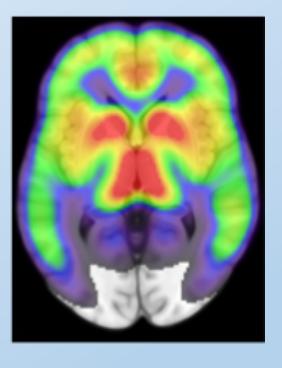
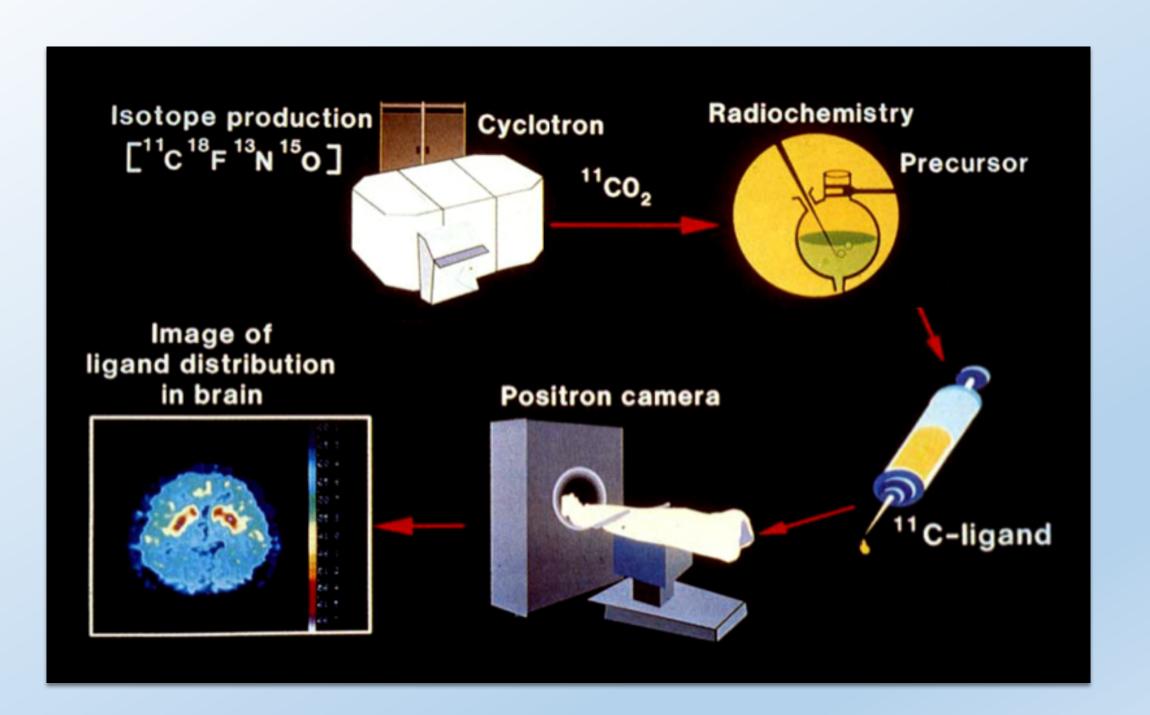
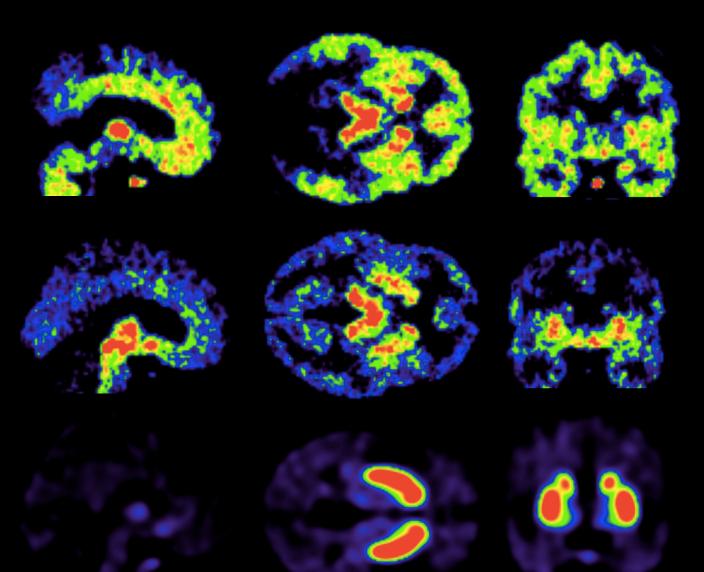

Preprocessing PET data with the Turku PET Center Pipeline

Tomi Karjalainen


PET camera


Coincedence detection


Reconstructed image

Positron Emission Tomography allows in vivo quantification of the distribution of specific chemical compounds. It can thus be used for studying specific neurotransmitter systems.

