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a b s t r a c t

During a conversation or when listening to music, auditory and visual information are combined auto-
matically into audiovisual objects. However, it is still poorly understood how specific type of visual
information shapes neural processing of sounds in lifelike stimulus environments. Here we applied
multi-voxel pattern analysis to investigate how naturally matching visual input modulates supra-
temporal cortex activity during processing of naturalistic acoustic speech, singing and instrumental
music. Bayesian logistic regression classifiers with sparsity-promoting priors were trained to predict
whether the stimulus was audiovisual or auditory, and whether it contained piano playing, speech, or
singing. The predictive performances of the classifiers were tested by leaving one participant at a time for
testing and training the model using the remaining 15 participants. The signature patterns associated
with unimodal auditory stimuli encompassed distributed locations mostly in the middle and superior
temporal gyrus (STG/MTG). A pattern regression analysis, based on a continuous acoustic model, re-
vealed that activity in some of these MTG and STG areas were associated with acoustic features present
in speech and music stimuli. Concurrent visual stimulus modulated activity in bilateral MTG (speech),
lateral aspect of right anterior STG (singing), and bilateral parietal opercular cortex (piano). Our results
suggest that specific supratemporal brain areas are involved in processing complex natural speech,
singing, and piano playing, and other brain areas located in anterior (facial speech) and posterior (music-
related hand actions) supratemporal cortex are influenced by related visual information. Those anterior
and posterior supratemporal areas have been linked to stimulus identification and sensory-motor in-
tegration, respectively.

& 2016 Published by Elsevier Inc.

1. Introduction

Our brain integrates auditory and visual information automatically
into audiovisual objects. Concordant visual information enhances
auditory perception. For instance, viewing concurrent visual speech
improves the accuracy of temporal discrimination of the acoustic
speech (Vroomen and Stekelenburg 2011). Relatively little is known
about audiovisual processing of music, but apparently matching vi-
sual information adds to perception of instrumental music, yet in a
way that is distinct from audiovisual speech perception (see Saldana
and Rosenblum (1993) and Vatakis and Spence (2006)).

1.1. Brain areas involved in speech vs. music

In order to discover the effect of visual stimulation on proces-
sing of auditory information in supratemporal auditory cortex, we
first have to characterize the areas involved in processing of un-
imodal auditory stimuli. Music and speech share, for instance,
requirement for fine-grained pitch discrimination (Zatorre and
Baum, 2012), periodic patterns (Patel, 2003a) and even higher
order structures (Patel, 2003b). A few studies have revealed reli-
able intrahemispheric regional dissociation in cortical processing
of complex music and speech features: speech-related spectral
irregularity of sounds activates temporal cortex areas, mainly in
the middle temporal gyrus (MTG), that are more anterior-lateral to
those activated by music-related temporal regularity (Tervaniemi
et al., 2006, Santoro et al., 2014). Recent studies utilizing
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multivariate pattern analysis (MVPA) have detailed different stages
in processing unimodal speech and music (Abrams et al., 2011;
Norman-Haignere et al., 2015; Rogalsky et al., 2011; Ryali et al.,
2010). For instance, Abrams et al. (2011) suggested that unimodal
speech and music involve largely the same temporal structure, but
distinct spatial patterns to these stimuli can be classified in the
inferior frontal gyrus, posterior and anterior superior temporal
gyrus (STGp/a) and MTG, and auditory brainstem.

1.2. Brain areas involved in audiovisual modulations

Specific types of concurrent visual input modulate auditory
processing in distributed temporal-cortical areas overlapping with
those involved in unimodal auditory processing (Kayser et al.,
2007). Integration of face and voice (for a review see Campanella
and Belin (2007) and Yovel and Belin (2013)), and audiovisual
action processing (for a review see Hein and Knight (2008)) are
examples of sensory-integration processes that have been widely
studied. Visual input modulates activity in multiple areas, includ-
ing the primary auditory cortex (Sams et al., 1991; Foxe et al.,
2002; Pekkola et al., 2005; Kayser et al., 2005) as well as anterior
and posterior temporal lobe areas (von Kriegstein et al., 2005;
Pekkola et al., 2006; Campanella and Belin, 2007; Perrodin et al.,
2014). The role of anterior MTG in coupling the face and voice
information, in particular, has been demonstrated in several stu-
dies (see Campanella and Belin (2007) and Yovel and Belin (2013)).

Accumulating evidence suggests that audiovisual modulations
are largely based on modulation of temporal processing, not
changes in the overall response amplitudes (Allman et al., 2008;
Iurilli et al., 2012; Lakatos et al., 2007, 2009). For instance, when
monkeys are presented with naturalistic sounds accompanied
with matching visual stimulus, firing rate of the neurons in the
auditory cortex and inter-trial variability of the activation is de-
creased (Dahl et al., 2010; Kayser et al., 2010).

1.3. Multi-voxel pattern analysis

While the conventional mass-univariate general linear model
(GLM) approach is straightforward to implement in studies ex-
amining regional activity evoked by isolated stimulus features, it is
more problematic when overlapping stimulus features activate
distinct multivariate patterns of neural activity within a given

Q3 region (Ben-Yakov et al., 2012, see also Henson (2006)). Multi-
voxel pattern analysis (MVPA) represents an opposite way of
modeling, trying to predict stimulus categories using an entire
hemodynamic activation pattern, without being restricted to an
assumption of certain predefined response function or stimulus
model (Norman et al., 2006; Pereira et al., 2008; Mur et al., 2009).
By enabling classification of complex stimulus-specific activation
patterns even in the absence of regional amplitude changes, MVPA
provides a powerful new approach to investigate the mechanisms
of audiovisual integration (Pooresmaeili et al., 2014; Gentile et al.,
2015; Li et al., 2015; Rohe and Noppeney, 2015). For instance, Li
et al. (2015) recently found distributed content-specific (male vs.
female, crying vs. laughing) supratemporal activations during
audiovisual perception of faces and voices during selective atten-
tion to particular features. The effects of matching visual input on
processing music and speech, however, remain unclear.

