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Abstract

Emotions guide both human and animal behavior providing the means for survival in a constantly
changing environment. Different emotions seem to be distinct from each other in several aspects,
including physiological changes, bodily sensations, facial expressions, and subjective experience.
Whether and how such emotion categories exist at the neural level remains however under debate.
The goal of this dissertation was to employ pattern classification methods to investigate the neural
underpinnings of different emotion states. Specifically, it was hypothesized that if different
emotions have distinct neural bases, we should be able to reliably classify them from brain activity
and connectivity patterns. Further, it was hypothesized that the classifier confusions presumably
reveal which emotions have similar neural substrates.

Multiple emotional states were induced in four studies with altogether 109 participants using
emotional movies, mental imagery, and narratives while participants' brain activity was measured
with functional magnetic resonance imaging (fMRI). Several approaches to the fMRI data analyses
were employed: multivariate pattern classification to distinguish voxel activity and functional
connectivity patterns underlying different emotions, representational similarity analysis to
compare experienced and neural similarity of different emotions, functional connectivity analysis
to reveal emotional modulations in brain connectivity, univariate methods such as general linear
model (GLM) to visualize the neural substrates of different emotions, and correlation analyses to
compare the relationship of different emotions at different emotion-related components.

Results from these studies show that specific emotions can be classified from both voxel activity
and functional connectivity patterns. Successful pattern classification of voxel activity across the
whole brain shows that different emotions have distinct brain activity patterns that generalize
across participants and across emotion induction techniques. Further, emotions that subjectively
feel more similar also have more similar neural underpinnings. Functional connectivity is
modulated by emotional content and shows distinct patterns for different emotions especially
within the default mode network (DMN). DMN regions especially in the cortical midline, together
with somatomotor, sensory, and subcortical areas, support most emotions. Finally, distinctness of
emotions is related at the level of different components, including facial expressions, bodily
sensations, emotional evaluations, subjective experiences, and neural substrates.

To conclude, emotions have distinct brain activity and connectivity patterns that encompass
large extent of the brain. Emotions can thus be viewed as systemic states that, at a given moment,
facilitate and constrain other mental functions.
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Tiivistelma

Tunteet ohjaavat ihmisten ja eldinten kéayttaytymista tarjoamalla keinoja selviytyi jatkuvasti
muuttuvassa ymparistosséd. Eri tunteet eroavat toisistaan monin tavoin: eri tunnetiloihin liittyy
erilaisia fysiologisia muutoksia, kehon tuntemuksia, kasvonilmeita ja yksilollisid tunnekokemuksia.
Tunnetutkimuksessa kuitenkin kiistella4n siitd, miten eri tunnetilat eroavat toisistaan aivoissa.
Taman vaitoskirjan tavoitteena oli hyédyntda koneoppimisen menetelmia eri tunnetilojen
hermostollisen perustan tutkimiseksi. Erityisesti oletettiin, ett4 jos eri tunteilla on erillinen
aivoperusta, ne pitiisi pystyi luokittelemaan aivojen aktiivisuuden ja yhteyksien muutosten
perusteella. Lisdksi oletettiin, ettd kdytetyn luokittelualgoritmin tekemit virheet paljastavat, milla
tunteilla on keskenddn samankaltaisempi hermostollinen perusta.

Eri tunnetiloja tuotettiin neljassa tutkimuksessa (yhteensd 109 vapaaehtoista osallistujaa)
tunnepitoisten elokuvien, eldytymistehtévin ja tarinoiden avulla samalla, kun osallistujien aivojen
aktivaatiota mitattiin toiminnallisella magneettikuvantamisella (fMRI). Datan analyysissa
kaytettiin useita eri lahestymistapoja: eri tunteisiin liittyvid vokselikohtaisia aktivaatioita ja
funktionaalista konnektiviteettia eriteltiin koneoppimisen luokittelualgoritmeja kayttaen, eri
tunteiden koettua ja hermostollista samankaltaisuutta vertailtiin samankaltaisuusanalyysia
hyodyntéden, tunteiden aikaansaamia muutoksia aivojen konnektiivisuudessa tutkittiin
funktionaalista konnektiivisuusanalyysia kiyttden, yksimuuttujamenetelmia kuten lineaarista
regressiota kiytettiin eri tunteiden aivoperustan visualisointeihin ja korrelaatioanalyyseilla
verrattiin tunnetilojen eroja tunteiden eri komponenteissa.

Tulokset osoittavat, ettd tunteita voidaan luokitella seka vokseliaktivaatioiden ettd funktionaalisen
konnektiviteetin muutosten perusteella. Onnistunut koko aivojen aktivaatioon perustuva luokittelu
osoittaa, etti eri tunteilla on erillinen aivoperusta, joka yleistyy henkildsta ja tunteiden
herattamistekniikasta toiseen. Lis#ksi tunteilla, jotka koetaan samankaltaisempina, on myos
samankaltaisempi aivoperusta. Tunne muokkaa funktionaalista konnektiviteettia, jonka
tunnekohtaiset erot ovat selvimpii aivojen lepotilaverkostoissa (default mode network, DMN).
Aivojen keskilinjan rakenteiden liséksi erityisesti somatomotoriset, sensoriset ja subkortikaaliset
alueet aktivoituvat useimpien tunteiden aikana. Tunteiden erillisyys ilmenee eri komponteissa,
kuten kasvonilmeissi, kehon tuntemuksissa, tunnesiséllon arvioinnissa, yksilollisessa
tunnekokemuksessa seka aivoperustassa.

Yhteenvetona voidaan todeta, ettd eri tunteisiin liittyy kullekin tunteelle tyypillinen aivojen
aktivaatio ja konnektiviteetti, jotka kattavat suuren osan aivoista. Tunteita voidaan siis pitdd
aivojen tilana, joka kullakin ajanhetkella vaikuttaa muihin mielen toimintoihin.
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1. Introduction

1.1 Emotions: more than a feeling

From scientists to parents of any two-year old, from philosophers since ancient Greece to
young lovers, the nature of emotions is one of the mysteries continuously intriguing the hu-
man mind. Emotions guide our behavior to protect our body and mind by modulating the
activation of cardiovascular, skeletomuscular, neuroendocrine, and autonomic nervous sys-
tems as well as higher-order cognitive functions to respond to the dangers and possibilities
around us (Levenson, 2003; LeDoux, 2012). Thus, they constantly modulate our brain activi-
ty and prepare us to act and survive in a changing environment by orienting actions and
modulating approach versus avoidance motivation (Lang, 1995; Elliot et al., 2013; Anderson
and Adolphs, 2014). In our everyday life, we can subjectively differentiate between discrete,
phenomenological emotional states such as feeling disgusted, happy, or proud. However, it is
yet unresolved how such emotional feelings are brought about by the central nervous system.
Given the prevalence of emotional problems in many psychiatric disorders and the wide-
spread consequences these problems bring to the lives of individuals, their families, and the
society, it is of the highest interest to understand the organization of the neural circuits un-
derlying different emotions.

Emotion as a topic of scientific enquiry has proven surprisingly problematic for both psy-
chologists and neuroscientists. This is partly due to the difficulty in defining what emotion is
in scientific terms, but also in our inability to distance ourselves from the everyday use of the
term. These have led to some suggestions that the scientific community should abandon the
term altogether (LeDoux, 2012). Also, it is unclear to what extent our concept of emotions
picks out a homogeneous kind of state (Griffiths, 1997). To illustrate the large variation under
the umbrella term emotion, commonly used emotion categories such as happiness and dis-
gust share little in common - they vary in function, neurobiology, experience and so forth -
yet there is something similar in both states that makes us categorize them under the term
emotion rather than group them together with other cognitive functions (Nummenmaa and
Saarimaéki, in press).

Emotion can be conceptualized as a concerted, adaptive, phasic or episodic (meaning it has
clear on- and off-sets and limited duration) change in multiple physiological systems includ-
ing somatic and neural components in response to the value of a stimulus (Adolphs, 2002b;
see also Damasio, 1995, 1999; Plutchik, 1980; Scherer, 2000). Emotional response typically
involves concerted changes in a very large number of somatic parameters, including endo-
crine, visceral, autonomic, neural, and musculoskeletal changes such as facial expressions, all
of which unfold in a complex fashion over time (Adolphs, 2002b).

According to Mulligan and Scherer (2012), x is an emotion only 1) if x is an affective epi-
sode, 2) if x has the property of intentionality (i.e., of being directed), 3) x contains bodily
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changes (arousal, expression etc.) that are felt, 4) x contains a perceptual or intellectual epi-
sode, y, which has the property of intentionality, 5) the intentionality of x is inherited from
the intentionality of y, 6) x is triggered by at least one appraisal, and 7) x is guided by at least
one appraisal.

A recently outlined framework defines emotions as central, functional states, implemented
in the activity of neural systems, that are caused by external sensory stimuli or internal mem-
ories and that regulate a multitude of complex behavioral, cognitive, and somatic changes
(Anderson and Adolphs, 2014). Adolphs (2017) divides emotion into its specific aspects:
emotional states, feelings, emotion concepts, emotion attributions, and emotional expres-
sions. In this framework, the emotion words we use to describe our functional emotional
state are concepts that describe our inner feelings. Feelings constitute the consciously experi-
enced part of the emotional state, derived from the internal or external situation surrounding
us using emotion attributions, and expressed to others using emotional expressions.

Affective neuroscience investigates the neural systems underlying different aspects of emo-
tion. The advances in neuroimaging techniques during the past three decades have increased
research in this field tremendously. Also, since approaches where emotions are defined as
functional states of the system have gained support (LeDoux, 2012; Kober et al., 2008; Bar-
rett, 2006; Anderson and Adolphs, 2014; Nummenmaa & Saarimiki, in press), the im-
portance of emotions to all our functioning - behavior, information processing, social interac-
tion, practically all aspects of mental life - are clearer and the benefits of understanding emo-
tions thus have more implications to other branches of neuroscience. Yet, despite the efforts,
the neural basis of emotions is far from clear and there is an ongoing debate regarding the
neural circuits underlying different emotions. Therefore, the current work aims at elucidating
this question.

1.2 Neural basis of emotions

1.2.1 How are emotions organized in the brain?

Currently, we do not know what is the level of biological organization or function at which
any functional state, emotional or not, is instantiated in the brain. They could be a neuro-
modulatory system, a neuroanatomical structure, a distributed neural network, a type of fir-
ing pattern, or all of the above. (Anderson & Adolphs, 2014)

The organization of emotions in the brain remains an open question and hotly debated topic
in the field of affective neuroscience (for a review, see Hamann, 2012). While different ap-
proaches - including for instance basic emotion theories and constructivist theories -
acknowledge that the emotion space is carved up into discrete emotions, they differ in terms
of how different emotions originate biologically (Lewis and Liu, 2011).

Basic emotion theories (e.g., Ekman, 1992; Ekman and Cordaro, 2011; Panksepp, 1982;
Panksepp and Watt, 2011; Levenson, 2011; Izard, 1993, 2011) posit that there exists a set of
specific emotions that are evolutionary scripts differing from each other in terms of subjec-
tive experience, physiology, and neural basis. These scripts have been shaped during the evo-
lution to serve distinct survival functions via distinguishable neural circuits and physiological
systems (Ekman, 1992, 1999; Panksepp, 1982; Damasio, 1999). Therefore, the basic emotions
should show unique neural signatures.

12



Introduction

Another way to view the behavioural, physiological and subjective bases of emotions is to
define them in terms of a limited number of general-purpose systems (e.g. Barrett, 2006).
Accordingly, the contemporary constructivist theories build on dimensional theories that
suggest that emotions can be reduced to a low-dimensional space (Russell, 1980), typically
one governing valence (pleasure versus displeasure) and one arousal (intensity of the emo-
tional response), although the exact number of suggested dimensions varies (Fontaine et al.,
2007). The relative activity of these systems could then generate different patterns of emo-
tional behaviour and experiences. The constructivist theories suggest that all emotions are
constructed from the activation of different brain regions that may not be specific to emotion,
but may combine in various ways to produce the emotional states (Barrett, 2006; Barrett et
al., 2007; Russell, 2003). Therefore, they suggest that no unique neural systems exist for spe-
cific emotions, a view that is largely shared by contemporary basic emotion theories (for a
review, see e.g. Hamann, 2012). Further, constructivist theories stress that two occasions of
the same emotion are never the same, thus leading to different neural activations (Clark-
Polner et al., 2016) and, accordingly, we could not identify brain structures involved in pro-
cessing of a particular emotion. However, the variety between occasions is true in most other
systems: for instance, exact occasions of visual stimuli are likely always different, yet we can
identify regions that deal with rough similarities of stimuli, including faces and objects.

Strong advocates of these two theory traditions sometimes see the theories mutually exclu-
sive (Barrett, 2006, 2017; Clark-Polner et al., 2016), but according to others they can co-exist
(Panksepp, 2007; Hamann, 2012). Specific emotions - both basic and other - can be present-
ed in the dimensional space and rely on similar underlying components (Hamann, 2012).
Yet, as is probable for all mental states that differ from each other, the differences between
specific emotions should be somehow present also in the neural system, and one of the aims
of the current work is to investigate how.

