

Pharmacokinetic modeling of PET neuroimaging data

Jussi Hirvonen, MD, PhD, Adj.Prof. Specialist in Neuroradiology Department of Radiology Turku PET Centre jussi.hirvonen@utu.fi

In vitro receptor binding concepts

- B_{max} = concentration of receptor sites
- K_D = dissociation contast
 (conversely, 1/K_D = affinity of each receptor)
- $BP_F = B_{max} / K_D = binding potential$

The Law of Mass Action

"The rate of association is proportionate to the concentrations of the reactants, and the rate of dissociation is proportionate to the concentration of the complex."

- L = ligand
- *R* = receptor
- *LR* = ligand-receptor complex
- k_{on} = the rate constant of association
 - = bimolecular association rate (nM⁻¹min⁻¹)
- k_{off} = the rate constant of dissociation (min⁻¹)

The Law of Mass Action

Thus, [LR] will increase in proportion to the product [L][R] and decrease in proportion to [LR]:

$$\frac{d[LR]}{dt} = k_{on}[L][R] - k_{off}[LR]$$

Dynamic equilibrium

• At equilibrium, the rate of association equals the rate of dissociation:

$$\frac{d[LR]}{dt} = 0 \quad \text{, thus} \quad k_{on}[L][R] = k_{off}[LR]$$

rearrangement gives:

Dissociation constant, units of concentration (nM)

"Michaelis-Menten" equation for receptor binding

- Redefine:
 - B = [LR] = concentration of bound ligand
 - F = [L] = concentration of free (unbound) ligand
- Total concentration of receptors:

 $\mathsf{B}_{\max} = [\mathsf{LR}] + [\mathsf{R}]$

• Concentration of available receptors:

 B_{max} ' = $B_{max} - B$ = [R]

"Michaelis-Menten" equation for receptor binding

Thus:

"Michaelis-Menten" equation for receptor binding

Solving for B:

The "Michaelis-Menten" relationship

Saturation binding curve

• Slope of the saturation binding curve:

PET: tracer doses

- In PET, minuscule amounts of the radiotracer are injected ("tracer" dose)
- Only <1% of the receptors are occupied (ideally)
- No pharmacological effects expected
- Specific activity (SA, MBq/nmol): amount of labeled molecules relative to unlabeled ("cold", "carrier") molecules
 - High SA: tracer dose, <1% occupancy
 - Low SA: significant occupancy at receptors!

PET: tracer doses

Thus, F<<K_D (the latter being the concentration at which 50 % of the receptors are occupied), and:

$$\frac{B}{F} = \frac{B_{\max}}{K_D} = B_{\max} * Affinity = BP$$

Saturation binding curve

Free (nM)

Scatchard linearization

 Rearrangement of the "Michaelis-Menten" equation gives:

Scatchard linearization

Major differences between *in vitro* measurements and *in vivo* PET

- *In vivo* PET: usually, tracer doses are used (F<<K_D)
- Thus, receptors are <u>not</u> occupied at all $\rightarrow B_{max}$ or K_D cannot be measured separately, only their ratio $(BP_F)!$
- In vitro, multiple levels of saturation is used to describe B_{max} and $K_{\rm D}$
- In vivo PET: regional blood flow, extraction, binding to plasma proteins, non-specific binding, multiple populations of specific binding sites, internal milieu (pH, ion concentrations etc), radioactive metabolites of the radiotracer, endogenous neurotransmitters, factors related to PET instrumentation...

Interpretation of *in vivo* BP differences

 From a pharmacological point of view, if BP_F differs between individuals, what's different?

- B_{max}: different individuals have different concentrations of receptors

- K_D : property of a single receptor: eg. conformational changes in the receptor protein structure may lead to differences in K_D

Receptor occupancy

Image: Laruelle & Huang, Q J Nucl Med 2001;45:124-138

Dopamine

Competitive inhibition with PET

- Endogenous neurotransmitters or exogenous substances compete with the radioligand in binding to receptors
- Competitive inhibition can be studied with PET using two tracer dose scans: one in baseline, and another after pharmacological challenge
- Changes in BP are considered to reflect changes in the synaptic concentrations of endogenous neurotransmitters