1.4. The aim of the present study

We applied Bayesian logistic regression to classify transient
temporal cortex activity patterns measured during audiovisual and
auditory speech, singing, and piano playing. The analysis was
based on probabilistic classification models that attach a given

activation pattern to the most probable one of two or three classes
based on linear combinations of the voxel activations, where the
signs and absolute values of the voxel coefficients represent the
contribution of each voxel to the classification task. By visualizing
the posterior probability distributions of the coefficients as brain
maps, we expected to reveal neural systems discriminating be-
tween audiovisual vs. auditory conditions or between auditory
speech, singing and piano playing, likely being represented in
complex spatial patterns in distributed neuronal networks (see
Abrams et al. (2011), Norman-Haignere et al. (2015), Rogalsky et al.
(2011), Ryali et al. (2010) for unimodal studies and Li et al. (2015),
Vetter et al. (2014) for audiovisual studies). In order to address this
specific research question, we selected a method that is, unlike
often used searchlight MVPA approaches (see Mur et al. (2009)),
able to detect sparse patterns associated with activity in widely
distributed brain networks. To promote sparsity in the posterior
solution, the voxel coefficients were given short-tailed Laplace
priors, which should improve both the generalizability and inter-
pretability of the solution (Williams, 1995). The performance of
the classification models was tested by a cross-validation across 16
participants.

The data were acquired in an fMRI experiment, where partici-
pants watched and listened to audiovisual and purely auditory
versions of songs that were either spoken, sung, or played with a
piano. The visual input in the speech and singing conditions was
the face of the speaker/singer, and in the piano conditions parti-
cipant saw the players finger movements on a keyboard. Singing
condition that contained the acoustic structure of music, but had
the same voice and mostly similar visual information as in speech
condition, was expected to provide additional information about
the effects of the visual input type (facial processing in singing vs.
hand action in piano playing) and specific spectrotemporal char-
acteristics of music (tone vs. voice) on auditory processing. By
using spoken lyrics of the songs in the speech condition we were
able to control for semantic and syntactic structures, as well as
tempo. The trade-off was that the stimulus was not the most
common type of narrative speech but more like listening to poetry
reading. As many previous studies (Beauchamp et al., 2004; Ro-
manski and Hwang, 2012; Wayne and Johnsrude, 2012; Conrad
et al., 2013; Li et al., 2015), we used complex naturalistic stimuli in
order to activate widespread temporal cortex areas associated
with audiovisual processing. Such complex stimulation is im-
portant also, because it includes nuanced spectro-temporal fea-
tures that are critical in discriminating between real-life music and
speech. Half of the trials contained synchronous matching audi-
tory and visual stimuli, and the other half only auditory stimuli
that were identical to those in audiovisual stimuli. Identical au-
ditory stimuli thus canceled acoustic differences related to differ-
ences between audiovisual vs. auditory speech, singing, and piano
conditions.

We had two predictions: 1) Coherent visual input mostly am-
plifies processing within the set of brain areas dedicated to pro-
cessing auditorily presented speech and music, 2) or there are
distinct brain areas that specifically contribute to multimodal in-
tegration, not involved in auditory processing per se. Furthermore,
we expected that visual stimulation containing facial movements
would modulate the activity in anterior MTG (Campanella and
Belin, 2007; Yovel and Belin, 2013), and that viewing visual hand
actions (piano) would, in turn, modulate the activity in the dorsal
auditory stream involved in spatial processing and sensorimotor
integration (Rauschecker, 2011).
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2. Materials & methods

2.1. Participants

We studied 16 healthy participants (6 females; 1 left handed;
age range 21–40 years, Mage ¼ 28 years, SDage ¼ 2.6 years) with no
neurological or psychiatric illnesses or contraindications for
functional magnetic resonance imaging, and with normal vision
and hearing. All were native Finnish speakers. Seven participants
reported music as their hobby, five had experience in playing a
musical instrument, and three had studied music theory (15, 10,
and 3 years). The study was approved by the Ethical Committee of
Hospital District of Helsinki and Uusimaa, and was conducted in
accordance with the Declaration of Helsinki. All subjects were
compensated for their time and travel costs, and they signed
ethics-committee-approved, informed consent forms.

2.2. Stimuli and experimental procedure

To construct the audiovisual stimulus set, we initially selected
18 popular songs, which were played with piano by a professional
musician and recorded. Acoustic features of the recordings were
analyzed with MIR toolbox (Latrillot et al., 2007). Final songs were
chosen based on high variation in acoustic features (sound energy
in time, event density, tempo, pulse clarity, acoustic roughness,
pitch variability, musical mode, and mode variability). The final
stimuli were recordings of three popular songs, Jingle Bells (J.
Pierpont; duration 77 s), Those Were the Days (B. Fomin; duration
126 s), and Summertime (G. Gershwin; duration 106 s). High
acoustic variability and high number of volumes (mean stimulus
duration 103 s) for each stimulus were assumed to provide suffi-
cient stimulus-response mapping. That is, by selecting songs with
high acoustic variability (representative collection of features) we
expected to activate widespread neuronal populations and to
further increase the variability in feature-specific brain responses,
which is important in pattern analysis. In contrast with less-than-
20-second blocks often used in studies examining regional activity
during presentation of repetitive and isolated stimuli, we used
quite long stimuli. Repetition suppression was expected to play a
minor role here due to continuous changes in stimulus features
and their dynamics (see Grill-Spector et al. (2006)). Importantly,
our analysis was not based on signal onset amplitudes, which
provide the largest effects in regional analysis of isolated stimuli.
Instead, pattern analysis uses regularities in signal time series that
actually increase during presentation of prolonged naturalistic
stimulus (e.g., Yao et al., 2007). Earlier studies have also shown
that the feature selectivity of auditory cortical neurons remains
high during prolonged naturalistic stimulation (e.g., Mukamel
et al., 2005), and also several other prior studies have demon-
strated that BOLD signal collected during viewing of naturalistic
stimuli is reliable and it does contain sufficient information about
stimulus-specific activations (e.g., speech, music, faces, colors,
stimulus movements) even when the same stimulus is never re-
peated (e.g., Alluri et al., 2010; Burunat et al., 2016; Farbood et al.,
2016; Huth et al., 2016; Lahnakoski et al., 2012, see Hasson et al.
(2010) for a review). All songs were recorded in three different
ways i) played with piano (Piano), ii) sung by one voice a cappella
(Singing), or iii) spoken as normal speech (Speech) keeping the
same tempo as when they were sung or played. With the aim of
having the Piano stimuli as comparable as possible, the piano part
had a melody line similar to the sung condition as well as ac-
companying harmony. Singing and Speech were performed with
Finnish lyrics. After the experiment, each participant evaluated the
familiarity and pleasantness of the music and lyrics, on a scale
from one to seven.