[11C] carfentanil MOR tracer

[11C] MADAM SERT tracer

[11C] raclopride D2R tracer

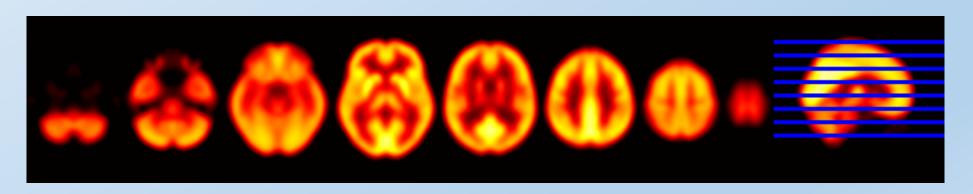
What is meant by preprocessing of PET data?

- Dicom-to-Nifti conversion (SPM)
- Motion correction (SPM)
- Coregistration between MRI and PET (SPM)
- Generation of ROIs (FreeSurfer)
- ROI and voxel-level modeling (in-house scripts)
- Normalization to a standard space (SPM)
- Smoothing (SPM)
 - Preprocessing creates inputs for population-level statistical analyses

Variation in PET data

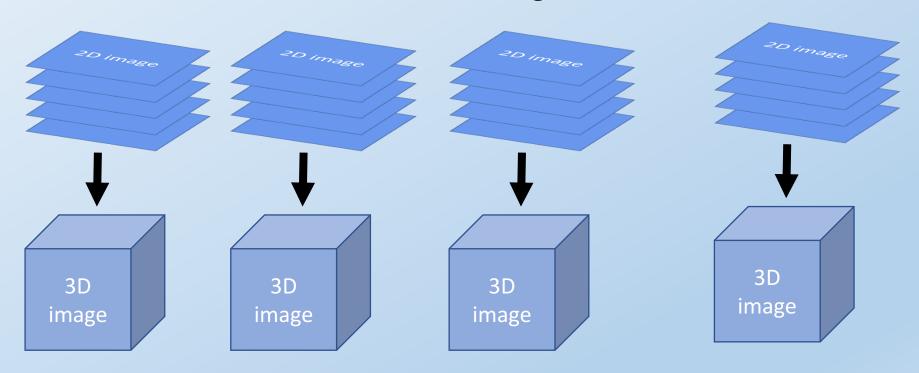
- Tracer
- Dynamic or static
- Frames
- Input
- Model
 - → Different PET data require different preprocessing steps

The Turku PET Center Pipeline: magia

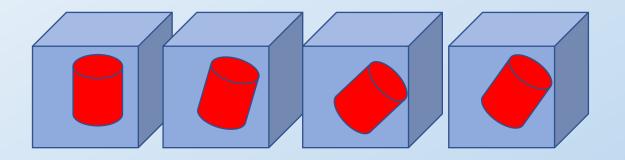

- magia can preprocess wide range of different PET data in an easy-touse way
 - Currently limited to human brain data
- Runs on Matlab
- Combines existing tools from SPM and FreeSurfer
- Available for all people doing neuroscience in PET centre

About raw PET data

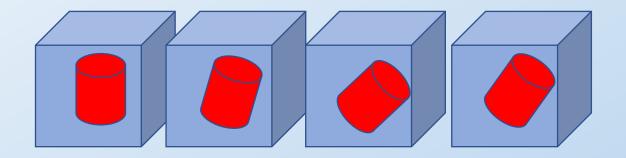
- After image reconstruction, the data is available from PET Pacs Research
- The data is stored under PET Pacs Research in DICOM format
- 1 dicom = 1 slice of brain, consists of e.g. 256 x 256 pixels
- The data are converted into Nifti format, where 2D slices are combined into 3D images


