than 
the summed response for each sense when stimulated individually (Holmes 
and Spence, 2005). This suggests that naturalistic stimulation, which typically 
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involves multisensory input, may provide results that expand what is known 
from highly controlled single modality studies. Hence neural activity associat-
ed with complex naturalistic stimulation may differ significantly from simpli-
fied and highly controlled stimuli (Hasson et al., 2004). Results from studies I 
and IV reveal the changes in functional connectivity of linguistic brain regions 
during narrative comprehension and enhanced neural synchronization in at-
tention and action-observation networks for individuals observing naturalistic 
videos with similar perspective. These findings expand our understanding of 
human brain functions in realistic interactive situations. Traditional strictly 
controlled stimulation paradigms reveal how specific brain systems that are 
involved in social interaction tend to respond to various stimuli. Naturalistic 
paradigms extend our understanding of these brain systems to realistic com-
plex semantics of interactive situations, and reveal how brain networks inter-
act in natural environment. Together these two approaches are synergistic in 
the way they reveal how brain parses simple and complex aspects of everyday 
life, since responses to complex stimuli cannot always be predicted from com-
binations of responses to simple stimuli. 

6.3 Studying true social interaction 

The traditional approach in social interaction research is to study a single indi-
vidual, i.e. sender or receiver of social information (Schillbach et al., 2013). 
Studies presented here went one step further and measured both individuals 
and investigated the alignment of their brains and mind states. When one in-
dividual communicates thoughts, actions and feelings to another individual, 
this information may be mapped into the listener’s own behavioural reper-
toire, leading to more similar thoughts and feelings in listener (cf. mirroring; 
Rizzolatti and Sinigaglia, 2010). Modeling similarity of neural activation dur-
ing interaction targets this process and allows revealing the regions and their 
connections that resonate when, for example, individuals empathize with each 
other. Investigating senders and receivers of social information together pro-
vides valuable insights about the neural subserving of social communication, 
however in the future this approach should be taken yet another step further to 
allow real interaction and bidirectional information exchange between two 
individuals. 

While simulation of cell firing is important for modelling the fundamental 
properties of nervous system, as it reveals the building blocks of human brain 
(D'Angelo et al., 2013), modelling high-level cognitive processing is important 
for understanding the way real brain in complex environment figures out the 
needs, wants and feelings of another real brain. Knowing that neural processes 
can be similar between individuals that feel mutual trust, understand and em-
pathise with each other is important hint towards understanding why do we 
make certain social and moral choices, how do we treat ones that are like us, 
and how do we treat ones that are very different. Moreover, we learn how 
those choices can be affected by disease. Finding groups with deficits that al-
low pinpointing the failures in normal system is an unmatched validator of a 
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model. For example, Williams syndrome is associated with strong interest to-
wards social interaction and social stimuli, while, in contrast, autism is charac-
terized with diminished interest in socially relevant information (Riby and 
Hancock, 2008). Salmi et al. (2013) used ISC during naturalistic movie watch-
ing to show significantly less neural synchronization in individuals diagnosed 
with Asperger syndrome, compared to neurotypical individuals. Studying how 
brains of interacting individuals with these disorders work in naturalistic situ-
ations may reveal the consequences of, for example, absence of neural syn-
chronization in interaction. 

6.4 Future directions in social interaction research 

The present studies strongly suggest that the next step in understanding neu-
ral subserving of social interaction should constitute a switch from “spectator 
science” focusing on single individuals to two-person brain imaging. Most 
common approach in social cognitive experiments is to position experimental 
subject into a role of observer of some static or dynamic stimuli and report 
their feelings related to content of the stimuli (for review see Schillbach et al., 
2013; Garcia and Ibáñez, 2014). Such approach essentially reduces the exper-
imental subjects into passive observers that cannot interact with their (social) 
environment. Multiple studies show fundamental differences in social cogni-
tion between situations where individuals are in interaction, or merely observ-
ing other individuals (Schillbach et al., 2013). It has been proposed that real-
time social interaction would allow individuals to create a shared psychological 
state that entails both the desire of one individual to interact and recognition 
of that desire by the other individual (Tomasello et al., 2005) and assumes that 
agents actively make use of the behaviorally relevant information conveyed by 
interlocutors (Schillbach et al., 2013). 