Piano was recorded using one binaural stereo microphone

(OKM Technik by Soundman) at the height of the pianist’s head
inside the grand piano and one room microphone (AKG C-1000)
on top of the piano. Voice recordings were done with the same
microphones positioned in front of the singer.

The microphones were connected to an M-AUDIO firewire
soundcard, and the acoustic signal was sampled at 44,100 Hz with
16-bit precision. A high-definition video was recorded during
performance (Canon HD camera). The pianist’s hand movements
were recorded from above. Singing and Speech were recorded
synchronized to the piano tempo by simultaneously listening to
the piano recordings. During Singing and Speech, the video camera
was directed to the actors face. For a playback, the sound in-
tensities of Piano, Singing, and Speech were digitally equalized
over the whole piece, and the sound quality was improved by
reducing background hiss and mild compressing, using Logic Pro
(Apple). During the experiment, each stimulus was presented with
(Audiovisual) or without (Auditory) the corresponding video
stream, resulting in a total of 3 [(Piano, Singing, Speech) x 2
(Audiovisual, Auditory)] stimulus categories and a total of 18 sti-
muli (3 songs per stimulus category).

In order to isolate the brain responses associated with specific
acoustic features, we extracted time series of two acoustic features
over sliding temporal windows of 500 ms from the stimuli used in
the experiment. These features were pulse clarity (temporal reg-
ularity) and spectral entropy (spectral irregularity). ‘Speechness’ is
described by high values of acoustic spectral irregularity compared
to the piano sounds. On the other hand, temporal regularity cap-
tures the sound ‘musicness’, due to the regularity in the musical
notes and their attacks, compared to speech where different
consonants can alter the sense of rhythm. The time series were
then downsampled to TR resolution and convolved with the ca-
nonical hemodynamic response function. Other timbral features
such as brightness or spectral centroid were relatively constant
since there was only one type of sound per time (piano or voice).

During fMRI, the 18 stimuli were presented in an order that
was counterbalanced between different stimulus categories (Au-
ditory vs. Audiovisual, and Speech vs. Singing vs. Piano). Partici-
pants were instructed to actively attend to the stimuli during the
experiment. In order to have the setup as naturalistic as possible,
we did not include any active task during fMRI. Stimuli were se-
parated by 5-s breaks. This type of presentation was selected to
reduce the effect of possible carry-over effects between sub-
sequent stimuli. The audio was played to the subjects in the MRI
scanner with an UNIDES ADU2a audio system (Unides Design,
Helsinki, Finland) via plastic tubes through porous EAR-tip (Ety-
motic Research, ER3, IL, USA) earplugs. The video was projected on
a semi-transparent screen behind the participant’s head using a
3-micromirror data projector (Christie X3, Christie Digital Systems
Ltd., Mönchengladbach, Germany). The distance to the screen was
34 cm via a mirror located above their eyes (visual angle 12˚, bi-
nocular view width 24 cm). After the experiment, participants
were interviewed regarding their behavior in the scanner and to
approve that they listened and watched attentively to all stimuli
and stayed alert during the scan. Post-experimental ratings were
collected outside the scanner in order to keep the length of the
experiment reasonable and to keep the stimulation as naturalistic
as possible.

2.3. MRI data acquisition and preprocessing

MR imaging was performed with a 3.0 T GE Signa Excite MRI
scanner (GE Medical Systems, USA) using a quadrature 16-channel
head coil. Whole-brain data were acquired with T2* weighted
echo-planar imaging (EPI), sensitive to the blood oxygenation
dependent (BOLD) contrast using the following imaging para-
meters: 29 axial slices, slice thickness 4 mm, 1-mm gap between
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slices, in-plane resolution 3.4 mm"3.4 mm, voxel matrix 64"64,
TR ¼ 2000 ms, TE 32 ms, flip angle¼90°, ascending interleaved
acquisition. Altogether 1160 functional volumes were acquired
continuously during the experiment. T1-weighted inversion re-
covery spin-echo volume was acquired for anatomical alignment
(TE 1.9 ms, TR 9 ms, flip angle 15°). The T1 image acquisition
used the same slice prescription as the functional image
acquisition, except for a denser in-plane resolution (in-plane
resolution 1 mm"1 mm, matrix 256"256) and thinner slices
(1 mm, no gap).

fMRI data was preprocessed with the Functional Magnetic Re-
sonance Imaging of the Brain Centre’s (FMRIB) software library
(FSL, release 4.1.6 www.fmrib.ox.ac.uk/fsl, Smith et al., 2004). To
allow for the initial stabilization of the fMRI signal, first 5 volumes
of each session were excluded from the analysis (during this time a
blank screen was presented). The data were motion corrected
(McFlirt), and non-brain matter was removed (BET). The data were
co-registered (FLIRT) first to anatomical image allowing 9 DOF and
then registered to MNI152 standard space (Montreal Neurological
Institute) allowing 9 DOF. The data were spatially smoothed with a
Gaussian kernel of 6 mm (FWHM) to decrease spatial noise in the
statistical analysis (see Op de Beeck (2010) for spatial filtering
when using MVPA) and high-pass filtered with 100-s cutoff.