Where in the brain can we, then, expect to observe different responses between emotions?
When an emotional state takes over, a cascade of automatic changes occurs in mere split sec-
onds for instance in emotional expressions in face and voice, preset and learned actions, au-
tonomic nervous system (ANS) activity that regulates our body, regulatory patterns that con-
tinuously modify our behaviour, retrieval of relevant memories and expectations, and how we
interpret what is happening within us and in the world (Ekman and Cordaro, 2011). All this
suggests that a multitude of brain regions dealing with these different components is also
activated. This is supported by neuroimaging findings where a set of core emotion processing
regions is consistently engaged during multiple emotions (Figure 1; Phan et al., 2002; Mur-
phy et al., 2003; Wager et al., 2003; Kober et al., 2008; Vytal & Hamann, 2010). These in-
clude cortical midline regions (Peelen et al., 2010; Chikazoe et al., 2014; Trost et al., 2012),
somatomotor regions (Adolphs et al., 2000; de Gelder et al., 2004; Pichon et al., 2008;
Nummenmaa et al., 2012), as well as subcortical regions including amygdala, brainstem, and
thalamus (Adolphs, 2010; Damasio and Carvalho, 2013; Kragel and LaBar, 2014). None of
the regions is unique to emotional processing alone but is also engaged during non-emotional
processes (Salzman and Fusi, 2010). This is in line with the evolutionary psychological view
to emotions, where emotions are seen as superordinate mechanisms that developed during
evolution to coordinate the activity of other systems to solve adaptive problems (Al-Shawaf et
al., 2016).

13



Introduction

IFG

OFC Ins
. Motor/somatosensory regions O Midline regions
(") Subcortical regions (O Frontal regions

Figure 1. Schematic depiction of emotion-related brain areas. The areas are shown on their approximate
locations on the PALS12 cortical atlas template (Van Essen, 2005). Most of the depicted regions are bilateral but
shown on one hemisphere for simplicity. Some areas reside within the surface and subcortical regions and cere-
bellum are not shown on the template, therefore, areas belonging to these structures are shown on their approxi-
mate locations. Abbreviations: ACC - anterior cingulate cortex, Amy - amygdala, aPFC - anterior prefrontal cor-
tex, Cer - cerebellum, Hi - hippocampus, IFG - interior frontal gyrus, Ins - insula, mPFC - medial prefrontal cortex,
NAcc - nucleus accumbens, PCC - posterior cingulate cortex, PCun - precuneus, postCG - postcentral gyrus,
preCG - precentral gyrus, SMA - supplementary motor area, Th - thalamus.

While it is clear that multiple regions are involved in emotional processing, there is growing
interest in how these regions work together as circuits to produce the emotional response.
For instance, Pessoa (2017) suggests that emotions should be understood in terms of large-
scale network interactions spanning the entire neural system. However, the functions and
organization of such emotion networks remain elusive.

1.2.2 Classification schemes for emotions

Recently, research has shed light on the organization of semantic and object categories in the
human brain (Huth et al., 2012, 2016). Emotions form categories at multiple levels - includ-
ing those of facial expressions, autonomic nervous system activation, subjective experience,
and potentially neural basis - yet the similarities and differences between different emotion
categories remain largely unexplored. Many different taxonomies of emotion categories have
been proposed (see Table 1 for a summary). As the current work focuses on different emotion
categories, the relevant taxonomies include especially the ones concerning different emotion
families (marked in bold).

The basic emotions traditionally include at least fear, anger, disgust, happiness, sadness,
and surprise (but see Ekman and Cordaro, 2011, for discussion of the number of basic emo-
tions). They are usually characterized by distinct facial expressions, physiological activation,
and subjective feelings (Ekman and Cordaro, 2011). Despite the efforts on characterizing the
neural basis of basic emotions (for meta-analyses, see Phan et al., 2002; Murphy et al., 2003;
Vytal and Hamann, 2010), no consensus regarding their neural substrates has been reached
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Table 1. Possible ways to categorize emotional processes. Adopted from Adolphs (2002a) with additions marked
with an asterisk (*). The categorizations and emotional states used in the current work are marked in bold.

Behavioral state Motivational state Moods, back- Basic emotions | Social emotions
ground emotions
Approach Reward Depression Happiness Pride
Withdrawal Punishment Anxiety Fear Guilt
Thirst Mania Anger Shame
Hunger Cheerfulness Disgust Maternal love
Pain Contentment Sadness Sexual love
Craving Worry Surprise Embarrassment
Reproduction * Infatuation
Admiration
Jealousy
Contempt *
Gratitude *
Despair *
Longing *

(Barrett and Wager, 2006; Lindquist et al., 2012). This can be partly due to a real lack of dif-
ferences. Alternatively, another possibility is that this lack of differences may be an artefact
stemming from limitations, in particular 1) multiple emotions have rarely been included in
the same study, 2) conventional univariate analysis methods cannot distinguish spatially
overlapping neural activation patterns, and 3) functional connectivity profiles of different
emotional states have been completely overlooked.

A wide array of other non-basic emotions, including 'secondary' or 'social' emotions (see re-
views and proposed taxonomies in Damasio, 1999; Adolphs, 2002a) also serve adaptive sur-
vival functions and are characterized by distinctive facial expressions (Baron-Cohen et al.,
2001; Shaw et al., 2005), bodily sensations (Nummenmaa et al., 2014a), and neural activity
patterns (Kassam et al., 2013; Kragel and LaBar, 2015). Certain classes of emotions - the so-
called social, moral, or self-conscious emotions - function explicitly to regulate social behav-
iour. These emotions include at least shame, embarrassment, pride, and guilt. Such social
emotions require a more extensive self-representation and contextual information than does
the feeling of the basic or primary emotions, as it involves representing oneself situated in a
web of social relations and requires representing the internal mental states of other individu-
als, such as representing how others feel about oneself (Adolphs, 2002a). For instance, while
basic emotions such as fear are more sensory-driven and therefore possible to elicit using
simple stimuli, inducing social emotions such as embarrassment is not as simple. The psy-
chological and neural mechanisms of these and other non-basic emotions, as well as their
commonalities or differences relative to basic emotions, remain largely unresolved (Ekman,
1999; Ekman and Cordaro, 2011; Adolphs, 2002b). In particular, these emotions may involve
more elaborate cognitive representations acquired through experience, education, and social
norms (Panksepp and Watt, 2011), and hence, recruit brain systems partly distinct from
those implicated in more “primitive” (and possibly partly innate) basic emotions. It is thus
possible that also non-basic emotions may have distinct neural bases which would, however,
be discernible from that of basic emotions.

1.2.3 Subjective experience of emotions

Another open question in the field of affective neuroscience is how feelings, that is, the sub-
jective experience of an emotional state forms. If our brain is in the state of fear, how and
when do we consciously interpret this state as fear? Humans are usually aware of their cur-
rent emotional state, which may help to fine-tune the behavior adaptively to better match to
the challenges of the environment (Damasio et al., 1996).
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A few formulations exist for the causal route from emotional stimulus to subjective experi-
ence of emotion. Many psychological and neurobiological views of emotion define emotional
state as the coordinated effects of multiple components including cognitive, motivational,
somatic, and behavioral responses caused by an emotional stimulus, and this emotional state
is consciously interpreted as a subjective feeling (Russell, 2003; Scherer, 2009; Barrett et al.,
2007; Salzman and Fusi, 2010). Therefore, subjective experience results from the sum of or-
chestrated activation of these various component systems. An alternative view sees the causal
path and, consequently, the origin of subjective experience differently: emotional stimulus
affects the central emotion state of the system, which then gives rise to effects in other sys-
tems which can be observed in the form of behavior, subjective reports, psychophysiology,
cognitive changes, and somatic responses (Anderson and Adolphs, 2014). Note that accord-
ing to the latter view, subjective experience (as observed in subjective reports) is a direct re-
sult of the central emotion state and does not require the integration of responses from other
component systems.

One way to investigate the underpinnings of subjective feelings is to focus on the similari-
ties of brain activity patterns underlying emotions that feel either similar or different to each
other. Damasio et al. (2000) suggested that emotion-dependent neural patterns across re-
gions could explain why each emotion feels subjectively different. If the subjective experi-
ence is a sum of some basic emotion circuits, emotions that share more similar neural under-
pinnings should be experienced in a more similar way. Some of the aforementioned emotion
categories - such as happiness, fear, disgust, love - feel more similar to each other, and some
more distant: feelings of happiness and love share something in common, whereas feelings of
happiness and fear seem remote. The similarities of emotional states have been previously
described in terms of the similarities in experiences underlying emotions (Toivonen et al.,
2012). However, it is yet unresolved whether there exist separate neural circuits responsible
for different kinds of emotional behavior and experiences. For instance, it is possible that
ANS activation separates only more general categories such as more exciting and calm emo-
tions, whereas neural circuits processing facial expressions could already separate between at
least the basic emotions.

1.3 Measuring brain activity and connectivity with functional magnetic reso-
nance imaging

1.3.1 Functional magnetic resonance imaging (fMRI)

The neural underpinnings of human emotions as an object for scientific study pose a number
of methodological challenges. Emotions have rapid onset but they may be relatively long last-
ing - even fairly mild emotional stimulation continues to affect brain activity minutes after
the stimulation ends (Eryilmaz et al., 2011). Emotions modulate both subcortical and cortical
brain regions implicating that the method used to measure brain activity should cover the
whole brain. Finally, emotions can be challenging to induce in restricting laboratory condi-
tions. Especially, certain emotional reactions - such as fleeing or aggression - are implausible
in neuroimaging settings where participant is supposed to lie still during the scanning, and it
is not easy to bring to the scanner such stimuli that would bear personal relevance that com-
pares to the range of experiences in every-day life (Nummenmaa and Saarimaki, in press).
With these requirements in mind, functional magnetic resonance imaging (fMRI) is the
most widely employed, well-suited brain imaging technique for studying human emotions in
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healthy subjects. fMRI measures changes in oxygen levels of the blood which serves as an
indirect measure of brain activity: it is based on the assumption that brain regions with more
neural activity receive more oxygenated blood (Logothetis, 2008). Haemoglobin and deoxy-
haemoglobin have opposite magnetic properties, therefore, changes in brain activity can be
measured if the MRI signal is made sensitive to the haemoglobin / deoxyhaemoglobin ration.
This is usually done using blood oxygenation level-dependent (BOLD) signal, which increases
in active brain areas (Ogawa et al., 1990; Bandettini et al., 1992; Kwong et al., 1992). During
neural activation, more blood flows to areas which require energy in form of glucose. This
leads to increased blood flow and expansion of blood vessels and, therefore, to an increase in
oxygenated blood and consequently an increased BOLD signal in active brain regions.

fMRI has a good spatial resolution in the range of millimeters which is especially suitable if
we are interested in the spatial activity patterns. As emotions are relatively long-lasting, the
~2s temporal accuracy is enough to capture at least the slower aspects of emotional reactions,
however, temporally fine-grained interplay between different brain regions cannot be meas-
ured. With fMRI, it is possible to reach activity changes in both cortical and subcortical re-
gions. Since emotions are global events, fMRI’s ability to detect activity from the whole brain
is useful. Furthermore, fMRI is non-invasive and thus healthy subjects can be studied with-
out ethical concerns in contrast to intracranial recordings that can be conducted only in spe-
cific patient populations scheduled to undergo neurosurgery.

- Multi-voxel .
Univariate pattern Punctional
GLWI analysis connectuvity
Emotion Y y ? A
"E'. - -

Figure 2. Comparison of fMRI analysis methods employed in the dissertation. In traditional univariate GLM,
hot spots denote the strength of activation related to emotional states, which in this case are similar for both ex-
emplar emotions. However, multi-voxel pattern analysis can detect the underlying differences of pattern structure
for both emotions and also patterns in areas that are below the statistical significance threshold in GLM, i.e., itis
assumed that it is the distributed pattern of activations and deactivations that underlies a given emotional state.
Finally, functional connectivity analysis, in turn, detects the co-activation between different brain regions.

Traditionally, fMRI data has been analyzed using univariate methods. For instance, the wide-
ly used general linear model (GLM) includes fitting a stimulus model time series to the time
series of each voxel and testing the model fit using parametric or nonparametric statistics.
This approach considers each voxel independently and does not take into account the multi-
variate nature of the fMRI data. It is possible that the combined activation values from mul-
tiple voxels are important for the function we are interested in, and go unnoticed with tradi-
tional GLM. As such, GLM measures the net activation within an area. However, same net
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activation can result from different configurations of individual voxel activations (Figure 2).
Moreover, GLM ignores how different brain regions work together. Therefore, the current
work takes advantage of multivariate methods including multi-voxel pattern analysis
(MVPA), representational similarity analysis (RSA), and functional connectivity analysis to
reveal the differences in fine-grained patterns and connectivity of brain areas between specif-
ic emotions.

1.3.2 Multivariate pattern analysis (MVPA)

Pattern recognition, often called as decoding, is a branch of machine learning that focuses on
the recognition of patterns and regularities in data (Bishop, 2006). These types of algorithms
generally aim to perform the most probable matching of an input to an output, taking into
account the statistical variation in inputs. A successful solution to the classification problem
is defined as the classifier’s ability to predict the underlying true input category with above
chance performance. The idea that fMRI data analysis can be defined as a pattern-
classification problem where we try to recognize a pattern of brain activity as being associat-
ed with one mental state versus another has led to an enormous increase in pattern classifica-
tion applications in fMRI (Norman et al., 2006). Unlike classical univariate methods, multi-
variate approaches such as multi-voxel pattern analysis (MVPA) extract information based on
the complete pattern of brain activity, rather than intensity differences between individual
voxels (Haxby et al., 2001; Norman et al., 2006). Thus, they can overcome the limitations of
univariate methods in identifying differences in activation patterns that overlap spatially be-
tween conditions such as brain circuits involved in generating multiple emotional states. Fur-
thermore, while univariate methods focus on average activity of a brain region across multi-
ple repetitions of a stimulus condition, thus creating a statistical summary of the correspond-
ing experimental condition, MVPA considers more fine-grained patterns within that brain
region and can reveal more information regarding the condition-specific voxel activity chang-
es (Cox et al., 2003; Kriegeskorte et al., 2006). MVPA typically involves implementing a ma-
chine learning algorithm that tries to learn associations between a set of a priori categories
and the multivariate data patterns associated with them. The algorithm is then tested on an
independent dataset that was not used in training the algorithm to see whether the differ-
ences between categories are consistent and to avoid peeking of the data.

