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Abstract 

Emotions are evoked by both internal and external events related to survival challenges. 
Recent advances in multimodal large language models ((M)LLMs), such as GPT-4, enable 
them to accurately analyze and describe complex visual scenes, raising the question 
whether LLMs can also predict human emotional experiences evoked by similar scenes. 
Here we asked GPT-4 and humans (N = 519) to provide self-reports of 48 unipolar 
emotions and aFective dimensions for emotionally evocative videos and images. We 
evaluated GPT-4’s emotion ratings using three natural socio-emotional stimulus 
datasets: two video datasets (234 and 120 videos) and one image dataset (300 images). 
We found that GPT-4 can predict emotions of human observers with high accuracy. The 
multivariate emotion structure (correlation matrices of emotions’ ratings) converged 
between GPT-4 and humans and across datasets indicating that GPT-4 ratings for 
diFerent emotions follow similar structural representations as the human evaluations. 
Finally, we modeled the brain’s hemodynamic responses for emotions elicited by videos 
or images in two fMRI datasets (N = 97) with GPT-4 or human-based emotional 
evaluations to highlight the usefulness of GPT-4 in neuroscientific research. The results 
showed that the brain’s emotion circuits can be mapped with high accuracy using GPT-4 
emotion ratings as the stimulation model. In conclusion, GPT-4 can predict human 
emotion ratings to the extent that GPT-4 ratings can also model the associated neural 
responses. Our results indicate that LLMs provide novel and scalable tools that have 
broad potential in emotion research, cognitive and aFective neuroscience, and that it can 
also have practical applications. 
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Introduction 

Emotions support homeostasis by preparing organisms for action based on the 
relationship of their current environment, bodily states, and goals (Nummenmaa 2022). 
Subjective emotional feelings reflect the emotion-dependent central and peripheral 
changes, providing an interface between the conscious executive functions and the 
autonomic control (Damasio and Carvalho 2013; Sander 2025; Scherer and Moors 2019; 
Frijda 2009). Researchers have tried mapping the emotion space with self-reports and, 
for example, two-dimensional valence and arousal framework (Russell, Lewicka, and Niit 
1989), appraisal dimensions (Yeo and Ong 2024), based on discrete emotions with 
diFerent survival functions (Ekman 1992), and more recently using data-driven 
approaches for mapping high-dimensional representations for emotional experiences 
(Cowen and Keltner 2017; Keltner et al. 2019). 

Collecting self-reports for large datasets necessitated by data-driven approaches limits 
the scalability of emotion research both from practical and financial perspectives. For 
example, in our previous data-driven study into human socioemotional perception it was 
necessary to recruit 2000+ participants to annotate 100+ social perceptual features from 
naturalistic stimuli (Santavirta et al. 2024). This required over $10 000 in participant 
compensations and over 1 100 hours of their time. An automated method for predicting 
human emotional experiences would tackle this bottleneck (Ziems et al. 2023) because 
it would allow mapping emotional representations based on larger and more diverse sets 
of stimuli than before. This would provide means for comparative studies across the 
widely used stimulus sets whose normative data however vary widely from low-
dimensional ratings (Bradley and Lang 2007) to basic emotion evaluations (Riegel et al. 
2016) and high-dimensional emotional assessments (Cowen and Keltner 2017).  

Due to the cost of data collection and standardization, researchers have mainly focused 
on such standard datasets, although those are limited by their contents or annotated 
features. As pioneered by the field of aFective computing, reliable method for automated 
annotations would liberate researchers from using the standardized datasets only. This 
would benefit particularly neuroimaging studies, as previously collected costly imaging 
datasets could be re-analysed in depth through comprehensive automated remapping of 
the stimulus space, allowing delineating the brain’s emotion circuits with unprecedented 
precision. Finally, automated emotion recognition would allow the research and 
development of important, concrete, real-life applications in areas such as mental health 
monitoring, healthcare, marketing, customer service improvement, facilitating human-
robot interaction, and security. These applications could be used in homes, hospitals or 
workplaces (Khare et al. 2024; Guo et al. 2024). For example, patients’ wellbeing could 
be closely monitored automatically or customers’ reactions to advertisements or visual 
products could be estimated in advance. 
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Artificial intelligence (AI) and large language models (LLMs) might solve this scalability 
problem. Recently, LLMs have shown increasing capabilities across disciplines. It is 
already evident that LLMs possess advanced knowledge indicated by high performance 
in standardized knowledge and intelligence tests (Katz et al. 2024; King 2023; Kung et al. 
2023). However, the LLMs’ abilities extend beyond factual knowledge. A growing body of 
evidence suggests that LLMs can oFer more abstract insights into human behavior and 
psychology (Demszky et al. 2023; Ke et al. 2024) and LLMs are increasingly studied as 
proxies of human participants (Dillion et al. 2023; Horton 2023; Sohail and Zhang 2025).  
For example, LLMs can predict the opinions of people belonging to diFerent 
sociodemographic groups (Argyle et al. 2023), make economic choices similar to 
humans (Horton 2023), predict diFerent personalities (Y. Wang et al. 2025) and perform 
human-like mental state inferences (Strachan, Albergo, et al. 2024). These investigations 
are however solely based on textual input for LLMs, and in real life, a large bulk of human 
socioemotional processing is sensory rather than linguistic. 

These findings have sparked research of LLMs and emotions. LLMs are increasingly 
capable of recognizing others’ emotions from textual  standard emotion recognition tasks 
(Sabour et al. 2024; Huang et al. 2023; Tak and Gratch 2024; X. Wang et al. 2023; Aher, 
Arriaga, and Kalai 2023; Tak, Gratch, and Scherer 2025). However, real-life emotions are 
predominantly elicited by complex audiovisual information from the surrounding 
environment. Thus, studies that attempt to evoke emotional experiences typically use 
image or video stimulation in the laboratory (Marchewka et al. 2014; Bradley and Lang 
2007; Lettieri et al. 2019; Hudson et al. 2020; Karjalainen et al. 2017; Saarimäki et al. 
2023). Currently, many LLMs have multimodal reasoning capabilities. For example, we 
have previously demonstrated that GPT-4 (ChatGPT) can analyze complex social 
information from image and video stimuli (Santavirta et al. 2025), but it is currently not 
established whether LLMs can predict how humans rate their own emotions for 
naturalistic stimuli. 