About raw PET data

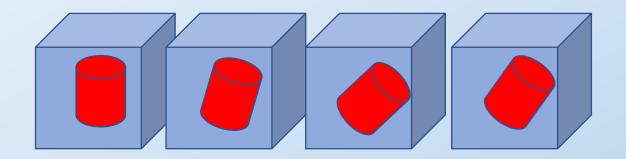
- After image reconstruction, the data is available from PET Pacs Research
- The data is stored under PET Pacs Research in DICOM format
- 1 dicom = 1 slice of brain, consists of e.g. 256 x 256 pixels
- The data are converted into Nifti format, where 2D slices are combined into 3D images



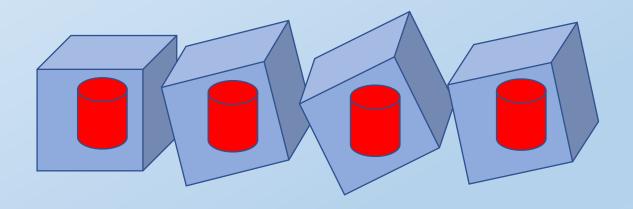
Dicom-to-Nifti conversion (SPM)

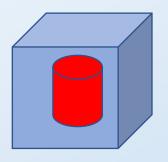

- magia starts by converting the dicoms into nifti format
- For dynamic scans, 4-dimensional images are generated
 - 4D means: a time-series of 3D images, all stored under the same file

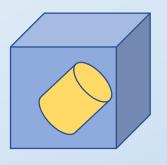
Motion correction (SPM)

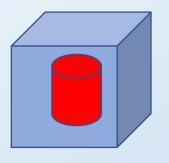


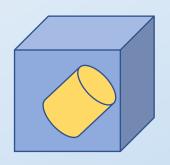
Motion correction (SPM)

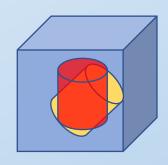


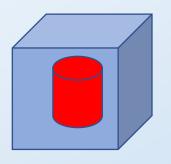

Rigid-object transformation to match the brains inside the cubes

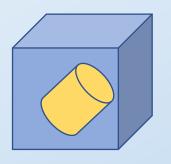

Motion correction (SPM)