Pattern recognition analyses are theoretically well-suited for tackling the organization of
human emotions in the brain. First, emotions cause changes across the brain, and pattern
recognition techniques are focused on analysing system-level patterns (e.g. Kober et al.,
2008). Second, successful classification of two or more emotional states would require that
they elicit consistently different activation patterns, thus allowing testing the distinctness of
different emotional states. Third, successful cross-validation of the classifier across inde-
pendent samples of subjects would require consistent emotion-specific activations across
individuals, possibly providing evidence for the biological versus acquired basis of emotions.
Fourth, investigating the similarities and distances of the emotion-evoked patterns across a
large array of emotions allows revealing the (categorical or dimensional) structure of the
emotion space. Preliminary evidence suggests that this approach can be applied to classify
sensory emotional signals conveyed by visual (Peelen et al., 2010) and auditory (Ethofer et
al., 2009) cues and in the absence of external stimuli (Kassam et al., 2013). However, previ-
ous studies have applied classification to a restricted set of voxels or performed classification
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between only two emotional states at the time. Consequently, the large-scale brain networks
supporting multiple emotional states remain poorly understood.

1.3.3 Functional connectivity

Different brain regions work together as a network to support information processing. While
traditional univariate fMRI analyses investigate the specialization of brain regions for some
aspects of a mental function, which can be called functional segregation, functional connec-
tivity investigates functional integration: the study of connected processes (Friston, 2011).
Functional connectivity is defined as the statistical association or dependency among two or
more anatomically distinct time-series (Friston et al., 1996). Functional connectivity analysis
thus measures how different brain regions are linked together during different tasks. Usually,
connectivity is defined as correlation between the time series of two voxels or regions. Note
that changes in correlation of the time series do not themselves indicate the direction or neu-
rochemistry of causal influences, structural connectivity, or synaptic connections between
brain regions, that is, they do not tell how regions are coupled. However, they indicate func-
tional interactions between regional systems that contribute to a shared task.

Despite suggestions that emotions require activation of large-scale brain networks (e.g.
Hamann, 2012; Pessoa, 2017), the connectivity modulations by emotional content and espe-
cially the differences in connectivity between emotions have been largely overlooked in affec-
tive neuroscience. Experience of separate emotional states likely stems from differences in
the functional interplay and connectivity between widespread brain regions, which we can
further investigate using functional connectivity analyses. So far only a handful of studies
have compared how specific emotions modulate functional brain connectivity either by focus-
ing on a limited set of a priori defined brain regions (Eryilmaz et al., 2011; Tettamanti et al.,
2012; Raz et al., 2016) or by looking at emotion-specific intrinsic connectivity (Touroutoglou
et al., 2015), which tends to remain largely unaffected by differences between mental tasks in
general (Cole et al., 2014).

1.3.4 Representational similarity analysis (RSA)

Representational similarity analysis (RSA; Kriegeskorte et al., 2008) provides another alter-
native to investigate multivariate patterns in BOLD-fMRI data and other domains. It allows
combining data from different modalities such as from neuroimaging, behavioral ratings, or
theoretical models. Data from different domains is first transformed into separate dissimilar-
ity matrices that, in the case of fMRI, describe the dissimilarity of neural activity patterns
between each pair of stimulus conditions. Using representational similarity analysis, we can
directly compare how similarities in neural activity correspond to similarities of subjective
experience or investigate how different models fit to the neural or behavioral data. Practically
any kind of data - single-cell recordings, behavioral ratings, MEG or fMRI data, theory-based
models - can be described as a dissimilarity matrix and compared to each other using correla-
tion of the dissimilarity matrices which reveals whether similarities in stimuli in one domain
correspond to the similarity structure in the other domain.

In affective neuroscience, RSA appears as a promising technique for comparing different
theoretical models and combining data across domains that previously have been difficult to
pair, such as neuroimaging data and animal studies. However, applications have so far been
sparse. A recent study showed that similarities in emotional valence correspond to the simi-
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larities in neural activation in orbitofrontal cortex (OFC) but not in similarities in neural acti-
vation in parts of occipital or temporal lobes (Chikazoe et al., 2014). However, the similarity
structure of specific emotion categories remains unexplored.

1.3.5 Naturalistic stimuli

With the development of more advanced computational methods such as the multivariate
and connectivity methods described above, we can now use more complex stimulation during
the fMRI scanning (see e.g. Hasson et al., 2004; Jiiskeldinen et al., 2008). Traditional GLM
analysis requires an event-related experimental design with simple emotion elicitation using
for instance sounds, short movie clips, or pictures. With more advanced methods, we can
move towards more naturalistic stimuli such as longer movies, narratives, and emotional
imagery. For affective neuroscience, these provide a way to elicit more natural emotions dur-
ing fMRI scanning. For instance, recent studies have elicited strong emotions during fMRI
using emotional movies (Nummenmaa et al., 2012; Tettamanti et al., 2012). Compared to
static images such as emotional facial expressions or pictures depicting emotional events,
naturalistic stimuli have been shown to elicit stronger and more vivid emotions that engage
widespread brain emotion circuits (Costa et al., 2010; Nummenmaa et al., 2012, 2014b).
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2. Objectives

The goal of this dissertation was to investigate the neural underpinnings of different emo-
tional states using multivariate methods. We took advantage of state-of-the-art analytic tech-
niques and naturalistic stimulation setups to elicit strong and reliable emotional states dur-
ing fMRI scanning. We focused on four research questions tackled in five studies (Table 2):

In research question 1, we asked whether different emotions have distinguishable neural
bases. We hypothesized that emotions that subjectively feel different also have distinct, ro-
bust, and identifiable neural bases. If this hypothesis holds, we should be able to successfully
classify emotions based on their neural activity patterns.

In research question 2, we investigated the core regions supporting emotions. We hypothe-
sized that different emotional states would be characterized by widely-spread changes in
brain activity, and that this activity would overlap between different emotional states.

In research question 3, we asked how the large-scale brain connectivity is modulated by dif-
ferent emotional states. We hypothesized that the core regions identified in research question
2 would be connected and contain emotion-specific connectivity patterns.

Finally, in research question 4, we returned to our starting point by asking how the neural
similarity of emotions relates to their subjectively felt similarity. We hypothesized that the
emotions that feel more similar also share more similar neural underpinnings.

Table 2. Research questions. Summary of the research questions and how different studies were designed to
answer them.

Research question (RQ) Study | Study Il Study Il Study IV Study V
RQ1: Do different emotions have distinct neural bases? X X

RQ2: What are the core regions supporting emotions? X X X

RQ3: How does the large-scale functional connectivity X X

vary during emotions?

RQ4: How does the neural similarity of emotions relate X X X

to their subjectively felt similarity?
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3. Methods

3.1 Participants

Participants were altogether 109 healthy adults aged from 19 to 38 years (see Table 3). Partic-
ipants were all right-handed and Finnish speaking, with no reported neurological disorders.
All participants gave their informed consent according to the Declaration of Helsinki. All
studies were approved by the Aalto University ethical committee.

Table 3. Summary of Studies I-V. The number and age of participants and a description of the study type in Stud-
ies |-V.

Study | Study Il Study Il Study IV Study V
Movie Imagery Crossmodal
experiment | experiment | experiment
(Exp. 1) (Exp. 2) (Exp. 3)
Participants 21 healthy 14 healthy 13 healthy 25 healthy 20 healthy 16 healthy
adults females females females adults females
(12 males) (8 males)
ages 19-33 | ages 19-30 | ages 21-29 ages 19-38 | ages 19-30 | ages 20-30
years, years, years, years, years, years,
mean age mean age mean age mean age mean age mean age
24.9. years | 23.6 years 25.4 years 23.6 years 25 years 24.3 years
Study type fMRI study fMRI study fMRI study fMRI study fMRI study fMRI study Review with
meta-analysis

3.2 Stimuli

We induced emotions in human participants using naturalistic stimuli including movies,
mental imagery, and guided imagery based on narratives (see Figure 3).

In Study I, we employed movie clips and mental imagery to elicit emotions during fMRI. In
the Movie experiment part of the study (Exp. 1), we induced disgust, fear, happiness, sadness,
and a neutral state using 10-s movie clips (10 per category) chosen from a video database
(Tettamanti et al., 2012). We presented the clips without sound to avoid attentional and lin-
guistic confounds, as most movies contained English speech and the participants were native
Finnish speakers. The participants were instructed to view the movies similarly as they would
watch TV. Each clip was preceded by a 5-s fixation cross and followed by a 15-s washout peri-
od. In the Imagery experiment part of the study (Exp. 2), we induced emotions using mental
imagery. Before the fMRI scanning, the participants were given a list of 36 emotion words
each representing a variant of one of six emotion categories (anger, fear, happiness, sadness,
disgust, and surprise) and were asked to devise and practice their own method to elicit each
emotion in the list. Sample methods of emotion elicitation (such as imagining a past event,
thinking about a corresponding movie scene, or recreating the bodily state associated with
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Figure 3. Experimental designs and emotion categories in Studies I-IV. (a) Experimental design for Studies I-
IV. Time period marked in red was used in the analyses. See text for details. (b) Emotion categories used in Stud-
ies I-IV.

the emotion) were provided but participants were free to choose whatever method they con-
sidered best for each emotion. Participants were asked to practice the imagery task at home
for at least 1 hour prior to the fMRI experiment and again immediately before the fMRI scan-
ning. During the scanning, each trial began with a fixation cross shown for 0.5 s, followed by
the presentation of the word for 2 s, and an imagery period of 7 s. Participants were instruct-
ed to imagine the emotional state described by the emotion word they saw and to continue
imagery until the subsequent intertrial interval. In Exp. 3, we use trial designs from both
Movie and Imagery experiments of the study in separate runs to elicit emotions in same par-
ticipants using both elicitation techniques.

For Study II, we created sixty 5-20 second long auditory narratives to support guided affec-
tive imagery. Each narrative elicited primarily one out of possible 14 emotions or a neutral
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state. Participants were instructed to imagine that the events of the narrative happen to
them. Targeted emotions included six basic or primary emotions (anger, fear, disgust, happi-
ness, sadness, and surprise) and eight social or secondary emotions (shame, pride, longing,
guilt, love, contempt, gratitude, and despair). The narratives were spoken by a female speaker
using neutral prosody without cues for the affective content of the narrative. Each trial start-
ed with a fixation cross shown for 0.5 seconds, followed by a 2-s presentation of a word de-
scribing the target emotion, a spoken narrative, and a 10-s imagery period. The trial ended
with a 10-s wash-out period to counter for possible carryover effects.

In Study III, we developed thirty 45-s-long spoken narratives describing unpleasant, neu-
tral, and pleasant events (10 stories per each category). The recorded narratives were read by
a neutral female voice that provided no prosodic cues for the affective significance of the sto-
ry contents. During fMRI, participants were instructed to listen to the narratives similarly as
if they would listen to radio or a podcast, and to try to get involved in the stories by imagining
the described events vividly. Each narrative was preceded, for 5 s, by a fixation cross and, for
15 s, by a short text that explained the general setting of the forthcoming narrative without
revealing its actual content. The 45-s-long narrative was followed by a short wash-out period.

In Study IV, emotions were induced using thirty-five 60-s-long narratives triggering six
emotional states (anger, fear, disgust, happiness, sadness, surprise) and a neutral state. The
narratives described personal life events spoken by a female speaker with varying emotional
prosody. A trial started with a fixation cross presented for 5 seconds. It was followed by a 5s
presentation of the target emotion (e.g. "happy') and a short description of the narrative gist
(e.g. 'lovers under a tree"), after which a fixation cross appeared on the screen and the 60-
second-long narrative was played through earphones. The trial ended with a 15s wash-out
period. Subjects were instructed to listen to the narratives similarly as if they would listen to
their friend describing a personal life event.
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Figure 4. Summary of the datasets used in the meta-analysis in Study V. (a) Self-reported bodily sensations
corresponding to different emotions (Nummenmaa et al., 2014a). (b) Rated similarity of subjective experiences
related to 36 different emotions (Saarimaki et al., 2016). (c) Ratings for the emotion best corresponding to each
facial expression (Calvo and Lundqvist, 2008). (d) Evaluations of intensity of emotions evoked by short emotional
narratives (Nummenmaa et al., 2014a). (e) Voxels contributing most significantly to pattern classification of emo-
tions from BOLD-fMRI data (Saariméki et al., 2016).
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In Study V, we collected existing datasets from three published studies (Nummenmaa et al.,
2014a; Saarimiki et al., 2016; Calvo and Lundqvist, 2008). The data included similarity val-
ues of facial expressions (human observers’ confusions between facial expression categories),
bodily sensations (Linear Discriminant Analysis classifier run on the bodily maps of emo-
tions), evaluations (Euclidean similarity of intensity profiles of discrete emotion ratings for
short narratives), subjective experiences (direct pairwise ratings of emotion concepts), and
neural data (confusions of a pattern classifier on BOLD-fMRI data) underlying six basic emo-
tions: anger, fear, disgust, happiness, sadness, and surprise (Figure 4).

3.3 Measuring subjective emotional experiences

In all experiments, ratings of emotional qualities of the stimuli were acquired post-
experiment rather than during fMRI, as a reporting task is known to influence neural re-
sponse to emotional stimulation (Hutcherson et al., 2005; Lieberman et al., 2007) and as
repeating a specific emotional stimulus has only a negligible effect on self-reported emotional
feelings (Hutcherson et al., 2005).