In study II we show that action-related neural signatures are shared between 
interacting individuals and may provide means for direct matching mecha-
nism of action understanding. Moreover, in study III we reveal that emotional 
contagion, or synchronization of emotional feelings between speaker and lis-
tener is associated with neural synchronization in multiple brain networks, 
possibly reflecting the transmission of emotional information between inter-
acting individuals. However, in both cases, the information flow is unidirec-
tional; one individual is “transmitting”, while the other is “receiving” the in-
formation. Two-person setting would allow expanding these findings to an 
even more realistic situation of bidirectional interaction, where feedback loops 
will emerge between the two interacting individuals (Hari et al., 2015). 

Two-person neuroscience with fMRI is still limited by interaction constraints 
imposed by the experimental environment. Real world interaction in confined 
scanner, the environment suffers from multiple limitations, and, first of all, 
from significant constraint of individual's ability to actively participate in ex-
perimental situation. One improvement of the situation is suggested by ad-
vances in virtual reality technologies, allowing individual not only to view en-
vironments otherwise not available in confined scanner space, but also to cer-
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tain extent experience embodiment, or presence in an avatar (Cohen et al., 
2014). Virtual reality provides high degree of ecological validity, supporting 
naturalistic and contextually rich stimulation scenarios, as well as featuring 
control over key variables of environment (Bohil et al., 2011). However, it still 
remains challenging, even with virtual reality technologies, to record brain 
data from two interacting individuals simultaneously. 
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7. Conclusions 

Mutual perception and understanding of the physical world is associated with 
enhanced neural coupling across the interlocutors. Sharing information be-
tween the brains of interacting individuals, be it similar encoding of actions, 
similar prior knowledge, or similar dynamics of activation in emotional brain 
network, could be one of the core principles that support mutual understand-
ing. Shared information may enable us to simulate others’ mental and bodily 
states and help us to understand and view the external world in a similar fash-
ion (Hari and Kujala, 2009; Nummenmaa et al., 2012). Our findings on the 
shared neural signatures between executed and observed action across multi-
ple individuals directly support such simulation hypothesis of action under-
standing. 

Inference regarding mind state, thoughts, feelings, goals and intentions ena-
bles mutual understanding and prediction of behavior of other individual. Re-
alistic social interaction is an active process, and we show that naturalism of 
stimulation and inclusion of second individual in interactive situations pro-
vides novel information regarding functional connectivity of the brain and 
neural coupling between brains of two individuals. Our results also show mul-
tiple brain regions sharing the neural information between individuals in-
volved in social interaction. Among those regions, we found that pSTS / TPJ 
were involved in every task. The key role of this region in social processes and 
prediction of external events may extend to social cognition, potentially sup-
porting selection of adequate prediction of other’s behavior. 

This thesis addressed neural mechanisms that support social communication 
and allow us to align our own minds with minds of others. We have shown the 
role of similarity, both in neural activity and in mind states, in supporting so-
cial interaction. However, the practical implication of investigating such 
alignment of individuals during social interaction remains unresolved. Overall, 
there is a tendency to have stronger connection with individuals that are more 
similar to us: our interpersonal connections are strengthened when we are 
alike. While it allows us to more easily establish connection to our peers, it also 
extends the divide between an individual and others, whom one considers be-
ing different (McPherson et al., 2001). The findings presented in this thesis 
expand our understanding on the role of similarity in social interaction, and 
unraveling the features that make us similar or different not only on behavior-
al, but also on neural level, may enable us to bridge these gaps and find ways 
to avoid conflicts. 
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