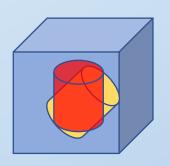


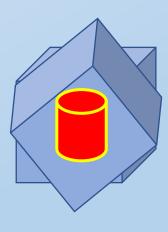

Rigid-object transformation to match the brains inside the cubes

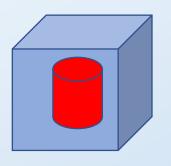


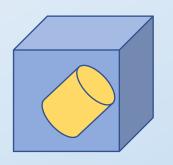


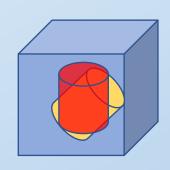


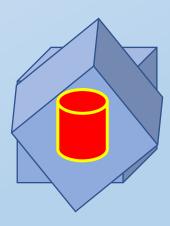


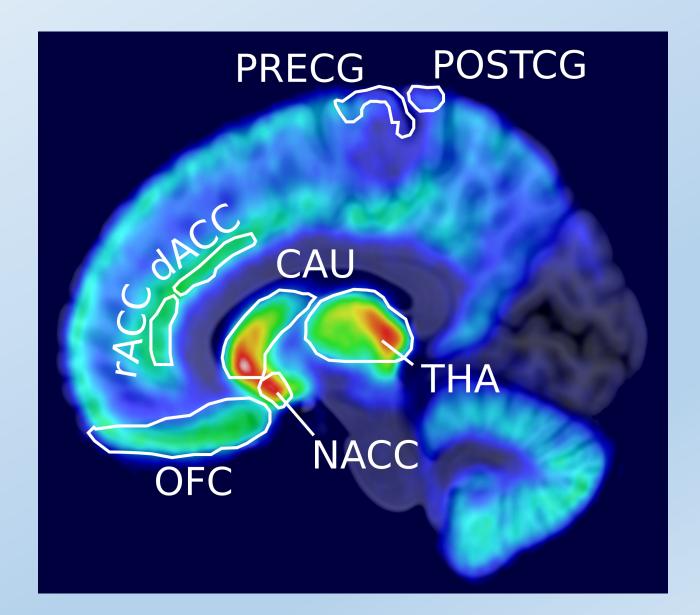








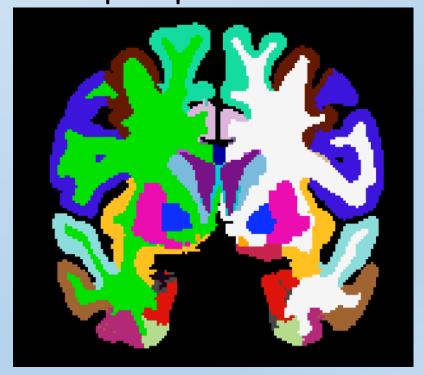




Coregistration between MRI and PET is required when MRIs are used to aid normalization of PET images (recommended whenever MRI is available)

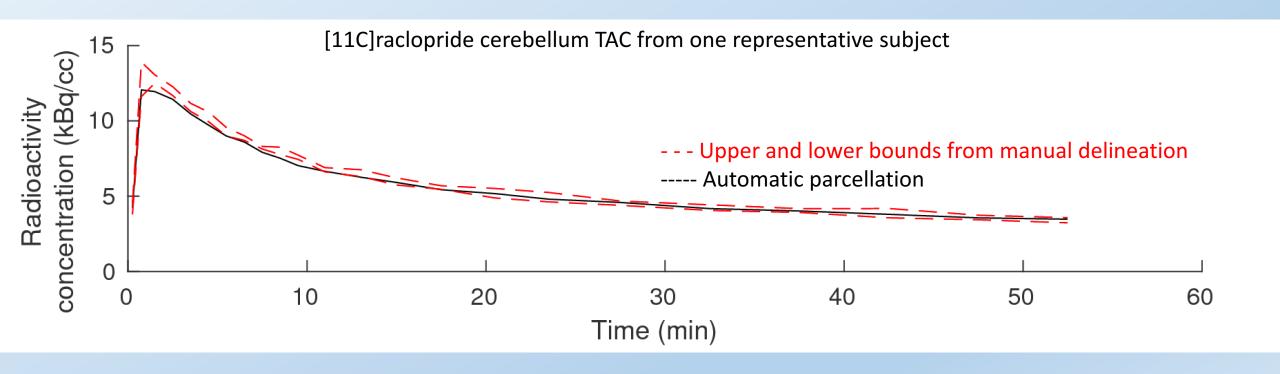
Generation of ROIs


- What do we need ROIs for?
- 1. Reference region
- 2. ROI-level analyses

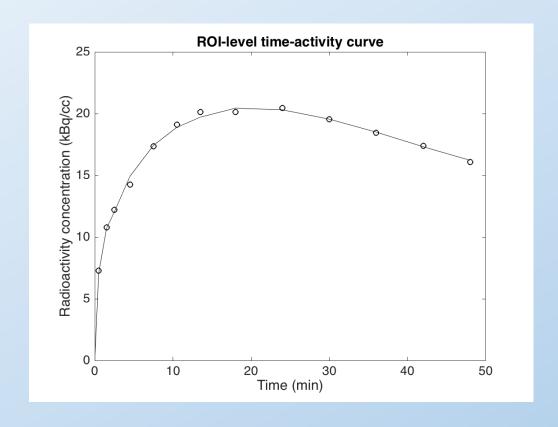

Generation of ROIs (FreeSurfer)

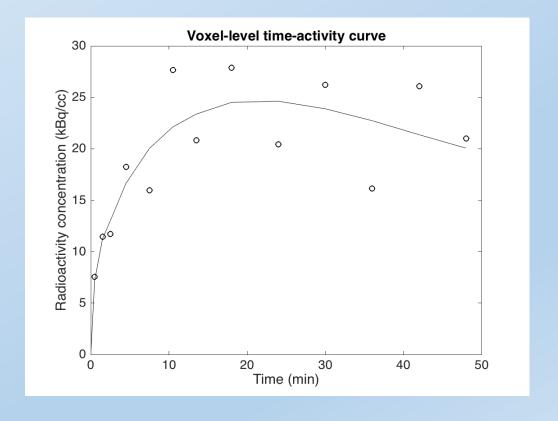
FreeSurfer automatically produces individual ROIs