3.3.1 Similarity ratings

In Exp. 2 of Study I and in Study II, we collected similarity ratings of the emotions used in
the study (36 variants from 6 categories in Exp. 2 of Study I, 14 emotions and a neutral state
in Study II) using direct pairwise ratings. After the fMRI scanning, participants were shown
one pair of emotion words at the time and asked to rate the similarity between the subjective
emotional experiences related to these emotions (ranging from no similarity [0] to full simi-
larity [5]). The ratings were then scaled to range between 0 and 1.

3.3.2 Emotion intensity ratings

In Studies I and II, we measured the intensity of the specific emotions evoked during the
fMRI scanning. In Exp. 1 of Study I, the participants viewed the movie clips again and chose
the emotion (disgust, fear, happiness, sadness, neutral, anger, surprise) that best described
their feelings during each movie. They also rated the intensity (1—9) of the experienced emo-
tion. In Exp. 2 of Study I, the participants rated the intensity (1-9) of the elicited emotion. In
Study II, the participants listened to the narratives again and, for each narrative, rated how
strongly they felt each of the possible 14 (and neutral state) emotions using a scale ranging
from o (not at all) to 9 (very much), which was for further analyses scaled to range from o to
1.

3.3.3 Valence and arousal ratings

In Study III and IV, we collected ratings of valence and arousal content of the stimuli. In
Study II, participants listened to the narratives after the fMRI experiment and rated the va-
lence and arousal of each narrative using a scale ranging from o (negative valence/low arous-
al) to 9 (positive valence/high arousal). In Study III, we collected continuous ratings of va-
lence and arousal of the narratives on separate runs after the fMRI scan. While listening to
each narrative, participants used a mouse to move a small cursor at the edge of the screen up
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and down in order to indicate their current experience; data were collected at 5 Hz. The actu-
al valence—arousal scale was arbitrary, but for the analyses the responses were rescaled to
range from 1 (negative valence/low arousal) to 9 (positive valence/high arousal).

3.4 Measuring brain activity: Functional magnetic resonance imaging

3.4.1 (f)MRI data acquisition and preprocessing

In all studies, MRI data were collected with a 3T Siemens Magnetom Skyra scanner at the
Advanced Magnetic Imaging Centre (Aalto Neurolmaging, Aalto University) using a 20-
channel Siemens volume coil. Whole-brain functional scans were collected using a whole-
brain T2*-weighted EPI sequence with the following parameters: 33 axial slices, TR = 1.7 s,
TE = 24 ms, flip angle = 70°, voxel size = 3.1 x 3.1 x 4.0 mm3, matrix size = 64 x 64 x 33,
FOV 198.4 x 198.4 mm?2, using ascending interleaved acquisition with no gaps between slic-
es. A custom-modified bipolar water-excitation radio-frequency pulse was used to avoid sig-
nal from fat. High-resolution anatomical images with isotropic 1 x 1 x 1 mm3 voxel size were
collected using a T1-weighted MP-RAGE sequence. Standard preprocessing of fMRI data in
all studies included slice timing correction, motion correction, non-brain matter removal,
and high-pass temporal filtering.

For voxel-based pattern classification (Studies I and II), we created participant-wise gray
matter masks from the T1-weighted images and transformed them to the 64 x 64 x 33 native
space for within-participant classification, and to the 2-mm Montreal Neurological Institute
(MNI) 152 standard space template for across-participants classification. For univariate GLM
analyses (Studies II and III), the preprocessed data were registered to the 2-mm MNI 152
standard space template and spatial smoothing was applied. For functional connectivity
analyses (Studies III and IV), respiratory and heart rate signal were removed from fMRI data
using the DRIFTER toolbox (Sarkka et al., 2012). Functional data were registered to the 2-
mm MNI 152 standard space template, detrending was performed, and spatial smoothing
was applied.

3.4.2 Multivariate pattern analysis

Voxel-based within-participant classification
In Studies I and II, classification of emotion categories within participants (Figure 6) was
performed using each participant's data in native space. We used the whole-brain data since
recent studies have shown that emotional processing relies on large-scale cortical and sub-
cortical circuits, rather than on isolated regions (Kober et al., 2008; Vytal and Hamann,
2010; Nummenmaa et al., 2012). Voxels outside gray matter were masked out and the func-
tional data were temporally normalized to a mean of zero and unit variance in each voxel by
subtracting the mean response across all categories. Feature selection was performed using
ANOVA to select voxels with a significant (p<0.05) main effect for emotion, i.e., to select the
voxels whose mean activation differed between at least some of the included emotion condi-
tions. Finally, the hemodynamic lag was corrected by convolving the category regressors with
the canonical double-gamma hemodynamic response (HRF) function and thresholding the
convolved regressors using a sigmoid function to return the regressors to the binary form.
Classification was performed on the standardized, HRF-convolved fMRI volumes from the
imagery period following the movie, word, or narrative stimulus to extract only brain activity
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Figure 5. Pipeline for the within-participant classification. (a) Selection of voxel activity patterns for the classi-
fier. In the current work, we used both whole-brain activity patterns (voxels within the grey matter) and a selection
of regions-of-interest. Feature selection was performed with voxel-wise ANOVA to remove voxels whose activity
did not differ between emotion conditions. (b) Classifier training. The voxel activations were fed as an input for the
classifier, here, a linear multi-class classifier implemented as a neural network without hidden layers which, during
training, learns the weights from each voxel to a specific category. We used both within-participant classification
(with leave-one-run-out cross-validation) and across-participants classification (with leave-one-participant-out
cross-validation). (c) In the classifier testing, the classifier algorithm is presented with new data and asked to
guess the category it belongs to. The classifier performance can then be evaluated as the number of correct
guesses per category and on average.

related to the emotion, and to minimize the activity differences related to the acoustic, se-
mantic, and visual features of the stimuli. A linear neural network classifier without hidden
layers was trained to recognize the correct emotion category out of the possible ones (mul-
ticlass classification, see Polyn et al. 2005). The classifier starts with random weights from
input 7 (voxels) to output j (categories). During training, the weights are adjusted for each
given input with scaled conjugate gradient algorithm for optimization and mean squared er-
ror as an error function. During testing, each input is mapped to values from o to 1 for each
output category using logistic functions. This corresponds to the confidence that the input
belongs to a specific category. In all experiments, the classifier was trained using a leave-one-
run-out procedure where training was performed with N - 1 runs and testing was then ap-
plied to the remaining one run. Cross-validation was performed across all runs and the par-
ticipant-wise classification accuracy was calculated as an average percentage of correct guess-
es across all the cross-validation runs. Naive chance level was derived as a ratio of 1 over the
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number of categories. To test whether classification accuracy exceeded chance level, we used
permutation tests to simulate the probability distribution of the classification. Each permuta-
tion step included shuffling of category labels of the training set (across training set runs) and
re-running the whole classification pipeline, repeated 1,000 times for each subject. FDR cor-
rection at p<.05 was used for multiple comparisons.

To visualize the brain regions contributing most to the classifier's selection of each emotion
category, voxel-wise importance values were calculated and plotted separately for each cate-
gory. Importance values were calculated by defining importance imp = a x w, where a is the
activation of a voxel for a specific category and w is the trained weight from this voxel as-
signed to a specific category (Polyn et al., 2005). This method reveals which voxels are most
important in driving the classifier's output for a specific category, and it highlights voxels that
have concordant activation values and weights. Participant-wise importance maps were first
calculated using the mean importance values over cross-validation runs and subsequently
registered to MNI space. Then, mean importance maps were calculated across all participants
for each emotion. These maps were plotted on a standard brain volume after selecting the
highest 10 000 importance values (corresponding to ca. 1%). Clusters smaller than 27 (3 x 3
x 3) voxels (216 mm3) were excluded from visualizations. It should be noted that all voxels
that passed the feature selection were taken into account in the classification and the im-
portance maps simply highlight the most important clusters of voxels.

Voxel-based across-participants classification

To test whether the neural signatures of different emotions generalize across participants, we
ran whole-brain across-participants MVPA in Studies I and II. This analysis was performed
with the same steps as the within-participant classification but using fMRI data that was reg-
istered to MNI space with 2-mm isotropic voxels. For each experiment, a linear classifier was
trained using a leave-one-participant-out procedure where the training was performed with
N — 1 participants and the testing of the classifier with the remaining one participant. Cross-
validation was then performed across all participants, and the classification accuracy was
calculated as an average percentage of correct guesses across all the cross-validation runs.

Voxel-based crossmodal classification

Study I also included an experiment where emotions were induced in same participants using
both movies and mental imagery (Exp. 3). For this combined crossmodal experiment, we
trained a classifier using the imagery periods following the movies and words. The classifier
was trained with either the movie data and tested with the imagery data, or vice versa for
cross-validation, and it was trained to select the correct category out of four possible ones
(disgust, fear, happiness, sadness).

Voxel-based region-of-interest classification

In addition to the whole-brain analyses described above, we also applied a region-of-interest
(ROI) analysis to test whether the BOLD signal in any of our a priort -defined ROIs would
allow a reliable classification of the emotional states when considered alone. ROI analyses
were performed in Studies I and II. Cortical regions showing consistent emotion-related ac-
tivation in the literature were selected as candidate ROIs for coding emotional content (Ko-
ber et al., 2008; Vytal and Hamann, 2010): orbitofrontal cortex (OFC), anterior prefrontal
cortex (aPFC), inferior frontal gyrus (IFG), insula (Ins), anterior cingulate cortex (ACC), pos-
terior cingulate cortex (PCC), medial frontal cortex (MFC), precuneus (PCun), paracingulate
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gyrus (PAC), precentral gyrus (preCG), supplementary motor area (SMA), and postcentral
gyrus (postCG). The subcortical regions were amygdala (Amy), nucleus accumbens (NAcc),
hippocampus (Hi), and thalamus (Th). Bilateral masks for these ROIs were first defined in
MNTI standard space using the Harvard-Oxford cortical and subcortical atlases (Desikan et
al., 2006) and then transformed into native space. Feature selection and classifier training
was then performed for each ROI separately similarly to the whole brain analyses.

3.4.3 Functional connectivity

Modelling emotion-dependent functional connectivity

In Study III we assessed whether time-variable valence and arousal are associated with
changes of functional connectivity in large-scale brain networks. Data were first down-
sampled to isotropic 6 x 6 x 6 -mm3 voxels and voxels outside the gray matter were masked
out. To reveal the pairs of regions for which the dynamic connectivity depended most strong-
ly on valence and arousal, we computed instantaneous seed-based phase synchronization
(SBPS; Glerean et al., 2012) as a time-varying group measure of connectivity between every
pair of voxels. We then extracted valence and arousal regressors from behavioral ratings,
gamma-convolved them used them to predict each connection’s time series in the general
linear model (GLM) to assess the positive and negative effects of valence and arousal on func-
tional connectivity. The mean voxel-wise connectivity changes were stored in connectivity
maps, where link intensities reflect the degree to which SBPS is dependent on valence and
arousal. Statistically significant functional connections were plotted on cortical flatmaps us-
ing the Gephi software (Bastian et al., 2009). Statistical significance of the association be-
tween emotion ratings and SBPS time series was based on a nonparametric voxel-wise per-
mutation test for r statistic (Kauppi et al., 2010). We approximated the full permutation dis-
tribution independently for each connection with 10,000 permutations per connection using
circular block resampling (Politis and Romano, 1992). Due to the large number of links, we
used positive FDR (Storey and Tibshirani, 2003) of q < 10% to control false discovery rate for
the connectivity time-series; this choice is equivalent to the cluster network correction, which
takes into account the large number of links in the network without being overly conservative
(Zalesky et al., 2010).

Connectivity-based pattern classification

In Study IV, we tested whether functional connectivity patterns underlying different emo-
tions can be separated using pattern classification (Figure 10). To create the functional net-
works for classification, we selected 264 nodes based on a functional parcellation (Power et
al., 2011) and extracted the BOLD time course for each node. For each of the 35 emotional
narratives belonging to six emotion categories or to the neutral state (thus totaling 5 narra-
tives per category), we calculated the Pearson correlation coefficient between the BOLD time
course of each of the nodes during the 60-s-long story, which resulted in a connectivity ma-
trix of 264 x 264 nodes for each narrative. Next, we removed the baseline connectivity pat-
tern from emotion-wise connectivity matrices by taking the average of the five neutral con-
nectivity matrices and subtracting it from each of the remaining 30 connectivity matrices
separately using linear regression, and kept the residuals in the connectivity matrices. In ad-
dition to the full network of 264 x 264 nodes, we extracted also subnetworks based on the 10
functional systems of interest as proposed by Power et al. (Power et al., 2011). The included
subnetworks were motor and somatosensory (35 nodes), cingulo-opercular (14 nodes), audi-
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Figure 6. Pipeline for classification of functional connectivity patterns. (a) Selection of nodes for the connec-
tivity analysis. Functional connectivity is calculated between selected nodes, which in the current work consist of
264 nodes (denoted by dots) belonging to ten functional brain systems (denoted by colors) from Power et al.
(2011). Adopted from Cole et al. (2013) with permission. (b) Extraction of trial-wise connectivity matrices. Here,
connectivity matrices for each trial are calculated using Pearson correlation between each pair of 264 node time
series for each subject and for each 60-s narrative. (c) Classifier training. The connectivity matrices are fed as
input for the classifier, here, a linear support vector classifier. Here, we used an across-participants classifier with
leave-one-participant-out cross-validation. (d) Classifier testing. The testing is performed with new data, in this
case, the left-out participant. The classifier performance was evaluated by calculating the classification accuracy
(defined as percentage of correct classifier guesses per category) and the confusion matrix (predicted vs. true
labels of each category).

tory (13 nodes), default mode (58 nodes), visual (31 nodes), fronto-parietal (25 nodes), sali-
ence (18 nodes), subcortical (13 nodes), ventral attention (9 nodes), and dorsal attention (11
nodes) networks.