The development of LLMs is rapid, and new models are released weekly. At the time of 
writing, popular large-language models include OpenAI’s GPT (ChatGPT), Google’s 
Gemini, Anthropic’s Claude, DeepSeek’s R1, X’s Grok, and Meta’s Llama. GPT-4 is the 
currently most studied model, as it has already been available for some time, and has 
been the most popular for users. Previous research has shown that GPT-4 outperforms 
many previous models in its diverse capabilities in psychological research (Ke et al. 
2024). Recent studies have also showed that GPT-4 can recognize emotions from 
standard close-up images of human eyes (Elyoseph et al. 2024; Strachan, Pansardi, et al. 
2024). Thus, rather than exhaustively testing every available model, we use GPT-4 as a 
representative case to demonstrate the core approach. 

The current study   
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The purpose of the current study was to investigate whether GPT-4 can predict subjective 
emotions evoked by videos and images in humans, and whether these predictions extend 
to concordant hemodynamic responses in the brain for human versus GPT generated 
evaluations. We prompted GPT-4 to evaluate a wide range of video clips and images 
known to evoke emotional experiences in humans. GPT-4 was tasked to predict the 
human ratings for 48 unipolar emotions and aFective dimensions when viewing the 
stimuli. Same instructions were used for GPT and human participants, to allow 
estimating the convergence between GPT-4 and human emotion ratings. GPT-4 and 
humans were explicitly asked “To what extent this makes you feel [emotion]?”. Further, 
we modeled neural responses obtained from functional magnetic resonance imaging 
(fMRI) data with human and GPT-4 emotion ratings to investigate the similarity of the 
neural representations. This was done to evaluate the feasibility of using GPT-4 derived 
emotion ratings for large-scale annotation of stimuli in brain imaging studies, where high-
dimensional stimulus spaces occur commonly (such as in videos and images) but they 
are diFicult to characterize accurately due to the high demands imposed on human 
observers. The results show that GPT-4’s emotion ratings were highly similar to those 
given by humans, and that, accordingly, the neural emotion circuits identified based on 
GPT-4 or human emotion ratings converged well. These results indicate that GPT-4 can 
predict human ratings for emotional experiences and consequently, GPT-4 ratings can be 
used to reliably model the brain responses of audiovisual  stimuli.  

 
Figure 1. The analytical workflow of the study. First, GPT-4 and human observers provided 
ratings for 48 emotions for a set of videos and 8 emotions for images. We then compared 
the similarity of the emotion ratings with real human responses to the same stimuli. The 
emotion ratings were subsequently used to create stimulation models for mapping 
neural representations of emotions in large fMRI datasets (96 subjects, video and image 
stimuli) to compare the resulting neural representations between human and GPT-4-
derived models. 

Materials and methods 

Stimuli 

To assess GPT-4's ability to predict human emotion ratings to images and videos, we 
tested its performance on a wide range of emotionally evocative images and video 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 19, 2025. ; https://doi.org/10.1101/2025.09.18.677029doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.18.677029
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

material used in previous studies. For the video material, we collected new, previously 
unpublished emotion ratings from humans to make sure that GPT-4 did not have the 
access to the original human ratings. 

As video stimuli, we selected two independent sets of short videos, mainly derived from 
mainstream Hollywood movies (video dataset 1 (VD1): 234 clips and video dataset 2 
(VD2): 120 clips). VD1 has been previously validated to map brain basis of 
socioemotional perception (Nummenmaa et al. 2023; Santavirta et al. 2024, 2023; 
Putkinen et al. 2023; Karjalainen et al. 2017; Lahnakoski et al. 2012) and VD2 has been 
curated to elicit basic emotions to map their brain representations (Tettamanti et al. 
2012; Saarimaki et al. 2016). The videos of VD1 were 10.5 seconds long on average (range: 
4.1-27.9 seconds), and all videos of VD2 were cut to 9.6 seconds. The total duration of all 
video material was 60 minutes. See Table SI-1 for descriptions of the movie clips in VD1, 
and Table SI-1 in the original publication (Tettamanti et al. 2012) for the clip descriptions 
of VD2. 

As image stimulus, we selected the standardized Nencki AFective Picture System (NAPS 
BE) (Riegel et al. 2016). NAPS BE contains a total of 510 realistic, high-quality images 
divided into five categories: people, faces, animals, objects and landscapes. This dataset 
has been widely used in previous emotion research and found to elicit consistent 
emotional responses in observers (Putkinen et al. 2023; Riegel et al. 2016; Horvat, Jović, 
and Burnik 2022; Riegel et al. 2017). To limit the stimulation time in the fMRI experiment 
we selected 300 images as the final stimulus set. See Table SI-2 for selected NAPS 
images and associated basic emotions for the current image dataset (ID). 

Evaluated emotions and aFective dimensions 

34 unipolar emotions and 14 bipolar aFective dimensions (referred simply as 48 
emotions) were annotated from the naturalistic video stimuli. This set of emotions was 
selected from a previous study that aimed to map data-driven neural representations for 
emotions in naturalistic video stimuli (Cowen and Keltner 2017). This set covers a wide 
range of emotions and aFective dimensions derived from existing emotion theories, 
including basic emotions, valence and arousal, and more complex emotions. We 
collected human annotations for these 48 emotions for the video stimuli. NAPS BE 
images have previously been annotated for valence, arousal and six basic emotions, and 
only these emotions were selected for GPT-4 annotation for the images. See Table SI-3 
for the full list of rated emotions and aFective dimensions. 

Human reference evaluations for video stimuli 

We collected 10 independent emotion ratings from each video clip for each of the 48 
emotions. Our previous stability analyses indicate that 10 independent ratings are 
suFicient for estimating the population average for socio-emotional perception in videos 
(Santavirta et al. 2024). Participants were instructed to rate how strongly they felt the 
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given emotion after watching a video clip. The ratings were collected on a Likert scale 
from 1 to 9, with 1 being "not at all" and 9 being "very much". To minimize cognitive load 
and ensure the attention of the participants, each participant rated only 9 – 10 emotions 
across a subset of the stimuli (30 – 39 videos), which took approximately 30 minutes to 
complete. The order of presentation of the videos was randomized for each participant to 
ensure that the order of the stimulus does not bias the population-level results.  