Input: T1w MRI

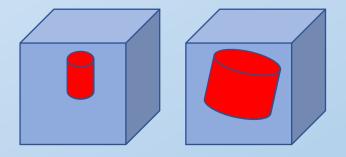


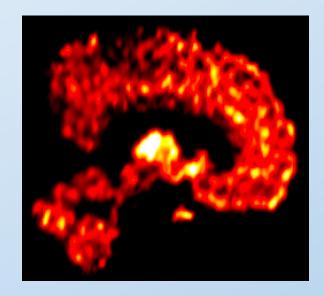
Output: parcellation

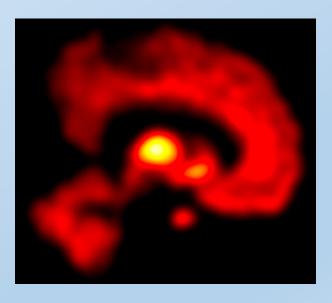

Generation of ROIs (FreeSurfer)


 FreeSurfer-generated ROIs and manually drawn ROIs produce comparable time-activity curves for many tracers

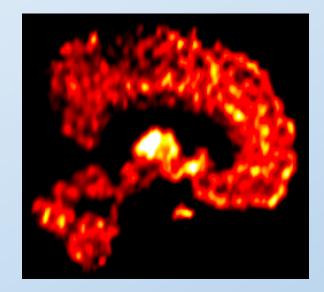
ROI and voxel-level modeling (in-house scripts)

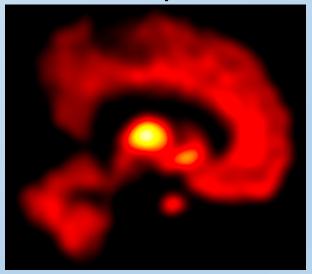

 Produces parameter estimates reflecting how much the tracer accumulates in target tissue compared to plasma or reference tissue


Normalization to a standard space (SPM)


- Large variation in brain size and shape across indivudals
- However, the same anatomical structures are present in all brains
- Because we often want to do population-level inference across the whole brain, the brains need to be transformed into similar size and shape

Smoothing (SPM)


- The resulting parametric images are often very noisy
- One way to increase signal-to-noise ratio is to average the maps over neighboring voxels (smoothing)
- Cost: reduced spatial resolution



Smoothing (SPM)

- The resulting parametric images are often very noisy
- One way to increase signal-to-noise ratio is to average the maps over neighboring voxels (smoothing)
- Cost: reduced spatial resolution

The end product

How is the preprocessing done in TPC?

- AIVO: A centralized database
 - Contains metadata from over 10 000 neuro PET images acquired in Turku
- magia: Preprocessing pipeline
 - **ORuns on MATLAB**
 - Fully automated
 - Standardized
 - Supports a wide range of different PET images
 - Provides quality control pictures and metrics