Competitive inhibition with PET

- But... what changes in vivo BP_F in competitive inhibition?
 - B_{max}: the total concentration of receptor <u>cannot</u> change, otherwise not competitive inhibition!
 - K_D: the affinity of each receptor <u>cannot</u> change in competitive inhibition!
- Introducing a new term: apparent affinity

$$\frac{1}{K_D^{app}} = \frac{1}{K_D \left(1 + \sum \frac{F_i}{K_{D_i}}\right)}$$

Pharmacological interpretation of $BP_{\rm F}$ in vivo

 K_D = equilibrium dissociation constant of <u>the tracer</u> F_i = concentration of *i* <u>competing substances</u> K_{Di} = equilibrium dissociation constant of *i* <u>competing substances</u>

Occupancy

 For the measurement of occupancy of endogenous or exogenous ligands using two PET scans with tracer doses:

Occupancy (%) =
$$\frac{BP_{BEFORE} - BP_{AFTER}}{BP_{BEFORE}} * (100\%)$$

Scatchard analysis in vivo for the differentiation of B_{max} and $K_{\rm D}$

- Multiple PET scans are needed with decreasing specific activities
 - Thus, gradually increasing the amount of unlabeled ("cold") radioligand to yield significant occupancy at the receptors
- From multiple observations, pairs of B and B/F are calculated and plotted in the Scatchard plot
 - B can be measured at equilibrium as $C_{\rm B}(t)$ /SA, where $C_{\rm B}(t)$ = $C_{\rm T}(t)$ - $C_{\rm REF}(t)$
 - B/F can be measured as $C_{\rm B}/C_{\rm REF}$

Scatchard analysis *in vivo* for the differentiation of B_{max} and K_D

Confounding factors and complications

- Properties of the radioligand
 - Target receptor population (affinity states etc.)
 - Physiological receptor variants
 - Is it comparable to the endogenous ligand?
- Receptor trafficking
 - Agonist-induced receptor internalization
 - How does is affect B_{max} ?
 - Do PET radioligands bind to internalized receptors? How?
- Non-competitive inhibition, changes in receptor conformation

Full compartmental model

Practically, too many parameters to achieve reliable fits...

Full compartmental model

- C_P = radioactivity concentration in <u>arterial plasma</u>
- C_F = radioactivity concentration of <u>free radioligand in tissue</u>
- C_B = radioactivity concentration of <u>specifically bound radioligand</u>
- C_{NS} = radioactivity concentration of <u>non-specifically bound</u> <u>radioligand</u>
- K₁ = rate constant for transit between plasma and tissue (ml tissue)/(ml plasma)/min
- k_2 = rate constant for transit between tissue and plasma (min⁻¹)
- k_3 , k_4 = rate constants for transit between free and specifically bound compartments and vice versa (min⁻¹)
- k_5 , k_6 = rate constants for transit between free and non-specifically bound compartments and vice versa (min⁻¹)

Assumption in all compartmental models

- Only free radioligand in arterial plasma in considered to pass the blood-brain barrier
- Free radioligand in plasma = not bound to proteins
- The fraction of total plasma radioactivity originating from free radioligand = f_P

Standard 3-compartmental model

 $C_{PET} = (1 - V_b)C_T + V_bC_{wb}; \quad C_T = C_{F+NS} + C_B$

Assumptions in the 3compartmental model

- Free and non-specifically bound compartments are assumed to be at equilibrium rapidly
- Thus, these are treated as a single compartment
- The fraction of radioactivity in this combined compartment originating from free radioligand = f_{ND}

Volume of distribution (V_T)

• The ratio of radioactivity concentration in a compartment and in plasma, thus:

 V_j = the distribution volume of the *j*th compartment C_j = radioactivity concentration in the *j*th compartment f_P = plasma "free fraction" C_P = radioactivity concentration in arterial plasma