For MVPA, an area in the bilateral temporal cortex that covered
the parietal operculum cortex (POC), planum temporale (PT),
Heschl’s gyri (HG), planum polare (PP), posterior superior tem-
poral gyrus (STGp), anterior superior temporal gyrus (STGa), pos-
terior middle temporal gyrus (MTGp), and anterior middle tem-
poral gyrus (MTGa) was defined in the Harvard-Oxford cortical
template. The data set used in the MVPA included a total of 2875
features, each representing one voxel in this area covering all the
template subregions. The above-mentioned anatomical regions
were used in describing and discussing the results (Figs. 2–
4, Supplementary Fig. 1).

Prior to MVPA, the data samples were standardized by dividing
each individual voxel time series by its standard deviation and
setting its mean to zero. Each of the six categories (Audiovisual
and Auditory Speech, Singing, and Piano), contained data (sam-
ples) from 157 EPI volumes (39 samples for Jingle Bells, 64 for
Those Were the Days, and 54 for Summertime) from each of the 16
subjects. Altogether there were thus 157"16 ¼ 2512 samples per
category. MVPA was performed for this time series data while
treating each sample as a separate observation. Hence, the
total number of observations in the MVPA was 15072
(6 categories"2512 observations per category).

2.4. Multi-voxel pattern analysis

Our MVPA analysis was based on Bayesian treatment of logistic
regression classifiers that attach a given transient activation pat-
tern to the more probable one of two stimulus classes ( = ± )c 1
according to a linear combination of the voxel activations x
weighted by the unknown voxel coefficients w. In the logit model,
this linear combination is transformed into a class probability by
the logistic activation function, ( = + ) = ( ) =−

+ −
c l w xPr 1 T

e

1 1

1 wTx
, so

that a positive value is transformed into a class probability greater
than 0.5 and negative value into a class probability less than 0.5
( ( = − ) = − ( = + )c cPr 1 1 Pr 1 ) . Thus, positive voxel coefficients
represent sensitivity to the positive stimulus class and negative
coefficients to the negative stimulus class.

In the Bayesian treatment, the voxel coefficients were given

independent Laplace priors λ( ) = λ λp w ej

wj1
2

with a constant scale
hyperparameter λ , in order to promote sparsity in the posterior
distribution and hence improve both generalizability and

interpretability of the solution (Williams, 1995). The short-tailed
Laplace prior does not enforce coefficients to zero, but suppresses
the absolute values of irrelevant voxels so that the amount of
voxels regarded significant decreases, when compared to a model
using a Gaussian prior distribution. The multivariate posterior
distribution of the coefficients was approximated using an ex-
pectation propagation algorithm (van Gerven et al., 2010; Minka,
2001) implemented in the FieldTrip toolbox (Oostenveld et al.,
2011).

For the final models trained using the data of all 16 par-
ticipants, the scale hyperparameter of the Laplace prior was
optimized (candidate values λ = 10k, where ∈ { − − −k 6, 5, 4,
− − }3, 2 ) by maximizing the mean log predictive probability
(MLPP) obtained in a leave-one-out cross-validation across parti-
cipants (one participant at a time was left out from the training
data set and the model was trained using the remaining 15 par-
ticipants) and averaged over all seven binary classification tasks
(Lamnisos et al., 2012). The posterior distribution of the voxel
coefficients was visualized by presenting the marginal posterior
probabilities for positive sign of each coefficient as a brain map,
which we call a signature pattern. Hence, the probability scores in
the signature pattern maps reflect the relative contribution of each
voxel to the classification (Figs. 2 and 4) or linear regression
(Fig. 3). The significances (p o 0.05) of the resulting voxel scores
were tested by retraining the classifiers 100 times using datasets,
where the class labels of the observations of one subject were
randomly permuted and the same label order was used for all
other subjects (Pesarin, 2001). The significance thresholds were
obtained by gathering together all the 100"2875 retrained voxel
values and taking the 95th percentile. Thus, the thresholds apply to
single voxels, but they have not been corrected for multiple
comparisons. The maximum statistics approach that could have
been used (see Nichols and Holmes (2001)) in order to correct for
multiple comparisons would be overtly conservative in this type of
region-of-interest-based analysis. Similar statistical testing was
conducted for each classifier (see Figs. 2–4).

The predictive classification accuracies were tested by a nested
cross-validation procedure across the 16 participants, where one
participant at a time was left out for testing and the model was
trained using only the remaining 15 participants. The scale hy-
perparameter was selected separately for each cross-validation
fold by maximizing the mean log predictive probability (MLPP)
obtained in an inner cross-validation across the remaining 15
participants (one participant at a time was again left out for testing
and the model was trained using only the remaining 14 partici-
pants) and averaged over all seven binary classification tasks. The
significance (p o 0.05) of each classification accuracy was tested
by repeating the cross-validation (with the same scale hy-
perparameter value as used for the final models) using datasets,
where the class labels of the observations of one subject were
randomly permuted and the same label order was used for all
other subjects. The empirical chance level was obtained by taking
the 95th percentile of the obtained classification accuracies.

Four separate binary classifiers were trained to discriminate
between Auditory and Audiovisual stimuli, both separately for
each stimulus type (Piano, Singing, and Speech), as well as for all
Auditory versus Audiovisual stimuli together. In the signature
patterns of these symmetrical classifiers, the marginal posterior
probabilities for positivity of the voxel coefficients were scaled
from 0…1 to -1…1, so that a value near -1 indicates high prob-
ability for the coefficient to be negative (i.e., the voxel is, with a
high posterior probability, more sensitive to the negative stimulus
class than to the positive stimulus class).

To conduct a three-class classification between Piano, Singing,
and Speech, we trained three more binary classifiers using only the
Auditory stimuli: Piano vs. Singing/Speech, Singing vs. Piano/
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Speech, and Speech vs. Piano/Singing. The signature patterns of
these classifiers were presented together in one brain map using
the normal probability scale, and the predictive classification ac-
curacy of the three-class classifier was determined by choosing the
most probable stimulus type based on the class probabilities of the
three binary classifiers. We also trained one vs. one classifiers for
the three stimulus types in order to make sure that none of them
biases the results based on the one vs. two classifiers.