The human rating data for VD1 included 315 participants from 31 nationalities. See Table 
SI-4 for the full list of participants’ nationalities. 49.5 % of the participants were females, 
and the average age was 33.1 years (range: 18-67 years). Participants’ self-reported 
ethnicities were: Black (61.9%), White (26.7%), Mixed (7.0%), Asian (3.8%), and Other 
(0.6 %). 13 participants were excluded from the analyses based on visual data quality 
control. The human rating data for VD2 included 204 participants from 34 nationalities. 
48.0% of the participants were females, and the average age was 30.7 years (range: 18-
73 years). Participants’ self-reported ethnicities were:  White (47.1%), Black (40.7%), 
Mixed (4.9%), Asian (4.4%), and other (1.5%). 14 participants were excluded from the 
analyses based on visual data quality control. 

Human reference evaluations for image stimuli 

The NAPS images that were used in this study have been previously annotated for 
valence, arousal and basic emotions (Riegel et al. 2016). In that study, 124 healthy 
volunteers annotated the images for the basic emotions, valence and arousal. 54.0% of 
the participants were female, and the average age was 23.0 (range: 19-37 years). These 
annotations were used as human reference instead of collecting new annotations. 

GPT-4 emotion prediction protocol 

We aimed to design GPT-4’s input prompt as close as possible to the instructions given 
to humans while considering the limitations of GPT-4. Both humans and GPT-4 were 
simply asked to rate “To what extent this makes you feel [emotion]?” when provided with 
a video or an image. Where a single human only rated a subset of the emotions from one 
video or image, GPT-4 was instructed to provide a numerical rating between 1 and 9 for 
each of 48 emotions in one response. GPT-4 ratings were collected using the GPT-4 
application programming interface (API), with each video clip and image presented as a 
separate query. The order of queries is irrelevant for GPT-4 API as it does not store 
consecutive requests by default, unlike ChatGPT, which remembers previous 
conversations that could bias the following responses 
(https://community.openai.com/t/does-the-open-ai-engine-with-gpt-4-model-
remember-the-previous-prompt-tokens-and-respond-using-them-again-in-
subsequent-requests/578148). This allowed us to ensure that each request is 
independent of previous requests. 
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GPT-4 refused to provide ratings for some images and videos (primarily with sexual 
content), presumably due to content moderation (response: "I'm sorry, but I can't help 
with this request"). However, some ratings could still be obtained when the same items 
are presented several times. If GPT-4 still refused the items after several repetitions, the 
data also from humans were excluded from analyses.   

GPT-4 is a stochastic model and doesn't give the same output when prompted with the 
same prompt repeatedly. In our previous study on social perception of GPT-4, the results 
indicated that the accuracy of the GPT-4 ratings increase when the ratings are collected 
repeatedly and then averaged (Santavirta et al. 2025). Therefore, we asked for responses 
to each video clip and image ten times. Emotion evaluations were also more consistent 
with the human ratings for emotions when collecting several rounds of data, but a ceiling 
was reached after a few rounds of data collection (see Figure SI-1). Ten rounds of ratings 
were ultimately collected, and the averages over all rounds were used to compare the 
GPT-4’s emotion ratings with the human participants’ ratings. The GPT-4 rating data was 
collected in May 2025 using the GPT-4 "gpt-4.1-2025-04-14" model 
(https://platform.openai.com/docs/models/gpt-4.1). 

GPT-4 video annotation experiment 

At the time of data collection, GPT models could not natively process videos. Thus, we 
extracted eight frames from each video clip evenly based on the video duration which 
results in minor diFerences in frame rates for videos with diFerent durations. However, 
most of the videos were approximately 10-second-long so the extracted frame rate was ~ 
0.8 frames/s.  Most of the movie clips in VD1 included human speech (the videos in 
dataset 2 were silent). The VD1 clips were fed to "whisper-1" model 
(https://platform.openai.com/docs/models/whisper-1) to convert their language content 
to text. The transcripts were checked and corrected when necessary. For few videos 
without any speech, GPT-4 provided unreliable transcripts (e.g. "Thanks for watching) 
which were manually discarded. The extracted video frames and transcript, along with 
the rating instructions, were sent to the GPT-4 API as a single input prompt. See the 
section “Prompt for video annotation” in the Supplementary Materials for the specific 
prompt. 

GPT-4 image annotation experiment 

In the image experiment, each image was sent to GPT-4 API individually with the rating 
instructions. See the section “Prompt for image annotation” in the Supplementary 
Materials for the exact input prompt. GPT-4 was unable to provide ratings for four images 
despite repeated requests. These images contained blood and potentially disgusting 
contents, such as purulent surgical wounds and removed facial skin. 

Emotion rating consistency between GPT-4 and humans 
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First, we analyzed how similarly GPT-4 and humans rated the evoked emotions. Similar 
analytical methods were used for both video and image-based emotion data. As some of 
the original human ratings were collected using a scale from 1 to 7 and some from 1 to 9 
int the image dataset, we first normalized all ratings into the same scale from 0 to 10 
before statistical analyses. The overall similarity of the emotion ratings was assessed by 
calculating the Pearson correlation between GPT-4 and human ratings and visually from 
density plots. To investigate how similarly GPT-4 and humans rated the stimuli for each 
emotion, we calculated the raw rating distance (in the normalized scale) between GPT-4 
and human ratings.  

We also calculated the "consistency of GPT-4” as the Pearson correlation with the human 
average ratings for each emotion. The consistency was then compared with the rating 
consistency across diFerent human observers. Since humans do not experience or 
report emotions with 100 % agreement with each other, we calculated “intersubject 
consistency” and “group-level consistency” as similarity metrics for agreement between 
diFerent human individuals or groups. These were then used as benchmarks against the 
consistency of GPT-4. Intersubject consistency was calculated by leaving a single 
subject out and calculating the correlation between the average ratings of the rest. Since 
the human datasets contained ten independent human ratings for each item, the group-
level consistency was calculated as the correlation between the ratings of two randomly 
selected groups of five individuals. All possible combinations were calculated in both 
calculations, and the average over all combinations was selected as the final metric for 
intersubject consistency and group-level consistency. This analysis was conducted with 
the video datasets only since we did not have individual-level data for the image 
evaluations. 