The classification of emotion categories was then performed across participants. We trained
a between-subjects support vector machine classification algorithm with linear kernel to rec-
ognize the correct emotion category out of 6 possible ones (anger, disgust, fear, happiness,
sadness, surprise). Naive chance level was defined as the ratio of 1 over the number of catego-
ries (14.2%). The samples for the classifier consisted of the 30 connectivity matrices (5 matri-
ces for each emotion category) from each subject, resulting in altogether 480 samples (80 per
category). A leave-one-subject-out cross-validation was performed and the classification ac-
curacy was calculated as an average percentage of correct guesses across all the cross-
validation runs. For full network classification, we included the full connectivity matrix of
each sample. For subnetwork (region-of-interest) classification, we included the connectivity
matrix of each sample either within one subnetwork or between two subnetworks. A separate
classifier was trained for each within/between subnetwork division. Based on subnetwork
classifier results, we wanted to investigate the default mode system subnetworks in more de-
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tail. Therefore, we split the default mode system into separate subnetworks and trained a
separate classifier for each within/between subnetwork. P-values were computed with per-
mutations by generating 5,000 surrogate accuracy values for full network and for each sub-
network. The null cumulative distribution function was obtained using kernel smoothing.
Multiple comparisons were corrected for by using FDR correction (Benjamini and Hochberg,
1995).

3.4.4 Representational similarity analysis (RSA)

In Study I, we used RSA to investigate whether the neural similarities between different vari-
ants of basic (anger, fear, disgust, happiness, sadness, surprise) emotional states correspond
to their experiential (subjectively felt) differences. To construct a neural similarity matrix, we
trained a within-participant classifier to separate between brain responses to all 36 emotion
categories in Exp. 2 of Study I and computed the mean confusion matrix across the basic
emotion categories for each participant. All other classifier parameters remained as in the
between-category classification described above. As an indicator for neural similarity, we
then averaged these confusion matrices across participants and averaged the upper and lower
triangles to make the matrix symmetrical and to estimate the mean confusion regardless of
which category was the target and which was the guess. Experiential similarity matrices were
extracted from behavioral similarity ratings, thus each link denotes the experienced similarity
between a pair of emotions. To examine the correlation between the two similarity matrices,
we applied the Mantel test to examine the correlation between the two similarity matrices
using an in-house algorithm (available at http://users.aalto.fi/ ~eglerean/permutations.html,
last accessed on June 15, 2017). The probability distribution was obtained with permutation
repeated for 10° times.

In Study II, we used RSA to examine the similarity structure of brain responses and subjec-
tive feelings associated with both basic and social emotions. To construct the neural similari-
ty matrix, we took the classifier confusion matrix from the whole-brain within-participant
classification of 14 emotions and a neutral state. From the group-averaged confusion matrix,
we calculated a distance matrix by taking the category confusion vectors for each pair of emo-
tions and by calculating the Euclidean distance between these vectors (see Reyes-Vargas et
al., 2013). Experiential similarity matrices were again calculated based on pairwise similarity
ratings of experienced emotions and averaged over the participants. Subsequently, the mean
neural and subjective similarity matrices were correlated using Spearman's rank correlation
coefficient. The p level for the Spearman test was obtained with a permutation test by shuf-
fling the neural matrix and re-calculating the correlation for 10° times.

Finally, we visualized how different emotions cluster together based on their neural similar-
ities and whether same cluster structure is present at the level of subjective experience. For
this, we employed hierarchical cluster analysis. To visualize the similarities in subjective and
neural organization of emotions, we extracted the clusters in both neural and behavioral data,
and subsequently plotted the cluster solutions using alluvial diagrams (Rosvall and Berg-
strom, 2010).

3.4.5 Univariate GLM analyses

Univariate general linear model (GLM) analyses were employed mainly to complement mul-
tivariate analyses. As visualization of results is one of the caveats of pattern classification, we
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took advantage of the more conventional GLM analysis for mapping the emotion-dependent
responses in the brain. Voxel-based GLM tests for the null hypothesis that the time course of
the experimental manipulation (in the current study, usually a particular emotion) is not re-
lated to the time course of the activation at each voxel. In functional connectivity analyses, we
can contrast the connectivity matrices for different conditions, here, emotions, with that for
the other conditions by using pairwise f tests for each link at the time.

In Study II, we visualized the emotion-related activation by calculating cumulative activa-
tion maps. We first ran separate GLMs to compare each of the 14 emotions versus the neutral
baseline: first-level GLM analysis was performed to obtain contrast maps for each partici-
pant, and second-level (i.e., subjects as the random factor) analysis was run to reveal emo-
tion-specific activations at the population level. Cluster correction for multiple comparisons
was employed at p<0.05 (Eklund et al., 2016). Next, we qualitatively summarized the results
across emotions by calculating a cumulative map where each voxel shows the number of
emotions showing statistically significant activation in the random effects model (cluster cor-
rected at p<0.05). Similar analysis was also run for deactivations. The resulting cumulative
activation / deactivation maps show the number of emotions for which the voxel activates at
the given threshold, but does not reveal which emotions are activating the voxel. To answer
this, we used hierarchical clustering of emotions (see section 3.4.4) to obtain three principal
clusters of emotions and mapped them on the cortical and subcortical maps using R, G, B
color space. For each emotion, we took the unthresholded second-level t maps obtained from
the GLM analysis that approximate the average activation for each emotion, summed them
for emotions belonging to the same cluster, and assigned the summed values to the corre-
sponding R, G, B channels. The color channels were subsequently visualized in MNI space.
Consequently, the RGB color at each voxel reflects the cluster distribution of that voxel, and
can be used for localizing brain regions contributing to different emotions.

In Study III, we used univariate GLM to model the effects of emotional valence and arousal
on brain activity. For each participant, we used the GLM to assess regional effects of the va-
lence and arousal parameters on BOLD activation. The model included the orthogonalized
valence and arousal time series obtained from average behavioral ratings. Individual contrast
images were generated for the activation and deactivation effects of valence and arousal. The
second-level analysis used these contrast images to generate statistical t maps (FDR correct-
ed at p<0.05 for multiple comparisons).
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4. Results

4.1 RQ 1: Do different emotions have distinct neural bases? (Studies | and Il)

Different emotions - both basic (primary) and non-basic (secondary, including social emo-
tions) - form categories at the level of subjective experience, facial expressions, and bodily
sensations. In Studies I and II we investigated whether different emotions are also character-
ized by distinct neural bases. We hypothesized that specific emotions could be classified us-
ing brain activity patterns, which would support the view that they have unique neural un-
derpinnings.

To elicit emotional states from various emotion categories, we induced a set of canonical
basic emotions (anger, fear, disgust, happiness, sadness, and surprise; Studies I and II) and
non-basic emotions (pride, gratitude, love, contempt, guilt, shame, longing, despair; Study II)
in participants while their brain activity was measured with BOLD-fMRI. To validate that we
indeed induced the target emotions, participants gave ratings of the emotions they had expe-
rienced during the fMRI scanning. The distinctness of brain activity patterns underlying dif-
ferent emotions was investigated with MVPA by training a classifier algorithm to recognize
the emotion the participant was experiencing. We specifically focused on three aspects of
distinctness: 1) whether emotions have distinct brain activity patterns within the participant
(within-participant classification with leave-one-run-out cross-validation; Studies I and II),
2) whether the distinct brain activity patterns generalize across individuals (across-
participants classification with leave-one-participant-out cross-validation; Studies I and II),
and 3) whether the distinct brain activity patterns generalize across emotion induction condi-
tions (crossmodal classification; Study I). All classifiers were trained with feature-selected
whole-brain voxel activity patterns.

Behavioral ratings confirmed that the stimuli elicited robust, specific emotions in partici-
pants. In Exp. 1 of Study I, subjects selected our a priori defined target emotion category to
best correspond with their experienced emotion elicited by movie clips with 93.1% accuracy
(Figure 7a). In Exp. 2 of Study I, similarity ratings confirmed that the emotion variants imag-
ined by participants belonged to separate emotion clusters representing the basic emotions
(Figure 7b). In Study II, participants reported the intensity of different emotions during each
narrative stimulus, and the highest intensities were observed in our target emotion categories
(Figure 7c). Also, narratives belonging to the same emotion category elicited similar emo-
tional experiences (Figure 7d).

Within-participant classification in all experiments showed that both basic (anger, disgust,
fear, happiness, sadness, and surprise) and non-basic (pride, gratitude, love, contempt, guilt,
and despair) could be classified from voxel-activity patterns (Figures 8a-b and 9). A compari-
son between basic and non-basic emotions revealed that, on average, basic emotions were
assigned to the correct category with higher accuracy. Across-participants classification was
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also successful for basic emotions, suggesting that the neural underpinnings of these emo-
tions generalize across participants (Figure 8d-e). Moreover, crossmodal classification using
two different emotion induction techniques including external (movies) and internal (mental
imagery) conditions was successful for basic emotions, implying that their neural signatures
generalize across stimulus modalities (Figure 8c).

Taken together, the findings show that both basic and non-basic emotions have distinct
brain activity patterns within the same participant. Moreover, for at least the basic emotions,
the emotion-specific brain activity patterns generalize across participants and across emotion
elicitation techniques.
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Figure 7. Behavioral results from Studies | and Il show that stimuli elicited distinct and robust emotions.
(a) Behavioral results in the Movie experiment (Exp. 1) of Study |: mean + SEM percentages of movie clips per
emotion category during which participants reported feeling the corresponding emotion. The clips were assigned
to the predefined target category with 93.1% overall accuracy. (b) Behavioral results in the Imagery experiment
(Exp. 2) of Study I: mean network of basic emotion concepts based on the participant’s behavioral similarity rat-
ings. Link width denotes similarity between words. (c) - (d) Behavioral results in Study Il. Participants rated on a
scale from 0 -1 how much of each emotion was elicited by each of the 60 narratives that targeted 14 emotional
states and a neutral state (c). Based on the ratings, we calculated the similarity of emotion content between narra-
tives by using Euclidean distances (d).
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Figure 8. Classification results from Study I. Mean + SEM classification accuracy for each emotion category.
Dashed line represent the chance level (20% in the Movie experiment [a and d], 16.7% in the Imagery experiment
[b and €], 25% in the cross-modal experiment [c]. Asterisks denote accuracies above a permuted chance level.
(a) In the Movie experiment, the mean within-participant classifier accuracy was 47% for distinguishing one emo-
tion against all others (averaged across all categories) and the classifier was able to classify each of the 5 emo-
tion categories statistically significantly above chance level (20%, p < 0.05). (b) In the Imagery experiment, the
mean within-participant classifier accuracy was 55% and the classifier was able to classify each emotion category
statistically significantly above chance level (16.7%, p < 0.05). (c) The mean within-participant classifier accuracy
in the crossmodal experiment was 29%. The classifier was able to classify all emotion categories except sadness
statistically significantly above chance level (25%, P < 0.05). (d) The mean across-participant classifier accuracy
in the Movie experiment was 34% and significantly above chance level (20%, p<0.05) for all emotion categories.
(e) The mean across-participant classifier accuracy in Imagery experiment was 23% and significantly above
chance level (16.7%, p<0.05) for all categories except for fear.

40 —

w
o
|

[

Accuracy (%)
N
o
|

5
|

Love
Disgust
Pride
Despair
Fear
Guilt
Anger
Shame

T O
g o
s 2
-

3

Sadness
Gratitude
Happiness
Contempt
Longing for
Mean basic

Mean non-basic

Figure 9. Classification results from Study Il. Mean + SEM classification accuracy for each emotion category
using a whole-brain within-participant classifier. Dashed line represents chance level (6.7%). Colors reflect the
clusters formed on the basis of experienced similarity of emotions (see RQ 4).
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4.2 RQ 2: What are the core regions supporting emotions? (Studies |, Il & IlI)

To unravel the brain mechanisms supporting different emotions, we examined the brain re-
gions activating during basic and non-basic emotions. We specifically tested 1) how dimen-
sions of valence and arousal and 2) and distinct emotions are coded by the brain. We hypoth-
esized that the brain regions known from previous studies to be related to emotional pro-
cessing would activate during all emotions which would support the view that there is no one-
to-one mapping between any single brain region and a specific emotion.

BOLD-fMRI data from Studies I, IT and III was examined to reveal the neural basis of dif-
ferent emotions. We specifically aimed 1) to examine whether emotions are better character-
ized by whole-brain activity patterns rather than activity patterns of single brain regions
(comparison of whole-brain vs. a priori selected ROI pattern classification accuracies; Stud-
ies I and II), 2) to illustrate the core brain regions underlying specific emotions (voxels im-
portant for classification of basic emotions, Study I; cumulative activation maps across dif-
ferent basic and non-basic emotions, Study II; maps of superordinate emotion clusters, Study
II), and 3) to investigate which of these core brain regions are modulated by lower-order di-
mensions of valence and arousal (univariate GLM with dynamic valence and arousal ratings;
Study III).

The comparison of whole-brain and ROI pattern classification of basic emotions showed
that whole-brain classification accuracy exceeded that of any single region of interest (Figure
10). ROIs with highest classification accuracies were found in prefrontal cortex, precuneus,
pre- and postcentral gyri, and IFG, suggesting that emotion-specific brain activity patterns
exist especially within these areas. However, the net brain activity pattern across all regions
together gave a more accurate signature for each emotion. Illustrations of core brain regions
constituting these emotion-specific net activity patterns show that voxels important for the
classification of basic emotion were found especially in cortical midline, subcortical areas,
and somatomotor regions for all emotions with no one-to-one mapping between a single
brain region and a specific emotion (Figure 11). Furthermore, the activity of these same re-
gions together with activity in frontal areas, brainstem and sensory (visual) areas was modu-
lated by a majority of tested basic and non-basic emotions (Figure 12). To summarize emo-
tion-specific activity in the brain, we defined superordinate categories of emotions by apply-
ing hierarchical clustering to the confusion matrices obtained from MVPA. The resulting
emotion categories differ slightly in how they are distributed in the brain: especially, positive
emotions activate the anterior prefrontal cortex, negative basic emotions tend to activate es-
pecially the somatomotor regions and negative social emotions show specific activation in left
insula (Figure 13). When investigating the modulations of valence and arousal alone, we
found that negative valence modulated the subcortical structures, cerebellum, and PCC, and
positive valence modulated OFC and operculum (Figure 14a). High arousal modulated brain
activity especially in midline structures, subcortical areas, and posterior STS, whereas the
effects of low arousal were small (Figure 14b).