Finally, a pattern regression analysis with a Gaussian noise
term was used to examine the linear effects of ‘musicness’ across
auditory and audiovisual conditions. A similar analysis was also
performed for ‘speechness’. The noise variance and the Laplace
prior scale hyperparameter were optimized by minimizing the
cross-validated mean squared error. To take into account the
possible overlap of the patterns of ‘musicness’ and ‘speechness’,
‘musicness’ was used as an additional regressor when modelling
‘speechness’ and vice versa (Valente et al., 2014). This analysis was
performed in order to interpret which patterns in the classification
analyses follow the acoustic features of sounds and which are
likely to reflect “higher level processes”.

Additional GLM analysis was conducted to demonstrate that
the differences between the task conditions are not observed in
the mean regional signals. This analysis was performed using
fMRIB Improved Linear Model (FILM). Regressors were derived
from the onset timings and durations of the same stimuli that
were included in the MVPA. Hence, the time series data was the
same in the GLM and MVPA analyses. Hemodynamic responses to
each of the six stimulus conditions were modeled using gamma
function and its temporal derivatives. The high-pass filter applied
to the model was the same that was applied to the data. Pause
periods served as a baseline in the model. The same one vs. one
contrasts that were studied in MVPA were analyzed with GLM.
Statistical thresholds for the resulting voxel maps were inferred
using permutation-testing (5000 permutations) tool implemented
in FSL (Randomise). Thresholding was conducted by using
Threshold-Free Cluster Enhancement option.

3. Results

3.1. Classification accuracies

MVPA of the activity in the temporal cortex areas of both
hemispheres was successful in classifying the brain activity pat-
terns into Auditory Speech vs. Singing vs. Piano and into Audio-
visual vs. Auditory stimulus classes (Fig. 1).

3.2. Unimodal auditory classifiers

Fig. 2b shows the voxels that formed the signature patterns
discriminating between Auditory Speech, Singing, and Piano in the
temporal cortex area included in MVPA (see Fig. 2a). Voxels con-
tributing to these signature patterns were distributed bilaterally
over wide areas in both auditory cortices, forming intermixed
clusters continuing from one labeled brain region to another. A
large area in the right hemisphere, including areas in STGa, STGp,
and MTGa, contributed significantly in discriminating Piano from
Speech and Singing. A set of left-hemisphere areas also con-
tributed to the discrimination, but the spatial organization of these
areas was different than in the right temporal cortex. Areas dis-
criminating Singing or Speech from two other stimulus types were
distributed all over the left and right temporal cortices. Voxels
located primarily in left STGa and right MTGp discriminated
Singing from Speech and Piano. Distributed signature patterns
including areas in left MTGp and right PP discriminated Speech
from Piano and Singing. The results of one vs. one classifiers (Piano

vs. Speech, Piano vs. Singing, Singing vs. Speech) were consistent
with the results based on the one vs. two classifiers.

3.3. Pattern regression analysis with a continuous acoustic model

The signature patterns of 'musicness' in the linear regression
analysis were observed mainly in bilateral left STGp, right STGp,
and left HG/PT/POC (Fig. 3). The signature patterns of 'speechness'
were observed mainly in left STGa/p, Q4and bilateral MTGp (Fig. 3)
(Table 1).

3.4. Audiovisual vs. auditory classifiers

The signature patterns of the four Audiovisual vs. Auditory
classifiers are visualized in Fig. 4 (see Fig. 2a for the names of the
subregions and Table 2 for the local maxima). Visual information
affected brain activity in multiple areas. These areas included early
auditory areas in HG, as well as higher-level auditory areas, for
instance, in STG, MTG, and POC. When using the data of all sti-
mulus types together, the Audiovisual vs. Auditory signature pat-
tern showed most significant effects in bilateral STGp, right MTGp,
and left POC (Fig. 4, AV vs. A All). When using the data of Piano
stimulus type alone, the most significant AV-related effects were
found in bilateral POC (Fig. 4, AV vs. A Piano). In the case of
Singing, the most significant effects were found in STGa, especially
in the right hemisphere (Fig. 4, AV vs. A Singing), and in the case of
Speech, bilaterally in MTGa/p (Fig. 4, AV vs. A Speech).

3.5. Results of the GLM analysis

GLM analysis contrasting singing vs. speech, and singing vs.
piano produced widespread activity in the left STGp, left anterior
planum temporale, and right MTGp. In addition, singing vs. speech
showed activity in the right STG, left HG and PP, and singing vs.
piano in the bilateral MTG. GLM analysis did not reveal significant
differences between piano vs. speech (Supplementary Fig. 1).

Furthermore, GLM analysis did not reliably discriminate be-
tween the Audiovisual vs. Auditory stimuli. The only significant
effect associated with modulation caused by visual information
was observed in the right MTGp for audiovisual vs. unimodal au-
ditory speech (Supplementary Fig. 1).
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Fig. 1. Cross-validated classification accuracies of the auditory Piano vs. Singing vs.
Speech classifier (the three-class accuracies are specified class-wise below the
overall accuracy) and the four Audiovisual vs. Auditory classifiers. The dashed lines
indicate the empirical chance levels (p o 0.05) obtained in permutation tests.
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3.6. Subjective ratings of the stimuli

The obtained familiarity rating values were 5.3 7 1.01 (mean
7 SD) for music and 4.4 7 1.08 for lyrics, confirming that the
songs were familiar as expected. Familiarity with music theory and
years with music as a hobby correlated positively with subjectively
rated familiarity of the music (r ¼ 0.5, p o 0.05 and r ¼ 0.7, p o
0.01, respectively). However, neither of these variables was asso-
ciated with the MVPA classification accuracy. Classification accu-
racy in distinguishing between Piano vs. Singing was, however,
correlated with subjectively evaluated pleasantness of Piano vs.
Singing (r ¼ 0.53, p o 0.05). That is, the more pleasant the sti-
mulus, the higher the classification accuracy. The pleasantness
ratings showed differences between Piano, Speech, and Singing:
Piano was estimated more pleasant than Singing (t ¼ 3.92, p o
0.0001) or Speech (r ¼ 5.53, p o 0.0001), and Singing was esti-
mated more pleasant than Speech (t ¼ 2.32, p o 0.05). However,
pleasantness did not correlate with accuracy of the audiovisual vs.
auditory classifiers.