Derivation of V_T from rate constants: total V_T for 2-compartmental model

$$\frac{dC_T}{dt} = K_1 C_P - k_2 C_T$$

$$C_T = C_{F+NS} + C_B$$

Derivation of V_T from rate constants: total V_T for 2-compartmental model

• At equilibrium, no net transfer between plasma and tissue, thus:

$$\frac{dC_T}{dt} = 0 \; ;$$

$$K_1 C_P = k_2 C_T$$

and

$$V_T = \frac{C_T}{C_P} = \frac{K_1}{k_2}$$

Derivation of V_T from rate constants: total V_T for 3-compartmental model

$$C_T = C_{F+NS} + C_B$$

$$\frac{dC_{F+NS}}{dt} = K_1 C_P - k_2 C_{F+NS} - k_3 C_{F+NS} + k_4 C_B$$

$$\frac{dC_B}{dt} = k_3 C_{F+NS} - k_4 C_B$$

Derivation of V_T from rate constants: total V_T for 3-compartmental model

• At equilibrium:

$$\frac{dC_B}{dt} = 0 \Longrightarrow k_3 C_{F+NS} = k_4 C_B; \quad C_B = \frac{k_3}{k_4} C_{F+NS}$$

thus

$$V_{T} = \frac{C_{T}}{C_{P}} = \frac{C_{F+NS} + C_{B}}{C_{P}} = \left(1 + \frac{k_{3}}{k_{4}}\right) \frac{C_{F+NS}}{C_{P}}$$

Derivation of $V_{\rm T}$ from rate constants: total $V_{\rm T}$ for 3-compartmental model

• At equilibrium:

$$C_{F+NS} = \frac{K_1}{k_2} C_P$$

thus:

$$V_T = \left(\frac{K_1}{k_2}\right) \left(1 + \frac{k_3}{k_4}\right)$$

How do rate constants relate to pharmacological binding parameters?

$$k_3 = k_{on} f_{ND} \left(B_{\max} - \frac{C_B(t)}{SA} \right)$$

$$k_4 = k_{off}$$

How do rate constants relate to pharmacological binding parameters?

At tracer doses, SA >> C_P(t) (that is, negligible occupancy by the radiotracer), and k₃ formula reduces to:

$$k_3 = k_{on} f_{ND} B_{\max}$$

Since

$$\frac{k_{off}}{k_{on}} = K_D ,$$

$$\frac{k_3}{k_4} = \underbrace{f_{ND}B_{max}}_{K_D} = \underbrace{BP_{ND}}_{K_D}$$

Distribution Volume (V_{T})

V_{T} equals uptake in brain relative to how much activity is delivered in arterial plasma

Distribution Volume (V_{T})

V_{T} equals uptake in brain relative to how much activity is delivered in arterial plasma

Two inverse agonist radioligands for cannabinoid CB₁ receptors

[¹¹C]MePPEP

 $T_{1/2} = 20 min$

Two inverse agonist radioligands for cannabinoid CB₁ receptors

Comparison of ¹¹C-MePPEP and ¹⁸F-FMPEP-*d*₂

	¹¹ C-MePPEP	¹⁸ F-FMPEP-d ₂
Radioactive half-life	20.4 min	109.7 min
Distribution volume		
V _⊤ (mL • cm ⁻³)	12 – 29	13 – 24
Intersubject variability	> 50%	26%
Retest variability	15%	14%

Intersubject variability	(<i>n</i> = 17)	(<i>n</i> = 9)
Retest variability	(<i>n</i> = 8)	(<i>n</i> = 8)

Terry et al. *J Nucl Med* 2010;51:112-120.

Two inverse agonist radioligands for cannabinoid CB₁ receptors

 $T_{1/2} = 20 min$

 $T_{1/2} = 110 \text{ min}$

Two inverse agonist radioligands for cannabinoid CB₁ receptors

Comparison of ¹¹C-MePPEP and ¹⁸F-FMPEP-*d*₂

	¹¹ C-MePPEP	¹⁸ F-FMPEP-d ₂
Radioactive half-life	20.4 min	109.7 min
Distribution volume		
V _⊤ (mL • cm ⁻³)	12 – 29	13 – 24
Intersubject variability	> 50%	26%
Retest variability	15%	14%

Intersubject variability	(<i>n</i> = 17)	(<i>n</i> = 9)
Retest variability	(<i>n</i> = 8)	(<i>n</i> = 8)

Terry et al. *J Nucl Med* 2010;51:112-120.