In summary, both basic and non-basic emotions have distinguishable neural bases charac-
terized by specific, distributed activation patterns in widespread cortical and subcortical cir-
cuits, including especially the cortical midline, somatomotor and visceral regions, and sub-
cortical areas, but extending also to frontal and sensory regions. Locally differentiated en-
gagement of these globally shared circuits defines the unique neural signature activity pat-
tern. Brain activity in these areas is modulated by valence and arousal, but for specific emo-
tions, activation are also seen in areas exceeding these, suggesting that dimensions of valence
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and arousal are not enough to completely characterize the neural differences between emo-
tions.
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mean + SEM classification accuracies between basic and non-basic emotions for each region-of-interest (ROI) in
Study Il. Asterisks denote above-chance-level accuracies (p<0.05). Dashed line represents chance level (6.7%).
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a Within-participant classification b Across-participants classification
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Figure 11. Voxels with the largest importance for the classification of basic emotions in Study I. The
thresholding of the importance values (defined as voxel activation * classifier weight) is arbitrary and the maps are
shown for visualization only. mPFC = medial prefrontal cortex; PCC = posterior cingulate cortex; Prec = precu-
neus; aPFC = anterior prefrontal cortex; LOC = lateral occipital cortex; postCG = postcentral gyrus; preCG = pre-
central gyrus; Ins = insula; Amy = amygdala; MTG = middle temporal gyrus.
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Figure 12. Cumulative activation/deactivation maps from Study Il showing areas that activate/deactivate
for multiple emotions. (a) Cumulative activation map shows the cumulative sum of binarized t maps (p<0.05,
cluster-corrected) across each emotion vs. neutral condition. Outline shows the GLM results for all emotions con-
trasted against the neutral condition, p<0.05, cluster-corrected). (b) Cumulative deactivation map shows the cu-
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Figure 13. Cluster-specific activation patterns in cortical and subcortical regions from Study Il. The maps
show the averaged uncorrected { maps for emotions belonging to each cluster obtained from the hierarchical
clustering analysis in cortical regions (a) and subcortical regions (b). Colors represent the three clusters: cluster 1
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Figure 14. GLM results showing areas whose activation is modulated by valence and arousal from Study
lll. (a) Regions that are modulated by emotional valence of the stimulus. (c) Regions that are modulated by emo-
tional arousal of the stimulus.
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4.3 RQ 3: How does the large-scale functional connectivity vary during emo-
tions? (Studies Il & IV)

Previous results showed that specific emotions have distinguishable activity patterns distrib-
uted across the brain. As the brain functions as a network, also the connections between dif-
ferent regions might vary between different emotions. We hypothesized that if different emo-
tions are supported by functional changes in large-scale neural networks, we should be able
to decode them from functional connectivity data.

To elicit various emotional states, we varied either valence and arousal (positive, negative
and neutral valence, high, low and neutral arousal; Study III) or discrete emotion content
(basic emotions: anger, fear, disgust, happiness, sadness, and surprise; Study IV) of auditory
stimuli that were presented to participants while their brain activity was measured with
BOLD-fMRI. We then specifically examined 1) how valence and arousal modulate functional
connectivity in the brain (combining dynamic ratings of valence and arousal with functional
connectivity calculated with SBPS; Study III), 2) whether the whole-brain connectivity pat-
terns differ between discrete emotional states (across-participants pattern classification of
whole-brain functional connectivity patterns; Study IV), and 3) whether specific subnetworks
contribute to the classification of functional connectivity patterns underlying different emo-
tions (across-participants pattern classification of subnetwork functional connectivity pat-
terns; Study IV).

In general, high arousal and negative valence increased functional connectivity across the
whole brain, whereas the connectivity modulations due to positive valence and low arousal
were more limited (Figure 15). Further, basic emotions could be classified from whole-brain
functional connectivity patterns (Figure 16). Subnetwork classification revealed that the dif-
ferences between emotions lie especially within the default mode network (DMN) connec-
tions (Figure 17), which was the only subnetwork with above-chance-level classification accu-
racy and where all emotions could be classified above chance level. We further investigated
the subnetworks within the DMN and found that emotions could be classified from each oth-
er based on connectivity within the posterior midline DMN, between left temporal and
frontal midline DMN, and between right temporal and posterior midline DMN (Figure 18).

In summary, while valence and arousal modulate functional connectivity markedly, the
connectivity patterns underlying anger, fear, disgust, happiness, sadness, and surprise are
more similar outside the DMN, where they show distinct functional connectivity patterns.

42



Results

a) Enhanced connectivity due to negative valence b) Enhanced connectivity due to positive valence
Caud
e
_._Cingulate L Cingulate
\ ol Dorso-Frontal.
{ Borso-Frontal Ay
- Tt
Preciiney 1 19 ibitorFromal
< / Brain Stem
QU2 By Parietal / o barsetal 2
Saunsuas {2 - e insula B
' Oceifiital T \Ocemflal /
o c'\‘l-t
Tempigea s Temporal
o Rlsiform -’ ! -
P = Fusiform S or Fuss
©x Ve
% x
x
c¢) Enhanced connectivity due to negative arousal d) Enhanced connectivity due to positive arousal
cawd "/\
- P et |
\BAS —_— [ ot y -
\ £ s Einguine \\ & y E Siguiane "
( oo Hoa, R \\ vy, £ Oorso:Frontal’
IS S \ al > A
) B e Wecined 1o Aty o,
G S Tl
3 Parvetal =
e
- occipta Oceipital g
“ crusi 7
" Tegiporal ¢ crsi y G
7 ',7 vib {
e b o | St
x x
Node strength spheric cortico-cortical connections mmmmm Cerebellar-cortical connel
. ® . — nter i ic cortico-cortical i s Other connections
mmmm Subcortical-cortical connections
_—
Low High

Figure 15. Functional connectivity modulations by valence and arousal from Study Ill. Connectivity graphs
show the brain regions whose functional interconnectivity increased as a function of emotional valence (top row,
a-b) and arousal (bottom row, c-d). Negative valence and arousal are shown in the left panel, positive valence
and arousal in the right. Colour denotes link type and node circle size indicates node strength (all data threshold-
ed at q < 0.1, FDR-corrected).
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Figure 16. Classification of basic emotions based on whole-brain functional connectivity patterns (Study
IV). (a) Emotion-wise classification accuracies for the full-network classification. Dashed line represents naive
chance level (16.6%). Asterisks denote significance relative to chance level (*p<0.01, ***p<0.0001). Thick line
represents median of classification accuracies. Boxes show the 25th to 75th percentiles of classification accura-
cies and values outside this range are plotted as dots. Whiskers extend from box to the largest value no further
than 1.5 * inter-quartile range from the edge of the box. (b) Classifier confusions from full network classification.
Off-white colour code denotes classifier accuracy; cells shown in white have accuracies below naive chance level.
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Figure 17. Subnetwork classification accuracies and confusion matrices from Study IV. (a) Classification
accuracies for connectivity within and between each subnetwork. Colour code denotes classifier accuracy; cells
shown in white have accuracies below naive chance level. All non-white accuracies are above the naive chance
level (16.6%), but after correcting for multiple comparisons, only the accuracy for within default mode network
connections remained significant. (b) Classifier confusions for subnetwork classification.
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Figure 18. Classification results from default mode subnetwork (DMN) classification (Study IV). (a) Emo-
tion-wise classification accuracies of the classification for connections within the DMN. Dashed line represents
naive chance level (16.6%). Asterisks denote significance relative to chance level (**p<0.001, ***p<0.0001). Thick
line represents median of classification accuracies. Boxes show the 25th to 75th percentiles of classification accu-
racies and values outside this range are plotted as dots. Whiskers extend from box to the largest value no further
than 1.5 * inter-quartile range from the edge of the box. (b) - (c) Classification accuracies (b) and subnetwork
confusion matrices (c) for DMN subnetwork classification. Colour code denotes classifier accuracy; cells shown in
white have accuracies below naive chance level.
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4.4 RQ 4: Do emotions that have similar neural bases also feel subjectively
similar? (Studies I, Il and V)

Many emotions feel distinct from each other in the mind and the body, and our results so far
suggest that different emotions also have distinguishable neural underpinnings characterized
by differences in distributed voxel activity patterns throughout the brain and in functional
connectivity patterns especially within the default mode network. In this final part of the pro-
ject we investigated the link between subjective feelings and their neural bases, a domain in
affective neuroscience that remains unknown. We hypothesized that if the subjective experi-
ence is a sum of emotion circuits, emotions that share more similar neural underpinnings
should be experienced in a more similar way.

To compare the similarity structures of emotions at the level of both brain activity and sub-
jective feelings, we combined the BOLD-fMRI data and behavioral ratings of experienced
basic and non-basic emotions (Studies I and II). Further, we took advantage of existing da-
tasets that measured similarities in brain activity, subjective feelings, facial expressions, cog-
nitive evaluations, and bodily sensations between the canonical basic emotions in a small
meta-analysis (Study V). We specifically investigated 1) whether the similarity structure of
brain activity and subjective feelings is correlated (RSA; Studies I and II), 2) whether the su-
perordinate clusters of emotions are similar across brain activity and subjective feelings (hi-
erarchical clustering analysis; Studies I and II), and 3) whether the similarity of subjective
feelings resembles the similarity in brain activity, bodily sensations, cognitive evaluations,
and facial expressions (Study V).

The correlation between experiential and neural similarity matrices was significant
(rho=0.43, p<0.001 in Study I, rho=0.68, p<0.0001 in Study II), supporting our hypothesis
that emotions that feel similar also have more similar neural bases. While variants of basic
emotions clustered around the basic emotions in both neural and experiential data (Figure
19), different basic and non-basic emotions were clustered together to form a set of superor-
dinate clusters - positive emotions, negative basic emotions, negative social emotions, and
neutral emotions - that differed slightly of those in the experiential data (Figure 20). Clear
clustering of basic emotions was present at multiple levels, and the similarity of subjective
feelings correlated especially with similarities in neural basis, cognitive evaluations, and faci-
al expressions, while correlation with bodily sensations was weaker (Figure 21).

We conclude that the more similar two emotions feel, the more similar are their neural un-
derpinnings. Also, emotions tend to cluster to superordinate categories, which are distin-
guishable similar in both brain activity and subjective feelings for basic emotions, but differ
slightly when examining a larger set of emotions. Especially, the discreteness of basic emo-
tions is present at multiple levels, including those of underlying brain activity, bodily sensa-
tions, cognitive evaluations, facial expressions, and subjective feelings.
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Figure 19. Comparison of neural and experiential similarities in Exp. 1 of Study I. Left: Experiential (behav-
ioral) similarity matrix based on the rated similarity of emotional experiences evoked by each pair of emotions.
Right: Neural similarity matrix based on the fMRI confusion matrix from word-by-word within-participant classifica-
tion. Correct categories on the x-axis, classifier guesses on the y-axis.
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Figure 20. Comparison of neural and experiential similarities in Study Il. (a) Left: Mean neural similarity
matrix extracted from the classifier confusion matrix. The similarity matrix was created by calculating the Euclide-
an distance between each pair of emotions based on their category confusion vectors. Right: Mean experiential
similarity matrix shows the rated similarity of emotional experiences evoked by each pair of emotion. (b) Alluvial
diagram showing the similarity of hierarchical cluster structure of the neural and experiential similarities. Coloring
of the emotion categories is based on the cluster of the neural similarity matrix.
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Figure 21. Cross-modal similarities between bodily, cognitive-evaluative, subjective, expressive, and neu-
ral representation of emotions. Matrices show the correlation matrices for data from different modalities using
data from Calvo and Lundqvist (2008), Nummenmaa et al. (2014a), and Saariméaki et al. (2016). In all matrices,
larger values denote higher similarity. Lines connecting different confusion matrices show the correlations be-
tween them calculated with Spearman correlation coefficient denoted. Line colour and width denotes the strength
of the correlation, all shown similarities are significant, p<0.0001, in a parametric test. Asterisks (*) denote signifi-
cant similarities in a complementary permution-based test where values were obtained by permuting the row and
corresponding column elements (p<0.05, BH-FDR-corrected).
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5. General discussion

5.1 Emotions as discrete patterns of systemic activity

Taken together, the current findings are that

1) both basic and non-basic emotions are characterized by distinct brain activity pat-
terns distributed across the brain,

2) emotion-specific patterns are found especially in default mode network areas, soma-
tomotor and visceral areas, subcortical areas, frontal cortex, and sensory areas,

3) default mode network connectivity is modulated differently by different emotions,
and

4) similarities in subjective experience of emotions are linked to similarities in their
neural underpinnings.

Based on these findings, emotions are best understood as widespread, system-level patterned
activity, rather than selective regions or systems engageing during specific emotions. A data-
driven meta-analysis of functional imaging studies (Kober et al., 2008) proposed a functional
subdivision of emotional brain circuits into six groups, each responsible for processing differ-
ent types of information (see also Meaux and Vuilleumier, 2015). These functional circuits
were suggested to code for different components of emotions, such as attentional, motor, or
mnemonic processes engaged during emotional episodes. However, previous experimental
work has failed to establish different neural signatures for different emotions within these
circuits, while the current work shows that these functional circuits contain emotion-specific
brain activity patterns.