AIVO

imaga id	20	study sodo	project		rondor	de .		uniaht	hoight i	viaction time	200	famore.
image_id [PK] character varying					character varying	character varying						frames r character varying
•			dopadd	hrrt f	f							0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51;51 57;57 63;63 69;69 75;75 82.5;82.5 90
			· ·		m				173		39	
				hrrt m				78	170		38	
•			· ·		f							0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51;51 57;57 63;63 69;69 75;75 82.5;82.5 90
					f				170		37	
			dopadd		m		7	75 1	174		27	
	p101228	p101228	dopadd	hrrt f	f							0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
		ra855	dopadd	hrrt f	f				160		57	
		ra775	dopadd		m		7	94 1	188		42	
•	p103898				f							0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
			dopadd		m				186		56	
		ra1079	· ·		f		7	75	165		40	
•	p103899		dopadd		f							0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51;51 57;57 63;63 69;69 75;75 82.5;82.5 90
		ra820			f		7	72	162		55	
	p103575		· ·		f							0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51;51 57;57 63;63 69;69 75;75 82.5;82.5 90
ra1045	5280361	ra1045	dopadd	hrrt f	f		٤	80	165		44	
	5616734	ra1035	dopadd		f			70	163		56	
		p100279, 15hd2pt	dopadd	hrrt f	f						55	
	5126304	ra776	dopadd	hrrt m	m		7		188		42	
			dopadd	hrrt m	m				173		39	
			dopadd		m				176		35	
			dopadd	hrrt f	f				162		55	
			dopadd	hrrt m	m				177		37	
ra765	5122233	ra765	dopadd		m		٤	82	174		37	
p100952	p100950	p100952	dopadd	hrrt f	f						51	
p100948	p100896	p100948	dopadd		f						54	
p100896	p100947	p100896	dopadd	hrrt f	f							0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
		ra918	dopadd		f				169		50	
					f				169		50	
	5529873	ra1020	dopadd	hrrt f	f		· ·	68	165		52	
	p101254		eato	pet-mri m	m							0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
•	p100835		eato	pet-mri m	m							0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
•	p101534		eato	pet-mri m	m							0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
p101528	p101528		eato	pet-mri m	m						26	0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
•	p100472		eato	pet-mri m	m							0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
p100830	p100830		eato	pet-mri m	m						25	0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
p100478	p100478		eato	pet-mri m	m							0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
p101215	p101215		eato	pet-mri m	m					4	23	0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
p104015	p104015		exebrain	pet-mri m	m		5	73	174	4	22	0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
5305102	5305102		exebrain	pet-mri m	m					4	25	0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
5360972	5360972		exebrain	pet-mri m	m						23	0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
5452358	5452358		exebrain	pet-mri m	m						37	0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
5385189	5385189		exebrain	pet-mri m	m					7	36	0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
5249378	5249378		exebrain	pet-mri m	m						23	0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
5329108	5329108		exebrain	pet-mri m	m						24	0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
5488943	5488943		exebrain	pet-mri m	m				175		35	0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
5079501	5079501		exebrain	pet-mri m	m					1	23	0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
5241672	5241672		exebrain	pet-mri m	m					1	25	0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
	5123111				m					3	30	0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
	5218041				m							0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51
	p104148			pet-mri m	mm			72	190			0 1;1 2;2 3;3 6;6 9;9 12;12 15;15 21;21 27;27 33;33 39;39 45;45 51

Select subjects

Select subjects

Example: Select all studies of a project named Pleasure

Select subjects

Example: Select all studies of a project named Pleasure

subjects = aivo_get_subjects('project','pleasure');

Select subjects

MAIN LIMITATION: AIVO IS STILL MISSING DATA

Example: Select all studies of a project named Pleasure

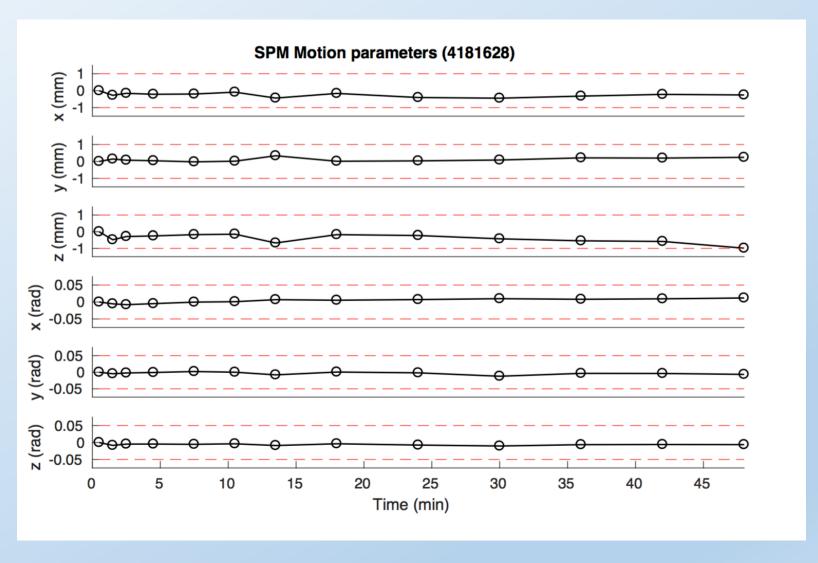
subjects = aivo_get_subjects('project','pleasure');

