

General Linear Model for random-effects fMRI

Linda Henriksson

Department of Neuroscience and Biomedical Engineering, Aalto University, Finland

Turku imaging workshop 5.10.2017

MRI

3T MR scanner @ Otaniemi (ani.aalto.fi)

fMRI

time

Turku imaging workshop 5.10.2017

MRI

-

time

→

Turku imaging workshop 5.10.2017

- fMRI is a technique for measuring and mapping brain activity
- fMRI data are time series of image volumes
- Typical dimensions:

122 880 [• 64 x 64 voxels within a slice

- voxels! | about 30 slices
 - 150 300 volume images (time voxel points)

One slice of a volume image

(volume element)

fMRI

Turku imaging workshop 5.10.2017

- fMRI is a technique for measuring and mapping brain activity
- fMRI data are time series of image volumes
- Voxel-by-voxel time-series analysis

fMRI

Turku imaging workshop 5.10.2017

- fMRI is an **indirect** measure of neural activity.
- Absolute magnitude of the fMRI response depends on
 - voxel size, proportion of gray matter in a voxel, local vascular density, number of voxels in a cluster, physiological variability in signal strength, field strength,...
- fMRI is a relative measure of activity: typically you need a control/baseline condition to compare with.

Typical questions for an fMRI experiment

- Which brain regions are activated during a specific task? (functional localization)
- Is the response to task A larger than the response to task B in a particular brain region?
- Spatial maps

"Where" questions

Preprocessing of fMRI data

- Typical preprocessing steps:
 - Data format conversion
 - Slice timing correction
 - Movement correction
 - Distortion correction
 - Spatial smoothing
 - Spatial normalization

Example voxel time-series

Preprocessing of fMRI data

- Typical preprocessing steps:
 - Data format conversion
 - Slice timing correction
 - Movement correction
 - (Distortion correction)
 - Spatial smoothing to increase SNR
 - Spatial normalization to common brain atlas
- Main goal of preprocessing is to reduce non-task-related (uninteresting) variability in the data

Example voxel time-series

Statistical analysis of fMRI data

- Typical question: Which brain regions (voxels) are activated by the stimulus or task?
- Standard approach*:
 - 1. Construct a model of predicted brain activity
 - 2. Fit the model to data
 - 3. Perform statistical tests

*repeat for each voxel

General linear model (GLM)

Turku imaging workshop 5.10.2017

a better model

 Take into account the shape of the BOLD response: convolve the stimulus timing vector with a model of the hemodynamic response function (hrf)

 $y = X\beta + \varepsilon$

Turku imaging workshop 5.10.2017

people.aalto.fi/linda_henriksson

Aalto University School of Science

$$y = X\beta + \varepsilon$$

$$y = X\beta + \varepsilon$$

*this is a basic design matrix should model (add columns for) all known effects-of-interest and nuisance variables

Aalto University

School of Science

\rightarrow Find parameters β that best explain the data

4 stimulus categories

Blocked fMRI design (20s 'stimulus on' periods)

96 stimulus types

Experimental design? Design efficiency?

- Blocked designs
 - Multiple repetitions of stimuli of the same category (or task) shown in "blocks"
 - Good detection power
- Event-related designs
 - More stimulus types
 - Transient activity
 - Good estimation power
- For details on design efficiency, see <u>http://imaging.mrc-</u> <u>cbu.cam.ac.uk/imaging/DesignEfficiency</u>

General linear model

- $y = X\beta + \varepsilon$
- GLM aims to explain the variation in the measured fMRI time-course in terms of a linear combination of predictors (columns in the design matrix).
- Find parameters β that best explain the data by minimizing the sum of the squared error values ($\sum \varepsilon^2$).

people.aalto.fi/

lime

Statistical inference

- Voxel-by-voxel hypothesis testing: Does my model explain variance in the data?
- Specify contrast (hypothesis), c, a linear combination of the estimated parameters (e.g., [10])
- Calculate, e.g., the T-statistic for the contrast separately for each voxel

$$T = \frac{c^T \hat{\beta}}{\operatorname{std}(c^T \hat{\beta})}$$

 $\gamma = X\beta + \varepsilon$ $T = \frac{c^T \hat{\beta}}{\operatorname{std}(c^T \hat{\beta})}$

fMRI data (one timepoint)

beta map

$$y = X\beta + \varepsilon$$
$$T = \frac{c(\hat{\beta})}{\operatorname{std}(c^T\hat{\beta})}$$

15

10

5

0

-5

spmT map

$$y = X\beta + \varepsilon$$

$$T = \frac{c^T \hat{\beta}}{\operatorname{std}(c^T \hat{\beta})}$$

- 6 - 4 - 2 - 0 -2

8

Statistical parametric map (T map) thresholded and overlaid on an anatomical MR image

Turku imaging workshop 5.10.2017

Constructing contrasts

- Are there distinct regions that are specialized for a particular function (*e.g.*, perception of faces)?
- Before neuroimaging: focal lesions → specific perceptual problems
- Why? e.g., behavioral relevance of specific stimulus categories
- Always a network of brain regions
- In practice: Where in the brain stimulus X evokes a larger response than stimulus Y?

Faces > scenes

Turku imaging workshop 5.10.2017

Scenes > faces

Turku imaging workshop 5.10.2017

Scenes > faces

Turku imaging workshop 5.10.2017

22 individuals (c: scenes > faces)

Contrast

Design matrix

Turku imaging workshop 5.10.2017

Group analysis?