A speculative framework for how the systemic patterns might code for distinct emotions
could be formulated by describing the components and the likelihood of a specific activity
pattern within a component being associated with a particular emotion. When relevant emo-
tional input - either external such as visual stimulus or internal such as a memory of a past
event - arrives in the brain, it triggers changes in various parts of the nervous system that
serve for different functions. For instance, processing of the relevance of the input signal
causes changes in salience-processing areas (e.g., threatening stimuli cause more activation),
sensory processing (e.g., attention targets visual search for relevant objects in the environ-
ment), modulation of sympathetic and parasympathetic nervous systems and endocrine sys-
tems (e.g., increasing heart rate, releasing adrenaline for quicker responses), and activation
of related memory traces (e.g., what happened last time I was in this situation) and motor
action tendencies (e.g., flight or fight, clenching the fists). In textbook terms of cognitive sci-
ence where different components - in the case of emotions, including at least modules related
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to cognitive, motivational, somatic, and behavioral changes - and their possible operations
and responses are described as boxes, the emotional state will frame or narrow down the pos-
sible outcomes a specific module can have. For instance, during the state of fear, likelihood of
freezing, fighting or fleeing would increase, whereas likelihood of stretching your legs to a
relaxed position on a couch would decrease. This way, the emotional state modulates or re-
stricts the outputs of different components. For pattern classification in neuroscience, this
would lead to specific brain activity patterns within a brain region responsible for some com-
ponent, which at times could be rather similar between some emotions: for instance, psycho-
physiological activation pattern related to both fear and disgust would probably be quite
similar since they both are characterized by a state of readiness and adrenaline-related in-
crease of heart rate. However, the patterns underlying these emotions would differ, for in-
stance, in their memory or motor action components, leading to a different net activity pat-
tern of the whole nervous system.

5.2 Distinct neural bases of different emotions

Different emotions - in the current studies, anger, fear, disgust, happiness, sadness, surprise,
gratitude, love, guilt, contempt, despair, and pride - can be classified from brain activity pat-
terns suggesting that they have distinct neural bases. Our results accord with recent studies
that have achieved successful classification of discrete emotional states, usually focusing on
the basic emotions only or a subset of these (Peelen et al., 2010; Said et al., 2010; Ethofer et
al., 2009; Kotz et al., 2013; for reviews, see Kragel and LaBar, 2014, 2016). While the canoni-
cal basic emotions have attracted most attention in psychological and neurophysiological
studies, they constitute only a small portion of the emotions humans universally experience
(Edelstein and Shaver, 2007). Furthermore, accumulating behavioral evidence suggests that
also other emotions are characterized by distinctive features in facial expressions (Baron-
Cohen et al., 2001; Shaw et al., 2005), bodily changes (Nummenmaa et al., 2014a), and phys-
iological activation patterns (Kreibig, 2010; Kragel and LaBar, 2013). Our data corroborate
these findings by showing that also emotions not considered as 'basic' also have distinct brain
activation patterns.

The within-participant classification accuracy in the current studies was always higher than
the intersubject classification accuracy. This is a general tendency in pattern classification
studies and is at least partly explained by that the brains of two individuals are never exactly
the same. Local brain activity patterns underlying different emotions are most probably to
some extent variable across individuals and reflect experience-dependent plasticity and ge-
netically determined individual differences. Further, BOLD signal is noisy and fluctuates al-
ready within the same individual. Importantly, even if emotions would activate comparable
brain regions across subjects, it is unlikely that these regions are anatomically aligned across
individual brains. However, comparing the intersubject classification accuracies in different
sets of emotions shows that while the canonical basic emotions - anger, fear, disgust, happi-
ness, sadness, and surprise - could be classified also across participants, the more social emo-
tions - in our studies love, gratitude, pride, longing, shame, guilt, despair, and contempt -
could not. This result might be due to the lack of power, that is, restricted number of repeti-
tions per stimuli in the current studies, or a real phenomenon that supports the view that
basic emotions are universal. Another possibility is that as more social emotions require
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more contextual knowledge of the situations, they also evoked more differing brain activity in
different individuals.

If we consider emotion systems as wide-spread neural ensembles distinct to each emotion
state, successful pattern classification of brain states across emotions would provide support
for separate emotion systems. Each emotion likely modulates multiple functional systems of
the brain differently, and their spatially distributed configuration might define the specific
emotion. For instance, two emotions might share their somatosensory representations, but
underlying interoceptive representations could be different. Thus, the general configuration
of the nervous system leads to a specific emotion. However, it must be noted that this type of
analysis does not readily reveal the actual neural organization or code of each emotion sys-
tem. The pattern classification only tells us that, on average and at the level measurable with
BOLD-fMRI, that activation patterns across emotions are statistically separable, whereas
localizing the actual source of differences is more difficult. For this reason, we complemented
the pattern classification analysis with visualization of different emotion categories using
GLM and clustering. If basic emotions were somehow ‘special’ or different from non-basic
emotions at the neural level, we should observe (i) discrete neural activation patterns for
basic emotions but not for non-basic emotions, or (ii) different (or perhaps additional) neural
systems underlying basic and non-basic emotions. Our classification results and cumulative
maps show that both basic and non-basic emotions could be classified accurately mostly to a
similar degree, although basic emotions on average reached higher accuracies, and they elic-
ited activation in largely overlapping brain areas.

5.3 Core regions modulated by emotional states

Our findings show that large-scale cortical and subcortical networks support different emo-
tions in a distinctive, category-specific manner. First, voxels important for the classification
of anger, fear, disgust, happiness, sadness, and surprise were spread out across the brain and
no single region-of-interest alone reached the accuracy of the whole-brain classification for
any emotion, suggesting that the anatomically distributed activation patterns contain the
most accurate neural signature of an individual’s emotional state. This is in line with previous
neuroimaging studies which typically show that joint activity from multiple regions best dis-
criminates between different emotions (Baucom et al., 2012; Kotz et al., 2013; Kassam et al.,
2013). Second, cumulative activation maps for anger, fear, disgust, happiness, sadness, sur-
prise, shame, guilt, pride, love, contempt, longing, gratitude, and despair show again global
activity changes. In general, we see emotion-related activation across the whole brain, and
depending on the emotion, the exact configuration of brain activity varies in these areas. A
summary of the areas usually found to be active during emotional tasks is presented in Figure
22; note that all these areas have been shown to activate also in tasks that do not have any
emotional component. This highligths the view that emotions modulate wide-spread areas
and no region might be specialized in emotion-specific processing only.

The medial prefrontal and medial posterior regions (mPFC, ACC, PCC, and precu-
neus) contributed most significantly to classification between different basic emotions and
were activated during most basic and non-basic emotions. Thus, local activation patterns
within these areas are most discriminative across emotions and reflect the most distinct neu-
ral signatures for different emotions. Also, the activity within mPFC and precuneus was
modulated by arousal and, to a smaller degree, also by negative valence. These midline re-
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Figure 22. Summary of emotion-related brain areas. Regions are shown on their approximate locations on the
PALS12 cortical atlas template (Van Essen, 2005). They were derived from Neurosynth
(http://www.neurosynth.org) and show the results of an automated meta-analysis of 1340 studies for the term
emotional. All shown activations/deactivations are significant with P<0.01 (FDR corrected). The depicted regions
are bilateral but shown on left hemisphere for simplicity. Some activations reside within the surface and subcorti-
cal regions are not shown on the template but are shown in their approximate locations. Abbreviations: Amg -
amygdala, Hi - hippocampus, IFG - interior frontal gyrus, Ins - insula, mPFC - medial prefrontal cortex, PCC -
posterior cingulate cortex, Pcun - precuneus, SMA - supplementary motor area, Th - thalamus.

gions are consistently activated during emotional processing in different sensory modalities
(Phan et al., 2002; Kober et al., 2008; Lindquist et al., 2012), particularly coding for emo-
tional valence (Chikazoe et al., 2014; Colibazzi et al., 2010), and contain emotion-specific
patterns independent of the task or exact emotion categories used (Peelen et al., 2010;
Chikazoe et al., 2014; Skerry and Saxe, 2014; see also Kragel and LaBar, 2014, for a review).
The mPFC and PCC receive inputs from insula which processes visceral information, from
amygdala which codes the affective relevance of the stimulus, from medial temporal lobe are-
as involved in memory, and from thalamus and hypothalamus which govern arousal (Ongiir
and Price, 2000; Kober et al., 2008; Etkin et al., 2011). Together, mPFC, precuneus, and PCC
form the medial part of the default mode network (DMN; see Figure 23), typically linked with
self-referential processing and introspection (Amodio and Frith, 2006; Northoff and
Bermpohl, 2004; Northoff et al., 2006; Buckner and Carroll, 2007). This anatomical archi-
tecture makes these midline regions a plausible candidate for integrating information about
one's internal, mental and bodily states (Buckner and Carroll, 2007; Klasen et al., 2011; Mar,
2011) with representations from memory and personal relevance (Summerfield et al., 2009;

mPEC Pcun/PCC AngG

Hi

Figure 23. Default mode network. Default mode brain regions are shown on their approximate locations on the
PALS12 cortical atlas template (Van Essen, 2005). Regions were derived from Neurosynth
(http://www.neurosynth.org) and show the results of an automated meta-analysis of 516 studies for the term de-
fault mode. All shown activations/deactivations are significant with P<0.01 (FDR corrected). The depicted regions
are bilateral but shown on right hemisphere for simplicity. Some activations reside within the surface and subcor-
tical regions are not shown on the template but are shown in their approximate locations. Abbreviations: Hi -
hippocampus, mPFC - medial prefrontal cortex, PCC - posterior cingulate cortex, Pcun - precuneus.
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D'Argembeau et al., 2010). The patterns of activity resulting from the binding of these various
representations might constitute a core feature of an emotional state regardless of the partic-
ular emotion category, and possibly underlie the distinctive signatures of these states as iden-
tified by our MVPA analyses. Further, the classification of basic emotions from functional
connectivity patterns within DMN was successful.

Somato-motor and visceral regions including postcentral gyrus, posterior insula, and
precentral gyrus were also among the most important brain regions for the classification of
basic emotions, and premotor cortex, cerebellum (including vermis and the anterior lobe),
globus pallidus, caudate nucleus, and posterior insula were activated during most basic and
social emotions, but according to the cluster visualizations especially during the processing of
emotions that have a strong impact on action tendencies and avoidance-oriented behaviors
(fear, disgust, sadness, shame, surprise; Frijda et al., 1989). These findings accord with pre-
vious work showing that different emotions elicit discernible patterns of bodily sensations
(Nummenmaa et al., 2014a), that primary somatosensory, motor and premotor cortices are
reliably engaged during emotion perception (De Gelder et al., 2004; Nummenmaa et al.,
2012; Pichon et al., 2008) and that cerebellum has a role in emotion regulation (Schutter and
van Honk, 2009). Moreover, damage to somatosensory cortices (Adolphs et al., 2000) or
their inactivation by transcranial magnetic stimulation (Pourtois et al., 2004) can cause sig-
nificant deficits in the recognition of emotions. Similarly, posterior insula mediates the inter-
oceptive awareness of one's own bodily functions (Critchley et al., 2004) and its damage may
impair various components of emotion processing, including gustatory processing (Calder et
al., 2001) and interoception (Naqvi et al., 2007). Precentral gyrus containing the primary
motor cortex is also consistently activated during emotional experience and emotion percep-
tion (De Gelder et al., 2004; Hajcak et al., 2007), and it likely plays an important role in mo-
tor preparation processes related to emotion and action tendencies (Frijda, 1986; Mazzola et
al., 2013; Kohler et al., 2002; Wicker et al., 2003).

Subcortical regions including amygdala and thalamus showed distinct activity patterns
for different emotions. Both of these regions are related to salience processing and emotional
arousal modulation (Adolphs, 2010; Anders et al.,, 2004; Damasio and Carvalho, 2013;
Kragel and LaBar, 2014) and show discernible activation patterns across basic emotions
(Wang et al., 2014), findings that we now extend also to non-basic emotions. However, our
ROI analysis in Study I revealed poorer classification accuracy in subcortical versus cortical
components of the emotion network. Furthermore, in none of the subcortical ROIs could we
separate between all emotion categories. It is possible that this finding reflects the positive
association between classification accuracy and ROI size, as the subcortical ROIs were, on
average, smaller than their cortical counterparts. However, follow-up analysis established
that mere ROI size unlikely accounts the poorer classification accuracy in the subcortical
ROIs, particularly as some—such as thalamus—were indeed relatively large. One possibility is
that the subcortical circuit contributes to shaping emotional states jointly with the cortical
regions. The subcortical regions likely govern elementary functions related to arousal, salien-
cy, and relevance processing, which could be shared across different emotions (Adolphs,
2010; Damasio and Carvalho, 2013; Kragel and LaBar, 2014). Thus, activity in these areas
might not be specific enough to separate between all emotions but contributes to the overall
brain activity related to the emotion - this is also probably the case with other emotion-
related brain areas. Activity in these subcortical regions may then contribute to the genera-
tion of discrete emotional states via feed-forward connections to the frontal cortex but the

53



General discussion

latter may also shape emotion responses through feedback interactions with subcortical re-
gions. We also found consistent emotion-dependent activity in the brainstem, including peri-
aqueductal grey (PAG), pons, and medulla, for almost all emotions included in our studies
(see Damasio et al., 2000; Damasio, 2010). This activation might reflect the control of auto-
nomic nervous system’s reactions to different emotions (Critchley et al., 2005; Linnman et
al., 2012) and/or covert activation of particular motor programs (Blakemore et al., 2016).
Subregions of the frontal cortex including aPFC and IFG were important for the clas-
sification of all emotions. Especially, anterior prefrontal cortex was activated especially dur-
ing positive emotions (happiness, love, pride, gratitude, longing) according with previous
research linking anterior prefrontal cortex with positive affect (Vytal and Hamann, 2010;
Bartels and Zeki, 2004; Zahn et al., 2009). Finally, we also found emotion-specific activity in
sensory areas (auditory and visual) where previous studies have also reported emotion-
related effects (Nummenmaa et al., 2012; Holmes and Mathews, 2005; Kassam et al., 2013).