3.7. Additional MVPA's

To reveal the possible overlap in the brain activity associated
with Piano vs. Singing vs. Speech and stimulus valence (see Sec-
tion 3.6 for the results of the valence ratings), we performed an
MVPA (regression model) between fMRI activation and the valence
ratings. The coefficient of determination (the square of the corre-
lation coefficient between predicted and true valence ratings) for
the model was only 2%, and the histogram of voxel coefficients was
near the one obtained by randomized data. We thus conclude that
temporal cortex signature patterns are not reliably linked with
valence ratings.

In addition to the auditory three-class classification between
Piano vs. Singing vs. Speech, we conducted a similar three-class
classification using only the audiovisual stimuli. The obtained clas-
sification accuracy was 67%, which was approximately 11 %-units
higher thanwhen using only the auditory stimuli. A permutation test
confirmed that this difference was statistically significant (p o 0.01).
We also conducted an additional cross-validation test, where we
used the auditory data of 15 participants for training and the
audiovisual data of the remaining subject for testing. The obtained
three-class classification accuracy was 51%, which was clearly higher
than the empirical chance level (36 %, p o 0.05), but 6 %-units lower
than when testing with auditory data. Also this difference was

confirmed statistically significant (p o 0.01) in a permutation test.
Finally, in order to make sure that important features were not

lost when selecting an approach utilizing the sparsity-promoting
Laplace prior, we ran similar analyses using a Gaussian prior. The
classification accuracies were only slightly lower than with Laplace
prior, and also the signature patterns were comparable, even if the
amount of voxels considered significant was about 10% higher.

4. Discussion

In the present study, we characterized signature patterns of
supratemporal cortex activity associated with naturalistic audio-
visual and auditory speech, singing, and instrumental piano per-
ception. Bayesian logistic regression analysis successfully dis-
criminated between activation patterns elicited by auditory
speech, singing, and piano playing (Figs. 1 and 2). In addition, we
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Table 1
Anatomical labels, cluster sizes (cs), probability scores (p), and MNI-coordinates of
local maxima in brain areas showing significant (p o 0.05) differences between
three Auditory stimulus types (one vs. one).

Brain region cs p X Y Z

Piano vs. others
Right superior temporal gyrus, anterior 245 0.94 54 2 -16
Left middle temporal gyrus, anterior 91 0.84 -54 2 -28
Left middle temporal gyrus, posterior 56 0.81 -62 -38 0

Singing vs. others
Left superior temporal gyrus, posterior 184 0.95 -66 -10 0
Right middle temporal gyrus, posterior 155 0.86 58 -34 0
Right parietal opercular cortex 24 0.75 58 -34 32
Left Heschl’s gyrus 18 0.82 -42 -18 4

Speech vs. others
Right middle temporal gyrus, anterior 128 0.82 58 -6 -32
Left middle temporal gyrus, anterior 116 0.85 -62 -10 -16
Left middle temporal gyrus, posterior 41 0.93 -66 -22 -8
Right insular cortex / Heschl’s gyrus 26 0.84 42 -14 0

Table 2
Anatomical labels, cluster sizes (cs), probability scores (p), and MNI-coordinates of
local maxima in brain areas showing significant (p o 0.05) differences between
Audiovisual vs. Auditory conditions.

Brain region cs p X Y Z

Audiovisual vs. Auditory Piano
Superior temporal gyrus, anterior 217 0.7 18 64 30
Middle temporal gyrus, posterior 113 0.76 68 50 30
Heschl’s gyrus 60 0.76 70 56 42
Parietal operculum cortex 23 0.86 70 42 52
Planum polare 16 0.82 68 66 34
Parietal operculum cortex 10 0.69 24 54 50

Auditory vs. Audiovisual Piano
Superior temporal gyrus, posterior 139 0.7 68 40 40
Superior temporal gyrus, posterior 63 1 16 44 38
Middle temporal gyrus, posterior 20 0.61 18 52 30
Heschl’s gyrus 15 0.47 68 60 34
Planum polare 14 0.5 24 56 34
Middle temporal gyrus, anterior 11 0.57 72 64 18

Audiovisual vs. Auditory Singing
Planum polare 143 0.93 14 66 38
Planum temporale 120 0.77 58 46 42
Middle temporal gyrus, posterior 73 0.66 78 56 28
Middle temporal gyrus, posterior 43 0.57 10 48 30
Superior temporal gyrus, posterior 17 0.57 10 54 42

Auditory vs. Audiovisual Singing
Planum polare 170 0.89 10 44 36
Superior temporal gyrus, anterior 36 0.83 76 64 38
Parietal operculum cortex 31 0.61 68 52 44
Middle temporal gyrus, posterior 25 0.51 72 44 28
Superior temporal gyrus, posterior 18 0.61 70 42 38
Middle temporal gyrus, anterior 15 0.66 72 64 24

Audiovisual vs. Auditory Speech
Parietal operculum cortex 129 0.58 64 52 44
Superior temporal gyrus, posterior 85 0.66 12 52 38
Planum polare 26 0.53 20 66 30
Parietal operculum cortex 18 0.72 72 42 50
Parietal operculum cortex 13 0.44 20 48 54
Middle temporal gyrus, posterior 11 0.53 14 48 28
Superior temporal gyrus, anterior 11 0.74 76 62 38

Auditory vs. Audiovisual Speech
Middle temporal gyrus, posterior 72 0.89 76 42 38
Middle temporal gyrus, posterior 66 0.97 18 44 36
Middle temporal gyrus, posterior 65 0.67 18 52 28
Parietal operculum cortex 50 0.68 76 52 46
Middle temporal gyrus, posterior 43 0.72 74 54 30
Middle temporal gyrus, anterior 19 0.54 72 60 20
Middle temporal gyrus, anterior 16 0.72 18 64 20
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found that matching visual input modulated activity patterns in
widely distributed temporal cortex areas, which were distinct
from the areas contributing to the classification of unimodal au-
ditory stimuli (Fig. 4). Hence, the brain networks processing dif-
ferent auditory features and those involved in audiovisual pro-
cessing are both specific to speech and music but distinct from
each other. Specific brain areas contributing to audiovisual signals
may provide important information for the basis for under-
standing how our brain encodes complex audiovisual objects. The
reported significance maps represent the shared information in
brain networks involved in processing of audiovisual speech and
music. However, it should be noted that the presented approach
aiming in controlling for the acoustic variability is not suitable for
estimating the predictive performance of a method to be trained

with a new data with other types of stimuli.