Consistency of the emotional structure between GPT-4 and humans 

Next, we investigated how similar the structural representations of the 48 emotions are 
between GPT-4 and humans to reveal how well GPT-4 can predict the dependencies 
between all individual emotions. For this, we calculated the Pearson correlation matrices 
from the emotion ratings for all features to identify the rating associations between each 
individual emotion. Correlation matrices were calculated separately for each dataset for 
GPT-4 and human based ratings. Comparing these matrices enables investigating how 
structurally similar emotion ratings were between GPT-4 and humans but also 
investigating the stability of the emotion structure across datasets. Matrix similarity was 
estimated with Pearson correlation and statistical significance of the similarity of two 
correlation matrices was tested using a non-parametric Mantel test with 1 000 000 
permutations (Mantel 1967). To investigate whether the structural consistency is similar 
for unipolar emotions and aFective dimensions, this analysis was conducted also 
separately for emotions and dimensions. 

Neuroimaging experiments 
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For VD1 and ID, we had previously obtained fMRI data from healthy volunteers. This 
allowed us to quantify how well GPT-4 based ratings can serve as models for functional 
neural responses during emotional experiences. We built stimulation models for fMRI 
data separately from gold-standard human ratings and from GPT-4 ratings and then 
compared how similar neural response patterns these stimulation models produce.   

In the fMRI experiment with videos, we used a validated socioemotional “localizer” 
paradigm, which provides a reliable method for localizing social and emotional functions 
(Karjalainen et al. 2017; Nummenmaa et al. 2021; Karjalainen et al. 2018; Nummenmaa 
et al. 2023; Lahnakoski et al. 2012; Santavirta et al. 2023). The experimental setup and 
stimulus selection are described in detail in the original study that used the same setup 
(Lahnakoski et al. 2012). Participants viewed 96 movie clips with a median duration of 
11.2 seconds (range: 5.3-28.2 seconds) without breaks and the total duration of the 
experiment was 19 min 44 seconds. 87 of these movie clips were included in the GPT-4 
emotion feature judgment stimulus set.  

In the fMRI image experiment, the same participants watched the 300 images extracted 
from NAPS BE during fMRI scanning. Images were displayed in random order for 1.5 
seconds each, followed by a black screen with fixation cross for 2-3 seconds before the 
next image. The total study duration was 22 minutes. More specific details have been 
reported previously (Putkinen et al. 2023). 

Neuroimaging participants 

Both fMRI studies were part of a previous multi-session fMRI project run with the same 
protocol. Study exclusion criteria included a history of neurological or psychiatric 
disorders, alcohol or substance abuse, body mass index less than 20 or over 30, current 
use of medications aFecting the central nervous system, and standard MRI exclusion 
criteria. Altogether 104 participants were scanned. Two participants were excluded from 
further analyses due to anatomical abnormalities on structural MRI, two due to gradient 
coil malfunction and three due to visible motion artifacts on preprocessed functional 
neuroimaging data. The final sample was 97 participants, including 50 females, and the 
average age of participants was 31 years (range: 20-57 years).  

Neuroimaging data acquisition and preprocessing 

MR imaging was conducted at Turku PET Centre. The MRI data were acquired using a 
Phillips Ingenuity TF PET/MR 3-T whole-body scanner. High-resolution structural images 
were obtained with a T1-weighted (T1w) sequence (1 mm3 resolution, TR 9.8 ms, TE 4.6 
ms, flip angle 7°, 250 mm FOV, 256 × 256 reconstruction matrix). A total of 467 (video 
fMRI experiment) and 511 (image fMRI experiment) functional volumes were acquired for 
the experiment with a T2∗-weighted echo-planar imaging sequence sensitive to the 
blood-oxygen-level-dependent (BOLD) signal contrast (TR 2600 ms, TE 30 ms, 75° flip 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 19, 2025. ; https://doi.org/10.1101/2025.09.18.677029doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.18.677029
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

angle, 240 mm FOV, 80 × 80 reconstruction matrix, 62.5 kHz bandwidth, 3.0 mm slice 
thickness, 45 interleaved axial slices acquired in ascending order without gaps). 

MRI data were preprocessed using fMRIPrep 1.3.0.2 (Esteban et al. 2019). The following 
preprocessing was performed on the anatomical T1-weighted (T1w) reference image: 
correction for intensity non-uniformity, skull-stripping, brain surface reconstruction, and 
spatial normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c 
(Fonov et al. 2009) using nonlinear registration with antsRegistration (ANTs 2.2.0) and 
brain tissue segmentation. The following preprocessing was performed on the functional 
data: coregistration to the T1w reference, slice-time correction, spatial smoothing with a 
6-mm Gaussian kernel, non-aggressive automatic removal of motion artifacts using ICA-
AROMA (Pruim et al. 2015), and resampling of the MNI152NLin2009cAsym standard 
space. 

Modeling the similarity of the neural representations for emotional processing 

To test if the GPT-4-derived stimulus models produce similar neural representations 
compared to those based on human ratings, we first modeled the BOLD responses 
measured by fMRI separately with GPT-4- and human-derived emotion regressors and 
then compared the similarity of the results. We performed simple regressions separately 
for all rated emotions using SPM12 (Wellcome Trust Center for Imaging, London, UK, 
http://www.fil.ion.ucl.ac.uk/spm). Emotion ratings were convolved with a canonical 
double-gamma hemodynamic response function and the resulting regressors were then 
fitted to the fMRI data (first-level analysis, massive univariate approach). In the image 
fMRI analysis, a convolved regressor identifying time points with the black fixation screen 
between the images was added to the model with the emotion regressor. Emotion-
specific results were then identified as a contrast between the emotion main eFect and 
the control condition (subtraction: emotion – control). The resulting subject-level β-
coeFicient maps were analyzed at the group level to identify population-level 
associations between emotion ratings and hemodynamic responses. One-sample t-
tests on the voxel level were used to statistically threshold the population-level results. 