5.4 Large-scale functional connectivity differences between emotions

We found that whole-brain functional connectivity patterns differed significantly during dif-
ferent emotions (anger, fear, disgust, happiness, and surprise), as evidenced by significantly
above chance-level classification accuracy of whole-brain functional connectivity patterns in
Study IV. A closer examination of the source of differences showed that emotion-specific
connectivity patterns were most prominently observed in within the default mode system.
Above chance-level intersubject classification confirmed that these connectivity patterns were
similar across subjects. The results thus show that not only regional activity patterns
(Saarimaki et al., 2016; Kragel & LaBar 2016) but also large-scale connectivity changes across
specific brain systems underlie different emotional states.

Prior studies have addressed emotion-triggered changes in functional brain connectivity
during discrete emotional states with a limited set of a priori selected ROIs (Eryilmaz et al.,
2011; Tettamanti et al., 2012; Touroutoglou et al., 2015; Raz et al., 2016). Our results are the
first demonstration that emotion-specific connectivity patterns exist both at global and local
scales in the brain. These emotion-specific connectivity changes are long-lasting (in the cur-
rent studies, persisting at least one minute).

Temporally fine-grained functional connectivity analysis also revealed large-scale brain
networks underlying the processing of emotional valence and arousal dimensions: both nega-
tive and positive valence and arousal were associated with enhanced functional connectivity
in large-scale networks spanning from limbic circuits to the neocortex. Particularly the con-
nections between limbic, sensory and association cortices were modulated by dynamic
changes in valence and arousal. Emotion systems may thus manage information processing
priorities not only in specific sub-systems or circuits, but also at global level. Differences in
the effects of valence and arousal on brain connectivity were most prominent in their spatial
layout. Second, the spatial layout of the valence and arousal dependent connectivity changes
was different. Whereas positive valence resulted in increased frontotemporal, thalamic and
striatal connectivity, negative valence resulted in widespread increase in connections from
occipito-parietal, limbic (insula, cingulum) and fronto-opercular (primary and premotor cor-
tices, lateral prefrontal cortex) regions. On the contrary, the connectivity changes from the
brain's speech processing circuit (specifically Broca's region, auditory cortex and IPC) and
limbic emotion circuits (thalamus, striatum, amygdala) as well as frontal cortex were promi-
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nently associated with increasing arousal, with only a limited set of occipito-parietal connec-
tions being associated with decreasing arousal.

In sum, the current analyses showed that while dynamic changes in valence and arousal re-
sulted in large-scale differences in functional connectivity spanning the whole brain, the dif-
ferences between specific basic emotions - at least when calculated across the timescale of
one minute - were present mostly within the default mode network. This difference can of
course be explained by the difference in timescale of these analyses: while valence and arous-
al modulations were examined on a momentary, 1-second timescale, the emotion-specific
connectivity patterns were calculated across a stimulus that lasted for 1-minute. The current
analyses did not address the fast changes in dynamic connectivity between different discrete
emotions; therefore, we cannot rule out the the fast dynamic connectivity varies during dif-
ferent discrete emotions. However, the current data would allow such analysis to be conduct-
ed in future if ratings of dynamic changes in emotion-specific intensity were collected and
added to the analyses. Another explanation of the different results between the analyses fo-
cusing on valence/arousal and specific emotions might be the different methods chosen for
calculating the functional connectivity. In valence/arousal analysis we used seed-based phase
synchrony, and in emotion-specific analyses correlation of the node time series was applied.
It would be important to extend the seed-based phase synchrony analyses to the emotion-
specific data to provide further insight on the differences.

5.5 Similar in mind, similar in brain: how does the neural similarity relate to
the subjectively felt similarity of emotions?

Humans are often aware of their current emotional state, which may help to fine-tune the
behavior adaptively to better match to the challenges posed by the environment (Damasio et
al., 1996). We found that the more similar neural signatures two emotions had, the more sim-
ilar were the corresponding subjective feeling states. This was the case for both basic and
non-basic emotions. Overall, at least for the basic emotions, the similarity structure of emo-
tions is highly similar at least at the level of neural activity, subjective experiences, facial ex-
pressions, bodily sensations, and cognitive evaluations, as shown by our meta-analysis in
Study V.

Damasio et al. (2000) have suggested that emotion-specific neural patterns across a range
of brain regions could explain why each emotion feels subjectively different. Emotions might
thus constitute discrete activity patterns in regions processing different emotion-related in-
formation, such as somatosensory (bodily sensations), motor (actions), as well as brainstem
and thalamocortical loops (physiological arousal). Activation from these areas is then inte-
grated in the cortical midline, such integration then giving rise to the interpretation of the
subjective feeling (Northoff and Bermpohl, 2004; Northoff et al., 2006). Our results support
this suggestion. We propose that the joint activation of different components is integrated in
the mPFC and precuneus/PCC where distributed responses arising in the downstream brain
regions are ultimately connected with the context and personal goals, presumably resulting in
distinctive neural signatures that reflect the subjective experience of a specific emotion. Thus,
a subjective feeling of a specific emotion stems from the net activation of different sub-
processes, rather than solely on the basis of any single component of emotion. Also prior
studies support the role of medial frontal cortex in the subjective feelings of emotions (Bar-
rett et al., 2007; Etkin et al., 2011; Herbert et al., 2011; Satpute et al., 2012).
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The correlations between whole-brain neural and experiential similarity matrices was at
0.5-0.6. Therefore, while the correlations are fairly high, the similarity of at least the whole-
brain neural patterns did not fully explained felt similarities. To reveal the role of cortical
midline regions in coding of subjective feeling, further analyses focusing on the similarity in
activity patterns in this and other regions alone would be important.

5.6 Limitations

The current work uses in particular pattern classification to investigate the neural bases of
emotions. While the successful classification reveals that there are some consistent differ-
ences between the special patterns underlying different emotions, interpreting the spatial
distribution of activity patterns and their roles in coding of specific emotions is difficult.
First, an important caveat in fMRI pattern classification studies is the visualization and in-
terpretation of the spatial activity patterns. Whereas traditional univariate analyses directly
reveal the voxels that activate above some threshold to a specific experimental condition,
pattern classifier takes into account all voxel activations in the area of interest. Therefore,
changes in the activity of any input voxel - even those activating very little or deactivating -
can result to a different classifier output. To gain a full picture of spatial patterns coding for
different conditions, one should show the weights and activity values of each voxel, which
makes the visualizations difficult. We have used thresholding of importance values in Study I,
however, this only preserves the most important voxels (i.e., those above some arbitrary
threshold) while other voxels still contribute to the classification. Therefore, while waiting for
more efficient visualization methods, the MVPA society has largely resorted back to GLM to
visualize the spatial patterns underlying different conditions, as we have also done in Study
II. Second, classification does not tell us anything about the role of different regions in coding
of a specific emotional state nor provides any causal evidence for the role of different brain
regions in the cascade of emotional processing. All interpretation is therefore speculation
based on reverse inference: which functions previous studies have reported related to a spe-
cific region.

Pattern recognition is always compromised by the a priori class labels, and this is also true
for the current study. Despite the careful stimulus selection procedures we employed, it is
possible that the stimuli did not evoke exactly the targeted emotions in all participants.
Moreover, the category labels were predefined by the research group, that is, we did not take
into account subject-specific ratings, but rather we assumed that the stimuli induce same
emotions in all participants. Despite these caveats, the classification accuracies were signifi-
cant, showing that the emotion elicitation was successful. Also, our behavioral ratings showed
that at least on average, participants chose the a priori defined target category for the intend-
ed emotion at high accuracy. However, future studies could take advantage of more subject-
specific ratings.

Another related limitation is that the emotion categories we have chosen do not necessarily
correspond to the ground truth of existing emotion categories. This is related to a more gen-
eral problem in the field: we and others use emotion categories that resemble those in every-
day life, yet, whether such categories exist in the neurobiological level can be questioned (see
e.g. Adolphs, 2017). Take fear, for instance, an emotion that has been extensively studied in
affective neuroscience. Our everyday concept of fear might include both social and physical
fear, which both have very different roles and therefore also different underlying functions
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also at the neural level. Grouping both under the term fear might cause confounds in the da-
ta. One possible solution to this ground truth problem would be to use generative models in
the analysis. Further, there might be cultural differences in both emotion concepts, their
interpretation and underlying functions (see e.g. Wierzbicka, 1999). Our Finnish-speaking
sample might limit the generalizability of the results.

Despite the careful stimulus selection and the measures we took to validate emotional in-
duction in participants, it is possible that the stimuli did not fully capture the target emotion
only and potentially elicited also a mixture of emotions. Yet, these mixed emotions may arise
in different time points during the stimulation and might not be as strong as the main target
emotions, thus it is likely that trial-wise activations pertain to the target emotion, as evi-
denced by the clear primary emotions reported by our participants per each stimulus. Despite
this caveat, the observed MVPA pattern might reflect whether each stimulus is dominated by
one emotion or at least show the weighted influence of each emotion on a voxel activity.
Thus, the successful classification per se shows that at least the target emotions were success-
fully elicited; yet, better classification accuracies may be reached if stimuli could be targeted
more carefully to one category at the time.

5.7 Future directions

When studying the human emotions, it is important to consider how natural emotions we can
elicit in the restricted laboratory or scanner setting. Do the emotions we elicit correspond to
those in everyday life? Using static images has traditionally been common practice in cogni-
tive and affective neuroscience. This is probably because simple stimuli are easy to control for
compounds caused by, for instance, visual or auditory differences between them. However,
one could argue that emotions are context-dependent: especially the non-basic emotions
might require further knowledge about the context to be evoked. Another important question
then is whether two occasions of the same emotion can ever be the same, because of contex-
tual differences (see e.g. Barrett, 2006; 2017). In the current work, we aimed to use as natu-
ralistic stimuli as possible - including mental imagery, movies, and narrative-guided imagery
- to evoke a multitude of emotional states. However, I suggest we move to even more natural-
istic stimuli in future. fMRI studies rarely used ecologically valid stimuli to induce emotions,
therefore, future studies should aim to carefully design paradigms that evoke as natural emo-
tions as possible. The few studies that have brought ecologically valid stimulation to brain
imaging setup have used autobiographical recall of emotional events, fear of electric shock, or
real tarantulas (Damasio et al., 2000; Mobbs et al., 2007, 2010). While eliciting emotions in
these natural ways may limit the range of different emotions included in one study potential-
ly to only one, maybe this is the way forward that allows a more in-depth investigation of a
particular emotional state (Adolphs, 2017; Nummenmaa and Saariméki, in press).

The primary current method for studying the brain basis of human emotions is fMRI. How-
ever, fMRI has no pharmacological specificity and the time resolution is relatively poor.
While the time resolution could be improved by using other brain-imaging methods, such as
magnetoencephalography (MEG), transcranial magnetic stimulation (TMS), or electroen-
cephalography (EEG), these methods are limited in their spatial accuracy and scope, both
features that are necessary when studying human emotions that spread across the brain.
Pharmacological basis of emotions could, however, be studied using patients or positron
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emission tomography (PET), which would and do provide important complementary infor-
mation to the fMRI results.

Finally, the framework presented in Section 5.1 calls for further studies in how emotion-
specific patterns code for the output possibilities of different functional components of the
brain. A more fine-grained description and analysis of, for instance, mnemonic, visceral, mo-
tor, and sensory outputs related to distinct emotional states would be an interesting approach
for future. Another important question is how these regions work in synchrony to contribute
to the formation of an emotional state, and what are the causal relationships between the
different components, that is, how does the activity spread between different brain regions
and component processes. These questions require more detailed measurement of the tem-
poral properties of brain activity which could be investigated — regardless of the slow nature
of BOLD signal — with fMRI using faster acquisition sequences.
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6. Conclusions

Understanding the neural basis of emotions is a timely topic in affective neuroscience, revolv-
ing especially around how different, discrete emotional states are coded by the neural system.
The current work demonstrates and illustrates the specific and stereotypical changes that
take place during different basic and non-basic emotional states. Emotions are best under-
stood by modulations of net activation of multiple functional components which lead to both
local and global, emotion-specific activity patterns.

The current findings make a substantial contribution to the search of neural basis of emo-
tions. The set of five studies shows emotion-specific patterns both in large-scale brain activity
and connectivity, in areas including the cortical midline, somatomotor and visceral areas,
subcortical areas, frontal cortex, and sensory regions. Lower-order dimensions of valence and
arousal modulate the dynamic functional brain connectivity differently, and especially default
mode network connectivity shows different, sustained patterns for specific emotions. Finally,
similarities in subjective experience of emotions are linked to similarities in their neural un-
derpinnings.
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Emotions guide both human and animal
behavior providing the means for survival in
a constantly changing environment. Different
emotions seem to be distinct from each other
in several aspects, including physiological
changes, bodily sensations, facial expressions,
and subjective experience. Whether and how
such emotion categories exist at the neural
level remains however under debate. In the
studies of this dissertation multiple emotional
states were induced using emotional movies,
mental imagery, and narratives while
participants' brain activity was measured with
functional magnetic resonance imaging. The
findings from these studies show that specific
emotions can be classified from both voxel
activity and functional connectivity patterns,
suggesting that emotions have distinct brain
activity and connectivity patterns that
encompass large extent of the brain and
generalize both across individuals and across
emotion elicitation techniques.
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