4.1. The influence of visual speech and music on supratemporal
activity

Our study using pattern analysis for an fMRI data recorded
during complex naturalistic stimulation characterizes the relative
contribution and content-specificity of multiple superior temporal
cortex areas in audiovisual processing (Fig. 4). In general, these
findings accord with prior work reporting that distributed brain
areas, including early auditory cortex in HG, as well as higher order
areas such as STG and MTG, participate in audiovisual speech
processing (see Campanella and Belin (2007), Vroomen and Baart
(2012) and Erickson et al. (2014)). Moreover, our results conform
to the results of a recent MVPA study suggesting that concurrent
visual speech modifies content-specific MTG areas during listening
to dynamic auditory input (Li et al., 2015).

We further demonstrated that POC specifically contributes to
audiovisual processing of music. More specifically, POC activity
was associated with a condition, which contained hand actions
related to piano playing (Fig. 4). This result agrees with previous
research suggesting that activity in POC is modulated by both
auditory and visual motion input (Pavani et al., 2002; Krumbholz
et al., 2005; Antal et al., 2008). Furthermore, in keeping with
earlier findings (Erickson et al., 2014), the visual input associated
with facial speech (here also singing), in turn, showed strongest
modulatory effects in more ventral temporal cortex areas (Fig. 4).
That is, visual information modulated the dorsal areas only when
it included hand actions. The distinction between dorsal and
ventral areas modulated by visual input in our study accords with
the proposed distinct processing streams for spatial processing
and action perception vs. identification of auditory objects (Rau-
schecker and Tian, 2000; Rauschecker, 2011; DeWitt and Rau-
schecker, 2012). That is, the speech-related ventral temporal areas
might use visual information in order to facilitate language re-
cognition (Campanella and Belin, 2007), and dorsal temporal cor-
tex areas involved in sensory-motor integration might, for
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Fig. 2. a) A temporal lobe area included in all analyses contained primary and secondary/association auditory cortical areas bilaterally. The figure also shows the borders of the
specific subregions (PP, planum polare; HG, Heschl’s gyrus; POC, parietal opercular cortex; PT, planum temporale; STGa, anterior superior temporal gyrus; STGp, posterior superior
temporal gyrus; MTGa anterior middle temporal gyrus; MTGp, posterior middle temporal gyrus) based on the Harvard-Oxford atlas. b) The signature patterns associated with
different stimulus types in the auditory Piano vs. Singing vs. Speech classification are visualized on a flattened temporal cortex map (thresholded at p o 0.05).

Fig. 3. Signature patterns associated to 'musicness' and 'speechness' in a linear
regression analysis. The included temporal lobe area is the same as in Fig. 2, and the
results are visualized on a similar flattened temporal cortex map (thresholded at
p o 0.05).
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instance, improve the accuracy of temporal discrimination (Vata-
kis and Spence, 2006). It is well known that the auditory and vi-
sual dorsal and ventral streams are overlapping in the inferior
temporal and posterior parietal cortex (see Goodale and Milner
(1992) and Rauschecker and Tian (2000)). However, the evidence
of specific effects of visual information on the auditory pathways
at early processing stages has been lacking. Hence, the present
results indicate that matching audiovisual input may enhance the
distribution of the processing into specialized where/how and
what processing streams in temporal cortex areas where the au-
ditory and visual input are combined.

While listening to singing, the visual input had the strongest
modulatory effect on right STGa, and during speech perception on
bilateral MTGp/MTGa (Fig. 4). The anterior ventral temporal cortex
areas modulated by visual singing and speech in our experiment
are involved in multiple functions (for a review, see Rauschecker
(2011) and DeWitt and Rauschecker (2012)) such as coupling be-
tween face and voice (von Kriegstein et al., 2005; Campanella and
Belin, 2007, Perrodin et al., 2014). Our results agree with the re-
cent proposal that specialization to speech and processing of
temporally prolonged stimuli involve ventral auditory stream
areas including STG and MTG (see DeWitt and Rauschecker
(2012)). In previous studies, it has been suggested that both the
dorsal and ventral auditory streams are affected by auditory pre-
dictive coding (see Hickok (2012) for a review). It is possible that
predictive coding, i.e., the comparison of higher level (audiovisual)
predictions and lower level (auditory) signals mediated by back-
ward and forward connections, is also the mechanism for audio-
visual integration. Previous studies have suggested that visual
predictive coding enhances detection of location and biological
movement in the dorsal stream (Stekelenburg and Vroomen,
2012), while in the ventral stream it may support speech re-
cognition accuracy (Peelle and Sommers, 2015).

Altogether our results concerning distinct effects of audiovisual
speech and singing imply that processing facial information that
complements auditory information is not focused to a specialized
area (von Kriegstein et al., 2005; Campanella and Belin, 2007), but
affects processing in multiple areas, likely depending on the nat-
ure of the acoustic input and/or temporal characteristics of the
visually presented facial stimulus. Speech and singing share a lot
of information (e.g., speaker's voice and tempo, and to a large
extent also the characteristics of facial movements). Therefore the
comparison of these conditions was specifically expected to
reflect integration of specific acoustic and visual information

characteristic for speech and music. As these effects were observed
clearly in other areas than those discriminating between auditory
speech vs. music, or 'speechness' and 'musicness' modeled as se-
parate signals, we expect that these areas in particular are in-
volved in processing visual information and integrating it with
acoustic information (see Tervaniemi et al. (2006) and Santoro
et al. (2014) for auditory studies). In contrast to MVPA, GLM ana-
lysis showed significant regional modulation associated with vi-
sual input only in the audiovisual vs. auditory speech contrast. This
activity was observed in the right MTGp (Supplementary Figure.
1), an area that was also observed in MVPA analysis (Fig. 4).