Similarity of emotion-specific neural representations between GPT-4 and human-derived 
stimulation models was investigated in three ways. First, to test the overall spatial 
similarity of the result distributions, we calculated the Pearson correlation between 
unthresholded β-coeFicient maps for each emotion. Second, we compared the positive 
and negative predictive values of thresholded GPT-4 results (PPV = true positive / all 
positive, NPV = true negative / all negative) to evaluate how reliable the thresholded GPT-
4 response maps were for diFerent emotions. PPVs and NPVs were calculated for the 
positive main eFect of emotion ratings, considering the human-derived results as the 
ground truth. Results are reported for both conservative (voxel-level FWE-corrected, p < 
0.05) and more lenient (p < 0.001, uncorrected) statistical thresholds.  
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Mapping the cumulative neural responses to all studied emotions reveals the overall 
neural circuit associated with emotions. This approach involves identifying how many 
emotions associate with neural responses in each brain area. This analysis allows 
summarizing the results and distinguishing brain areas that are broadly tuned by 
emotions (associate with many emotions) from those with narrower response profiles 
(associate with few emotions). The cumulative result maps were formed by binarizing the 
statistically thresholded positive contrasts (p < 0.001, uncorrected) for each emotion and 
then calculating the sum of these brain maps. Cumulative results were calculated 
separately for GPT-4 and human-derived results to enable comparison between them. 

Results 

Similarity of the emotion ratings for video stimuli  

The overall correlation calculated over 48 emotions between the GPT-4 ratings, and the 
human average was 0.71 for VD1 and 0.77 for VD2 (Figure 2), indicating robust similarity 
in the ratings. 

 
Figure 2. The overall similarity of the emotion ratings between GPT-4 and humans for 
video stimuli. The x-axis shows the average human ratings for each item, while the y-axis 
shows the GPT-4 ratings. The color gradient shows the density of the individual data 
points, with red representing the densest area and the lightest blue (transparent) 
representing the sparsest area. 

Figure 3 shows the distance between the GPT-4 rating and humans (calculated as scaled 
GPT-4 ratings – scaled human ratings) for the video stimuli. A distance of 1 indicates 10% 
rating diFerence in the original rating scale. In VD1, the median distance was -0.75 and 
range was from -3.00 [Identity] to 1.02 [Certain].  The median distance was between -1 
and 1 (indicating under 10% diFerence) for 34 out of 48 emotions. In VD2, the median 
distance was -0.38 and range was from -2.25 [Boredom] to 2.25 [Interest]. The median 
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distance was between -1 and 1 (indicating under 10% diFerence) for 39 out of 48 
emotions. Overall, the distances were small in both datasets, but generally GPT-4 slightly 
underestimated the human ratings (median distance under 0 for 42 emotions in VD1 and 
32 emotions in VD2). 

 
Figure 3. Boxplots of emotion-specific distances between human and GPT-4 ratings. The 
distances are calculated on the normalized scale (mindist = 0, maxdist = 10). Negative 
distances indicate that GPT-4 underestimates the ratings compared to humans, and 
positive distances the other way around. Individual points indicate the rating of distances 
for single videos. A distance of 1 indicates a 10% diFerence (of the total scale length) in 
the original ratings and 10 indicates total disagreement. 

Consistency of GPT-4 compared to the rating consistency between humans for videos 

Figure 4 shows the correlation between GPT-4 ratings (consistency of GPT-4) against the 
mean correlation between two groups of five human participants (group-level 
consistency). In VD1, the median consistency of GPT-4 was 0.65 (range: 0.20 
[Entrancement] – 0.88 [Empathic pain]). The median human group-level consistency was 
0.62 (range: 0.15 [Obstruction] – 0.87 [Empathic pain]) and median intersubject 
consistency was 0.43 (range: 0.10 [Obstruction] – 0.72 [Empathic pain]). The consistency 
of GPT-4 was higher than the group-level consistency for 73% of emotions and higher 
than the intersubject consistency for 96 % of emotions. 
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In VD2, the median consistency of GPT-4 was 0.79 (range: 0.25 [Focused] – 0.95 
[Disgust]). The median human group-level consistency was 0.79 (range: 0.15 [Contempt] 
– 0.94 [Romance]) and median intersubject consistency was 0.61 (range: 0.10 
[Contempt] – 0.87 [Romance]). The consistency of GPT-4 was higher than the group-level 
consistency for 46% of emotions and higher than the intersubject consistency for 92 % 
of emotions. 

Figure 4. Similarity of emotion-specific ratings between GPT-4 and humans in VD1 (top) 
and VD2 (bottom). The x-axis shows the group-level agreement among human observers 
calculated as the mean of Pearson correlations between all passible groups of five 
independent human annotators. The y-axis shows the correlation between the GPT-4 and 
human average ratings. Points above the red line (y=x) indicate that the consistency of 
GPT-4 was higher than the human group-level consistency. 

Similarity of the emotion ratings for images  

For images, the overall correlation calculated over valence, arousal, and six basic 
emotions between the GPT-4 ratings, and the human average was 0.80 (Figure 5, left 
panel), indicating robust similarity in the ratings. 

The feature-specific rating distances on the normalized scale between GPT-4 and 
humans are shown in the right panel of Figure 5. GPT-4 slightly overestimated the human 
ratings, but overall, the median distances were small in the ID as well. (Valence: -1.34, 
Anger: 0.00, Disgust: 0.00, Happiness: 0.13, Fear: 0.31, Sadness: 0.68, Surprise: 0.89, 
and Arousal: 1.61). The median distance was between -1 and 1 (indicating under 10 % 
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diFerence) for all basic emotions, while distances for valence and arousal where slightly 
larger. 

 
Figure 5. The similarity of the emotion ratings between GPT-4 and humans for images. 
The scatterplot in the left panel shows the overall correlation of the emotion ratings 
between GPT-4 and humans (similar to Figure 2 for videos). Boxplots on the right panel 
show emotion-specific distances between human and GPT-4 ratings on the normalized 
scale (mindist = 0, maxdist = 10, similar to Figure 3 for videos). 