Standard 3-compartmental model

Nomenclature

BP notation	Pharmacological interpretation	Kinetic interpretation	V _T interpretation	f _P	f _{ND}
BP _F	$\frac{B_{\max}}{K_D}$	$\frac{K_1k_3}{f_Pk_2k_4}$	$\frac{V_T - V_{ND}}{f_P}$	No	No
BP _P	$\frac{f_P B_{\max}}{K_D}$	$\frac{K_1k_3}{k_2k_4}$	$V_T - V_{ND}$	Yes	No
BP _{ND}	$\frac{f_{ND}B_{\max}}{K_D}$	$\frac{k_3}{k_4}$	$\frac{V_T}{V_{ND}} - 1$	No	Yes

Methods for estimating BP in vivo

- Direct method
 - From rate constants: complicated
- Indirect method
 - Calculation from $V_{\rm T}$ values derived from target and reference regions using arterial plasma input: more robust
 - Calculation using reference region models: robust, arterial blood sampling not required
 - Caveat: critically dependent on the validity of the reference region to accurately estimate $V_{\rm ND}$

$$\frac{K_1 k_3}{f_P k_2 k_4} = \frac{B_{\text{max}}}{K_D} = BP_{\text{F}}$$
$$\frac{k_3}{k_4} = \frac{f_{ND} B_{\text{max}}}{K_D} = BP_{\text{ND}}$$

$$V_T - V_{ND} = \frac{f_P B_{\text{max}}}{K_D} = BP_P$$
$$\frac{V_T}{V_{ND}} - 1 = \frac{f_{ND} B_{\text{max}}}{K_D} = BP_{ND}$$

Reference region methods

Reference region methods

- Estimation of the free and non-specific compartment (C_{F+NS}) from a reference region would obviate the need of arterial blood sampling
 - A major advantage in clinical studies!
- In a valid reference region, V_{ND} represents only free and non-specific radioligand – <u>no specific binding to receptors</u>
- Central assumption: free and non-specific binding is same between brain regions, i.e.:

$$\frac{K_1}{k_2} = \frac{K_1'}{k_2'}$$

Note that blood flow is not assumed to be equal across brain regions - only the ratio K_1/k_2 .

Reference region methods: indirect BP estimation from V_T values

Reference region methods: indirect BP estimation from V_T values

Measured from the ROI

Measured from the reference region

Accordingly:

$$V_T - V_{REF} = \left(\frac{K_1}{k_2}\right) \left(1 + \frac{k_3}{k_4}\right) - \left(\frac{K_1}{k_2}\right) = \frac{K_1 k_3}{k_2 k_4} = \frac{f_P B_{\text{max}}}{K_D} \quad (BP_P)$$

Reference region methods: simplified reference tissue model (SRTM)

Further assumptions: bound and free+nonspecific compartments reach equilibrium rapidly \rightarrow they can be treated as a single compartment, C_{F+NS+B}

$$\left(\mathbf{k}_{2}^{app} = \frac{\mathbf{k}_{2}}{1 + \mathbf{BP}}\right)$$

$$C_{T}(t) = R_{1}C_{REF}(t) + \left(k_{2} - \frac{R_{1}k_{2}}{1 + BP}\right)C_{REF}(t) \otimes e^{-\left(\frac{k_{2}t}{1 + BP_{ND}}\right)}$$

 $C_T(t)$ = radioactivity concentration in the region of interest (= $C_{F+NS}+C_B$) $C_{REF}(t)$ = radioactivity concentration in the reference region R_1 = ratio of K_1 and K_1 ' BP_{ND} = binding potential

Scenario 1.

 Radioligand 1 has no reference region, you choose:

 $V_{\rm T}/f_{\rm P}$ $V_{\rm T}$ $BP_{\rm F}$

Scenario 2.

 Radioligand 2 may have different plasma protein binding (*f*_P) between subjects, difficult to measure... you choose:

Scenario 3.

 Radioligand 3 has a brain-penetrant radiometabolite, you choose:

Conclusions

- Nomenclature concerning the parameters estimates for *specific binding* may be confusing
- <u>Always</u> check what is really meant by "BP"
- <u>Always</u> state explicitly in an article what you mean by "BP"
- Keep in mind the limitation and vulnerabilities of each model
- Learn the model configurations and common formulas