Run preprocessing

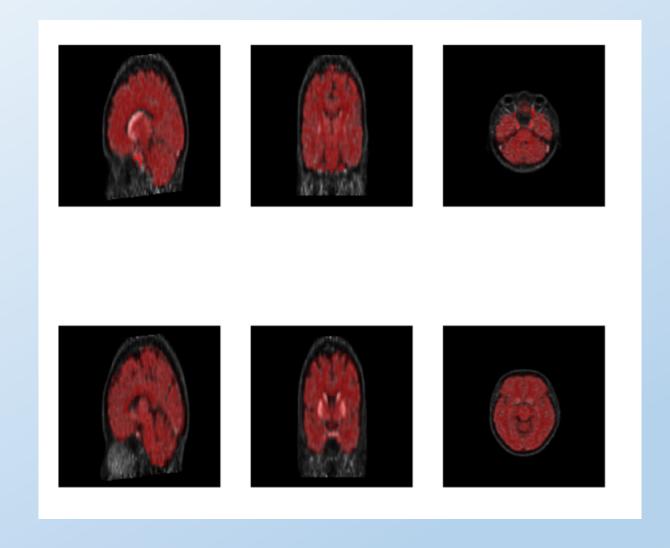
Run preprocessing

Example: Run preprocessing on previously selected subjects

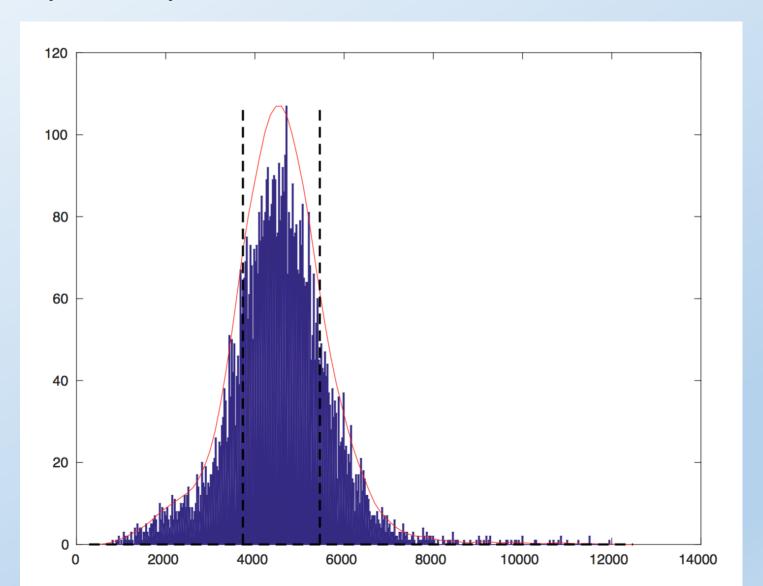
Run preprocessing

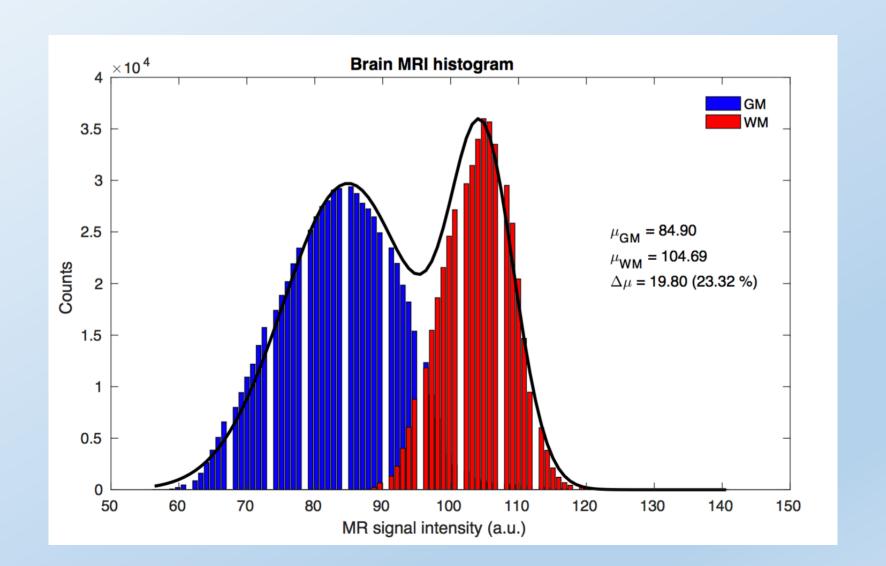

Example: Run preprocessing on previously selected subjects

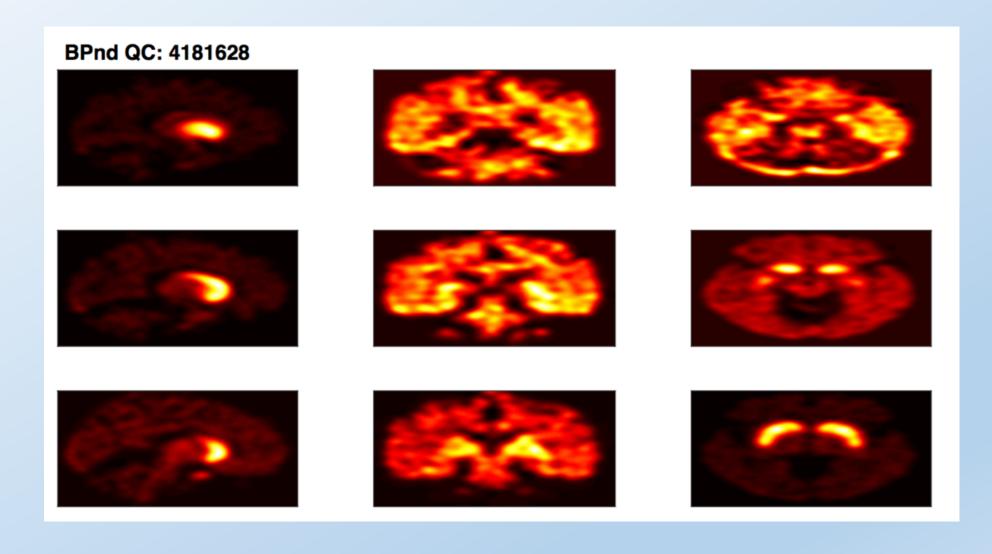
```
for i = 1:length(subjects)
    sub = subjects{i};
    run_magia(sub);
end
```

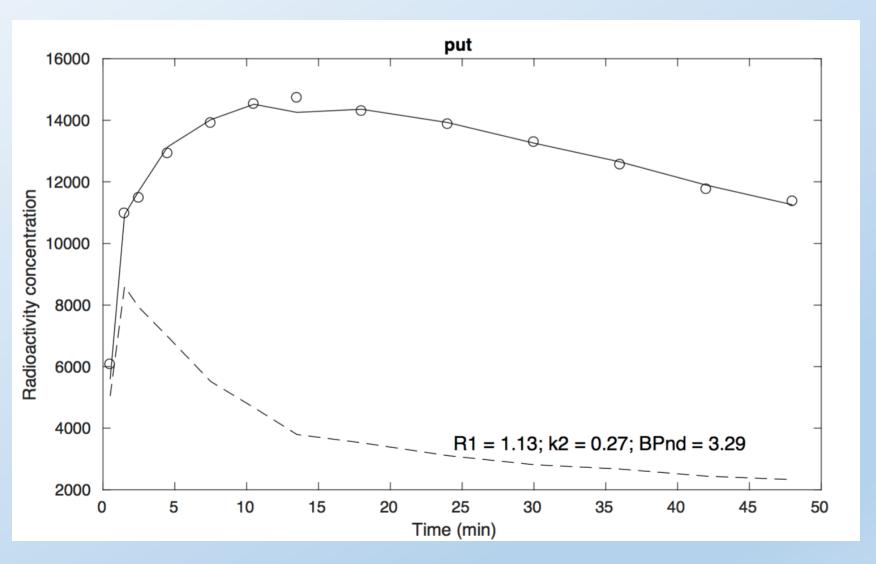

magia

- run_magia may take 10-20 hours to complete
- However, the FreeSurfer part only needs to be done once, after which re-runs take only less than 1 hour
- Advicable to run the FreeSurfer part in advance


magia quality control: motion correction


magia quality control: coregistration


magia quality control: reference tissue


magia quality control: MRI

magia quality control: parametric images

magia quality control: ROI level fitting

AIVO + magia = WIN

- Together AIVO and magia allow efficient preprocessing of PET data:
- 1. The preprocessing only has to be run only once per study, after which the data is available for everyone to use in statistical analyses
- Everyone can find the related metadata from one centralized database
 - This requires that someone inputs the data in AIVO in the first place (should be considered a routine step for new studies)
- 3. Allows analysis of massive (N >> 100) data sets easily
- 4. magia automatically saves quality control metrics into AIVO