The convergence of emotional structure between GPT-4 and human evaluations 

The structural representation of emotion ratings was consistent between GPT-4 and 
humans (Figure 6). The correlation matrices calculated from the feature-specific ratings 
were structurally similar between the GPT-4 and human ratings in all three datasets (rVD1 
= 0.84, p < 9.9*10-7, rVD2 = 0.88, p < 9.9*10-7, rID = 0.97, p < 2.4*10-5, Figure 6). The emotion 
structures were also consistent across the two video datasets. Correlation between GPT-
4VD1 and GPT-4VD2 was 0.93, and between HumanVD1 and HumanVD2 also 0.93. Correlation 
between HumanVD1 and GPT-4VD2 was 0.84, and between GPT-4VD1 and HumanVD2 was 
0.83. Overall, the emotion ratings formed mostly a two-cluster solution around pleasant 
and unpleasant emotions. The structural convergence was also similar when calculated 
separately for unipolar emotions and aFective emotions (Figure SI-2). 
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Figure 6. The similarity of the emotion rating structures for each dataset. The correlation 
matrices for video datasets are generated from emotion ratings of 48 diFerent emotions, 
while the matrix for the ID is generated from the ratings of 8 emotions (valence, arousal 
and six basic emotions). Upper triangles show the emotion structure based on human 
ratings, while the lower triangles show the emotion structure based on GPT-4 ratings. 
Correlation matrices for video datasets are sorted into the same order based on 
hierarchical clustering of the VD2 human data to enable visual comparison across 
datasets. See Figure SI-2 for separate correlation matrices for unipolar emotions and 
aFective dimensions. 

The similarity of the neural representations for emotions between GPT-4 and humans in 
the video fMRI experiment 

Finally, we modelled the hemodynamic responses for emotions based on GPT-4 and 
human ratings and compared the results. Figure 7 (top bar plots) shows the similarity of 
neural response patterns calculated as the spatial correlation between the 
unthresholded population-level beta coeFicient maps that were obtained with GPT-4 and 
the human-based stimulus models for each emotion. The average spatial correlation of 
the response patterns was 0.91 (range: 0.67 [Awe] - 0.99 [Calmness]), with a correlation 
over 0.90 for 65% of the analyzed emotions. We then calculated the consistency of 
statistically thresholded GPT-4 results by calculating the positive predictive values (PPV) 
and negative predictive values (NPV) for GPT-4 results, considering the thresholded 
human-based results as the ground truth. With the conservative threshold (voxel-level 
FWE-corrected, p < 0.05), the mean PPV was 0.80 (range: 0.45 [Anxiety] – 1.00 
[Romance]), and with the more lenient threshold (p < 0.001, uncorrected), the mean PPV 
was 0.80 as well (range: 0.43 [Anxiety] - 0.99 [Romance]). The mean NPV for the 
conservative threshold was 0.97 (range: 0.93 [Nostalgia] – 1.00 [Sexual Desire]) and 0.96 
for the more lenient threshold (range: 0.88 [Craving] – 1.00 [Sexual Desire]). The lower bar 
plot in Figure 7 shows the emotion-specific PPVs for both statistical thresholds. 
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Figure 7. Similarity of the neural response patterns for the video fMRI experiment. The top 
bar plots show the correlation of the whole-brain response patterns for each emotion 
(correlations between the population-level unthresholded beta coeFicients) between 
GPT-4 and human-based analyses. The lower graph displays the statistically thresholded 
positive predictive values (for positive association between BOLD signal and emotion) of 
the GPT-4 results. PPVs were calculated at two diFerent statistical thresholds: a 
conservative threshold (p < 0.05, voxel-level FWE-corrected) and a lenient threshold (p < 
0.001, uncorrected). 

The similarity of neural representations for emotions between GPT-4 and humans in the 
image fMRI experiment 

In the image fMRI experiment, the average spatial correlation of the unthresholded beta 
coeFicient maps was 0.97 (range: 0.90 [Valence] - 1.00 [Sadness]), with correlation being 
above 0.98 for 63% of the analyzed emotions (Figure 8, left panel). With the lenient 
threshold (p < 0.001, uncorrected), the average PPV of the GPT-4 results was 0.72 (range: 
0.48 [Fear] – 0.89 [Valence]). The average NPV, with the more lenient threshold, was 1.00 
(range: 0.99 [Valence] – 1.00 [Happiness]). Figure 8 (right panel) shows the emotion-
specific PPVs. Most findings in the image experiment did not survive the conservative 
thresholding (p < 0.05, voxel-level FWE-corrected) either for human- or GPT-based results 
making the PPVs and NPVs for the conservative thresholding meaningless. 
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Figure 8. Similarity of the neural response patterns for the image fMRI experiment. The 
left graph shows the spatial correlation of the whole-brain response maps between GPT-
4 and human results. The right graph displays the statistically thresholded positive 
predictive values (for positive association between BOLD signal and emotion) of the GPT-
4 results. 

Neural organization of emotional processing based on GPT-4 evaluations 

Figure 9 shows cumulative brain activation patterns calculated as the sum over 
statistically thresholded response patterns for specific emotions (p < 0.001, 
uncorrected) to highlight the areas associated with emotional experiences. 
Consequently, the maps indicate how many emotions the BOLD signal in each brain 
region is associated with, indicating the brevity of tuning for diFerent emotions. The 
cumulative maps for emotions based on GPT-4 ratings demonstrated a high degree of 
similarity to the cumulative map derived from human ratings in both video and image fMRI 
experiments (rVD1 = 0.95, rID = 0.85). 

Cumulative maps of emotions in the video fMRI experiment highlight the commonly 
identified emotion and social perception networks, including superior temporal sulcus 
(STS), superior temporal gyrus (STG), lateral occipitotemporal cortex (LOTC), 
temporoparietal junction (TPJ), Fusiform gyrus (FFG), inferior frontal gyrus (IFG), caudate 
nucleus (Cau), thalamus (Tha), Amygdala (Amy), Parahippocampal gyrus (PhG), 
Hippocampus (HC) and medial superior frontal gyrus (SFG). Cumulative maps for the 
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static image experiment highlighted the orbitofrontal cortex (OFC), Fusiform gyrus (FFG), 
Precentral gyrus (PreCG), and Postcenral gyrus (PostCG). 