- How to generalize findings from a sample of subjects to the population (from which the subjects have been drawn)?
- Whole-brain group analysis
 - Spatial normalization: match brains across individuals
 - Warp each individual brain data to a common space (Talairach; MNI)
 - Same voxel ≈ same location in the brain across individuals
 - Power of statistical analysis depends on the quality of normalization
 - Smoothing of functional data increases SNR and overlap of active brain regions across individuals (but aso spreads activations across sulci, increses partial-volume effects and reduces spatial resolution)

Spatial normalization in volume space

- Spatial normalization: match brains across individuals
 - Warp each individual brain data to a common space (Talairach; MNI)
 - Same voxel ≈ same location in the brain across individuals

+ deformation (warp) field

Spatial normalization in volume space

Turku imaging workshop 5.10.2017

Spatial normalization in volume space

 Deformation (warp) field can be applied to any other data coregistered with the original MRI image (*e.g.*, functional data)

people.aalto.fi/linda_henriksson

School of Science

Concatenate all data (fixed-effects analysis)

- Data analyzed as originated from a single subject of a very long experiment
- High statistical power

Statistical analysis: Design

people.aalto.fi/linda_henriksson

ect*bf(1)

ce*bf(1)

Concatenate all data (fixed-effects analysis)

- Data analyzed as originated from a single subject of a very long experiment
- High statistical power
- Results cannot be generalized to population!
- →Need to consider that subjects constitute a randomly drawn sample from a large population
- →Random-effects analysis

Account for between-subject variance (random-effects analysis)

Spatial normalization in surface space

people.aalto.fi/linda_henriksson

Aalto University School of Science

Surface-based group analysis

Multiple comparisons correction

- GLM is applied independently to a huge number of voxels (>100 000) = "massively univariate" approach
- At 5% chance level, we might label **5000 voxels** "significant" due to chance
- Different approaches to correct for the multiple tests: Bonferroni correction, Gaussian random field theory, false discovery rate approach, permutation methods,...

Multiple comparisons correction

- fMRI data has significant spatial correlations (neighboring voxels exhibit similar behavior); for example, Bonferroni is typically too conservative for single subject data.
- You can also control for (reduce the number of) the multiple tests by masking or region-of-interest analysis.
- Importance of meta-analysis and replication studies to identify consistent results across studies.
- For more details, see, for example, Lindquist et al 2015: Zen and the Art of Multiple Comparisons.

Whole-brain group analysis

- Correspondence problems:
 - Individuals differ both in the global and in the more fine-grained cortical folding patterns
 - Relationship between brain functions and anatomical structures across subjects?

Whole-brain group analysis

- Correspondence problems:
 - Individuals differ both in the global and in the more fine-grained cortical folding patterns
 - Relationship between brain functions and anatomical structures across subjects?
- → **Region-of-interest** analysis
 - Region(s)-of-interest can be defined based on anatomical landmarks or functional criteria (separate functional localizer scan)

Region-of-interest analysis

 Region of Interest (ROI) analysis = select a cluster of voxels or brain region *a priori* when investigating a region for effects

Why region-of-interest analysis?

- To keep the data in the individuals' space (no need to normalize all data to a common space)
- To explore your data
 - Average response time-course within a ROI
- To limit the number of statistical tests (>100 000 vs 1 500)
 - Average activation-level within a ROI
 - Control for multiple tests within the ROI only
- To investigate the function of a region in detail

Risks of region-of-interest analysis

- You are looking at the "wrong" region
- The effect is not specific to the region
- Avoid "double dipping", "circular analysis"
 - Always use independent data to select the ROIs and ask the research question
 - For more details, see:
 - Kriegeskorte et al 2009: Circular analysis in systems neuroscience the dangers of double dipping.
 - Kriegeskorte et al 2010: Everything You Never Wanted to Know about Circular Analysis, but Were Afraid to Ask

Summary

- fMRI data are time-series of image volumes
- Voxel-by-voxel time-series analysis
- **Preprocessing** to reduce non-task/stimulus related variance in the data
- Spatial normalization to a common space necessary when applying whole-brain group analysis

Summary

- Statistical analysis...
 - 1) ...aims at localizing the brain regions that show an increased (decreased) response in response to the stimulus or task, and
 - **2)** quantifies the likelihood that an observer effect can be explained by noise fluctuations.
- General linear model: explain the variation in the measured fMRI time-course using a linear combination of predictors.
 - **1)** Find optimal beta weights (parameter estimates) for each predictor.
 - 2) Test the significance of the beta weights (or difference between betas) using, for example, t statistics.
- Massively univariate analysis = statistical tests performed independently for each voxel → statistical (parametric) map → multiple comparison correction

- Random-effects analysis asses the variability of observed effects between subjects (cf. fixed-effect analysis).
- Volume-based vs. surface-based group analysis
- **Spatial correspondence problem** in group-analysis: differences in anatomy, validity of structure-function relationship.
- Region-of-interest analysis (a priori defined, based on independent data, anatomical and/or functional criteria)

References

Springer

SPM12: http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

Freesurfer: <u>https://surfer.nmr.mgh.harvard.edu</u>

Turku imaging workshop 5.10.2017

Thank you for your attention! Questions?

contact: linda.henriksson@aalto.fi

PS. Pay attention to careful planning of your experiment!