4.2. Unimodal auditory signature patterns

The music-related auditory signature patterns were focused on
STG and the speech-related pattern to more anterior temporal
cortex areas, particularly MTG (Figs. 2 and 3). These findings are
well in agreement with previous research reporting regional ef-
fects, both a study using complex stimuli (Santoro et al., 2014) as
well as another study using more isolated but acoustically
matching instrumental sounds and spoken words (Tervaniemi
et al., 2006). In our study, the results of the classification analysis
were highly consistent with the results of the regression analysis
based on the linear effects of 'musicness' (low spectral entropy)
and 'speechness' (low pulse clarity) derived from the acoustic
features (comparison of Figs. 2 and 3). The overlap between these
results in right STG, right MTG, and left STG for piano condition
and 'musicness', and in left STG, left MTGp, right MTG, and bi-
lateral POC for speech and singing conditions and 'speechness'
suggests that the acoustic features explained some of the differ-
ences in brain activity between auditory conditions in these areas.
High performance of the auditory classifier when tested with
audiovisual data suggests that the class-information in the audi-
tory activation patterns is preserved when the visual input is ad-
ded to the stimulus.

4.3. Utilizing MVPA and complex naturalistic stimulation in brain
research

During the recent years, the use of MVPA in the analysis of
auditory fMRI data has rapidly increased (e.g., Formisano et al.,
2008; Staeren et al., 2009; Ryali et al., 2010; Abrams et al., 2011;
Kilian-Hutten et al., 2011; Lee et al., 2011; Linke et al., 2011; Ro-
galsky et al., 2011; Ley et al., 2012). The Bayesian MVPA approach
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Fig. 4. Signature patterns associated with Audiovisual vs. Auditory conditions are visualized on flattened temporal cortex maps (thresholded at p o 0.05). The included
temporal lobe area is the same as in Fig. 2. The probabilities are scaled from 0…1 to -1…1. AV, Audiovisual; A, Auditory.
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provides an under-exploited means to examine distributed activity
patterns in naturalistic paradigms that are difficult to model with
rigid stimulus functions. By avoiding the stimulus model and
gaining increased sensitivity from the pattern information, MVPA
appears to be well suited for examining the distinctions between
activation patterns involved in processing continuous stimulation
such as audiovisual speech and music. Hence, MVPA may provide a
novel approach to examine brain function during processing of
complex naturalistic signals (see Hari and Kujala (2009), Hasson
et al. (2010) and Hasson and Honey (2012)).

4.4. Limitations of the study

We used complex naturalistic stimulation in order to examine
the effects of visual speech and music on auditory processing.
While there are significant advantages in using complex stimula-
tion and multivariate methods in examining the basis of audio-
visual processing in the brain, there are some trade-offs related to
this approach. Firstly, even though the stimulus features would be
extracted in detail, the possible interactions of the complex fea-
tures are difficult to fully account for in the model. Therefore,
complementary studies utilizing more reduced stimuli are useful
in confirming the role of specific stimulus feature combinations.
Secondly, in real-life conditions people rarely have specific task to
selectively process particular stimulus contents. In a non-forced
task it may be more difficult to interpret what kind of goal-di-
rected processes are involved in processing the stimulus. Thirdly, it
is possible that the familiar stimuli were associated with covert
activation due to melody (for speech) or speech (for piano play-
ing). However, our aim was to reduce inter-individual variance in
the responses and minimize learning effects using repetitions of
analogical familiar stimulus. Anyway, the possible covert activa-
tions should not affect our main results that are based on com-
parisons of identical auditory stimuli. Fourthly, when using nat-
uralistic stimuli, for instance, the effects of familiarity of the sti-
mulus type (e.g., seeing hands of a piano player or hearing a
spoken song or a poet), arousal level or specific types of emotions
raised by particular stimuli are difficult to control for and related
differences across the conditions might affect the activity patterns.
However, it should be noted that in the present MVPA results the
probability estimates were equally distributed between the posi-
tive and negative classes, and the global familiarity or arousal ef-
fects across the conditions should be neglected in the analysis.
Moreover, in the main analyses (audiovisual vs. auditory condi-
tions) identical auditory stimuli were used, which canceled the
differences between auditory stimuli. Fifthly, inter-individual
variability of several temporal cortex areas (Morosan et al., 2001,
Baumann et al., 2013, Pernet et al., 2015) is likely to decrease the
accuracy of inter-subject classification. In future studies it would
be important to complement this analysis by conducting a study in
which a greater variety of stimulus sequences would be presented
to individual participants in repeated scans and the classifiers
would be trained to predict unforeseen stimuli within the same
participants. Finally, even though spoken lyrics are acoustically
comparable to normal speech it is possible that this type of “po-
etry-like” stimuli are processed differently than other types of
speech passages, such as listening to a conversation.

4.5. Conclusions

This study revealed neural signature patterns associated with
naturalistic speech and music perception. Additional matching vi-
sual input modulated activation in temporal cortex areas that were
distinct from those segregating between speech and music within
the acoustic domain. The results confirm that visual input mod-
ulates activity in distributed areas in the temporal cortex, specific to

the stimulus type (speech, singing, piano playing). We suggest in-
volvement of two mechanisms and brain networks in audiovisual
processing of naturalistic speech and music: 1) Coupling of face-
voice information (audiovisual speech and singing) occurs in ven-
tral temporal cortex, in areas more accurately determined by
spectro-temporal characteristics of the input (speech or music). 2)
Integration of visuomotor/spatial information (audiovisual piano
playing) occurs in the dorsal temporal cortex areas apparently in-
volved in merging auditory Q5signals with other, perhaps higher-level,
stimulus Q6contents (see Rauschecker (2011)).
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