 
Figure 9. Organization of emotional circuits based on human and GPT-4 emotion 
evaluations. The surface maps show the number of emotions (out of all 48 emotions for 
videos and out of 8 for images) that were positively associated (p < 0.001, uncorrected) 
with the BOLD response. The top row shows the cumulative maps derived from the video 
fMRI experiment, while the bottom row shows results for the image fMRI experiment. The 
left column shows the cumulative maps based on human stimulus models, and the 
middle column shows the cumulative results for GPT-4 stimulus models. The right 
column shows the diFerence between the two cumulative maps, so that hot colors 
indicate areas where the human cumulative map shows more associations with 
emotions compared to the GPT-4 cumulative map. Amy: Amygdala, Cau: Caudate 
nucleus, FFG: Fusiform gyrus, HC: Hippocampus, IFG: Inferior Frontal gyrus, LOTC: 
Lateral occipitotemporal cortex, OccC: Occipital cortex, OFC: Orbitofrontal cortex,  PhG: 
Parahippocampal gyrus, PCu: Precuneus, PostCG: Postcentral gyrus, PreCG: Precentral 
gyrus, SFG: Superior frontal gyrus, STG: Superior temporal gyrus, STS: Superior temporal 
sulcus, TP: Temporal pole, TPJ: Temporoparietal junction, Tha: Thalamus.  

Discussion 

Our main finding was that GPT-4 can accurately predict the emotions that humans 
experience when viewing dynamic video clips or static images. These responses formed 
a two-cluster structure around pleasant and unpleasant emotions, and the emotion 
structures accord between humans and GPT-4 as well as across independent datasets. 
Finally, functional brain circuits associated with emotional processing can be mapped 
with GPT-4-derived emotion annotations, yielding results that are comparable to those 
obtained with traditional stimulation models using human evaluations. These results are 
based on actual visual input, not just textual descriptions of situations, and they were 
replicated using datasets whose emotion ratings have never been published, preventing 
“leakage” of the knowledge of the material to GPT-4.  These results highlight the GPT-4’s 
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capabilities to predict how humans feel when presented with a large variety of visual 
stimuli, paving the way to broad application potential in emotion research, cognitive 
neuroscience, and practical solutions. 

This research extends our previous work, where we showed that GPT-4 can evaluate the 
presence of complex social information in dynamic social situations (Santavirta et al. 
2025). The previous study established that GPT-4 can extract complex social information 
from visual stimuli, but it did not investigate whether GPT-4 can predict human emotional 
ratings to such stimuli. Altogether these results show that GPT-4, and most likely other 
flagship LLMs, can describe the social contents of situations and predict human’s 
emotional experiences for visual stimulation  surprisingly well. The overall correlation of 
emotion ratings between GPT-4 and human was between 0.71 and 0.8 across datasets. 
Previous studies have already established that LLMs are able to recognize emotions from 
text descriptions. For example, LLMs can solve standard emotional intelligence tasks 
(Schlegel, Sommer, and Mortillaro 2025) and they exhibit elements of cognitive empathy 
(Sorin et al. 2024). Especially GPT-4 possesses significant capabilities in understanding 
situational emotions (Sabour et al. 2024; Tak and Gratch 2024; X. Wang et al. 2023; Tak, 
Gratch, and Scherer 2025). Our results go significantly beyond these data because in 
real-life emotions are mainly evoked by dynamic audiovisual information where 
emotional and social cues are often complex and context dependent. Such situations 
are diFicult to describe accurately in text, and the present results extend these findings 
to more life-like conditions and natural emotional perception of visual scenes.  

Consistent ratings for experienced emotions between GPT-4 and humans 

The GPT-4 emotion evaluations were computed as the average of ten independent 
evaluation rounds for the same stimuli to ensure the stability of the evaluations. Taking 
the average of repeated GPT-4 evaluations also increased the consistency between GPT-
4 and human evaluations (Figure SI-1) similarly as we observed in the previous study for 
social information annotation (Santavirta et al. 2025). The increase in accuracy is most 
likely due to filtering out the randomness in the individual responses, or in other words, 
finding the most likely estimates produced by the internal probability distributions of the 
model.   

With this approach the GPT-4 average ratings achieved high consistency with the human 
average annotations for 48 emotions (including 34 unipolar emotions and 14 aFective 
dimensions) in two video datasets and for six basic emotions, valence and arousal for 
images (rVD1 = 0.71, rVD2 = 0.77, and rVD2 = 0.80, Figure 2 & Figure 5). On the level of 
individual emotions, the median distance between the human and GPT-4 ratings were 
mostly small (median distance ≤ 1 indicating under 10% diFerence for 34 emotions in 
VD1, for 39 emotions in VD2, and for all six basic emotions in ID). Although the overall 
consistency with humans was high, GPT often gave lower ratings (typically 0 or 1 
normalized units lower) than humans. This was most prominent for the cases when 
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humans had evaluated their emotional responses to be mild (normalized rating ≤ 5, 
Figure 2). This diFerence was more clearly visible in VD1, which contained videos with 
dialogue and background music (VD2 only included silent videos). GPT-4 was fed with 
eight snapshots from a video clip along with the transcript, and therefore it did not have 
access to all visual and auditory information such as the tone of human voice or 
background music that may alter the emotional context of the situations (Cowen et al. 
2019). Hence, humans had access to the most subtle cues that might have not been 
available for GPT-4, which could have resulted in GPT-4 responding that the emotional 
response was completely absent when humans reported slightly higher emotional 
responses. However, at higher values, this bias vanished (Figure 2), indicating that GPT-
4 was more accurate in capturing strong emotional experiences. We anticipate that 
attempts to send even more information (especially auditory information) to GPT-4 might 
increase its accuracy even further.  

Although the overall consistency with human was high for image evaluation as well, GPT-
4 seemed to slightly overestimate rather than underestimate emotion ratings compared 
to humans (Figure 5, left graph). Although the NAPS BE dataset was originally curated to 
evoke basic emotions, the original human evaluations for this data indicated that the 
participants did not feel very strong emotions when watching these images. In contrast, 
our human participants reported also strong emotional responses (normalized rating ≥ 8) 
for the video stimuli suggesting that videos evoke strong emotions more eFectively than 
images. The reason for GPT’s overestimation for images can thus be due to the lack of 
dynamic content needed to eFectively evoke emotions in humans. However, this bias 
can also be an artefact stemming from diFerences in data collection and diFerences in 
the human rating samples across video and image datasets. While GPT-4 and humans 
had exactly same instructions to evaluate ratings on a scale 9-point Likert scale from "not 
at all" and 9 being "very much", the previously collected ratings for images used a visual 
analog scale (VAS) which could influence human evaluations diFerently than the Likert 
scale. Third possibility is that when humans watch images in quick succession, the 
emotional responses do not change very quickly, while GPT-4 as an artificial system is 
not temporally constrained in its responses. 

Consistency of GPT-4 emotion ratings compared to consistency between humans  

Emotional experiences are subjective and variable across individuals despite being 
broadly consistent. Hence, we benchmarked the consistency of GPT-4 emotion ratings 
(correlation with the human average rating) by calculating intersubject consistencies 
(single participants rating correlation with others) and group-level consistencies (rating 
correlation between two groups of five participants) for the human sample. This analysis 
indicated that consistency of GPT-4 was, on average, higher than either of these (Figure 
4). The consistency of GPT-4 exceeded the intersubject consistency for 96% (VD1) and 
92% (VD2) of emotions and even exceeded the group-level consistency for 73% (VD1) 
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and 46% (VD2) of emotions. The median consistency of GPT-4 was 0.65 (VD1) and 0.79 
(VD2) while the human group-level consistencies were 0.62 and 0.79, respectively. These 
results indicate that GPT-4 can predict the population average emotional responses for 
video stimulation with higher accuracy than single human observers and the consistency 
is even higher than between two groups of five human observers. 

Consistent structural representation of emotion ratings between GPT-4 and humans 

The structural similarity of emotion ratings between GPT-4 and human observers was 
high for all three datasets. The structural representation of emotion ratings was identified 
by calculating the correlation matrices of emotions from the original ratings. Correlation 
matrices were calculated separately for GPT-4 and human data and also for each dataset 
to allow cross-comparison (Figure 6). Within datasets the structural representations of 
emotions were similar between GPT-4 and human ratings (rVD1=0.84, rVD2=0.88, and 
rID=0.97). Additionally, the correlation matrices were consistent across VD1 and VD2 
indicating that the emotion representations form mainly a two-cluster solution that 
distinguishes pleasant emotions from unpleasant ones. All cross-correlations between 
the correlation matrices of the two datasets (VD1human vs. VD2human, VD1GPT vs. VD2GPT, 
VD1human vs. VD2GPT, VD1GPT vs. VD2human) were over 0.8. These results indicate that the 
emotional space across 48 emotions is stable with diFerent video stimuli and between 
human and GPT-4 annotations. 

Neural circuits of emotional processing modeled with GPT-4 emotion predictions 

To demonstrate the utility and reliability of GPT-4 emotion ratings in cognitive 
neuroscience, we modeled the neural representation of emotion circuits using 
retrospective fMRI datasets where emotions were elicited to 97 healthy participants with 
VD1 videos and ID images. The hemodynamic responses were modeled separately with 
GPT-4 and human ratings to allow comparative analysis of the results. Previous analyses 
based on ratings revealed high levels of consistency for self-reported feelings, and as 
expected, this consistency extended to the neural level. 

Cumulative activation maps highlighted a broad, human-typical socioemotional 
processing network in the video stimulation dataset (Figure 9, top panel). The cumulative 
maps were remarkably similar when the data were modeled using GPT-4 versus human 
emotion ratings (rVD1=0.95 and rID=0.85). This analysis highlighted superior temporal 
sulcus (STS), superior temporal gyrus (STG), lateral occipitotemporal cortex (LOTC), 
temporoparietal junction (TPJ), Fusiform gyrus (FFG), inferior frontal gyrus (IFG), caudate 
nucleus (Cau), thalamus (Tha), Amygdala (Amy), Parahippocampal gyrus (PhG), 
Hippocampus (HC) and medial superior frontal gyrus (SFG) as the main hubs for 
socioemotional processing for the VD1 social video stimulation. Cumulative maps for the 
static image experiment highlighted the orbitofrontal cortex (OFC), Fusiform gyrus (FFG), 
Precentral gyrus (PreCG), and Postcenral gyrus (PostCG). According to previous studies, 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 19, 2025. ; https://doi.org/10.1101/2025.09.18.677029doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.18.677029
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

these regions are central to emotion elicitation and response, emotion recognition, and 
especially processing of socioemotional cues, such as facial expressions, speech 
prosody, and body language (Lettieri et al. 2019; Saarimaki et al. 2016; Koide-Majima, 
Nakai, and Nishimoto 2020; Saarimäki et al. 2025). 

When investigating the convergence at the level of individual emotions, the results were 
also highly consistent between humans and GPT-4. The average correlation of 
unthresholded beta-maps for each emotion was 0.91 for VD1 and 0.97 for ID.  However, 
in VD1, slightly lower consistency (r < 0.80) was observed for emotion "awe", 
"obstruction", "disgust", and "eFort" which may be due to the ambiguity or their context-
related nature. With respect to the ID, the individual correlations for the dimensions of 
valence and arousal, and for the six emotions, were all above 0.80. The average positive 
predictive value (PPV) of the GPT-4-based results for VD1 was 0.80 for both conservative 
(FWE-corrected, p < 0.05) and lenient (uncorrected, p < 0.001) statistical thresholds and 
the average negative predictive value (NPV) was 0.97 (FWE-corrected) and 0.96 
(uncorrected), respectively. These metrics were highly similar in the ID. This suggests that 
the GPT-4-based models can predict neural emotion circuits associated with specific 
emotions with high similarity to the gold-standard human-annotation based models.  

The eFect of the chosen GPT model and content moderation 

The reported GPT-4 annotations were collected using OpenAI’s GPT-4.1 (gpt-4.1-2025-
04-14) model but we initially collected the evaluations with GPT-4 Turbo model (gpt-4-
turbo-2024-04-09). A comparison of the results between these two models is presented 
in Table SI-5. The performance of GPT-4.1 was minimally better compared to the older 
model. The most significant diFerence between the models was not their accuracy in 
making assessments, but rather the increased content moderation in the newer model. 
While GPT-4 Turbo provided emotional assessments for nearly all stimuli, GPT-4.1 
refused to evaluate a few videos (1-2 %), mainly including sexual content, as well as a few 
images (1%) containing blood, wounds, or nudity. This suggests that the GPT-4.1 model 
has tightened internal content filters deliberately limiting its use cases with certain 
material. Content that raises or addresses conflicting moral opinions is also likely 
excluded from the training data. According to the GPT-4 model documentation, the 
content filters include, for example, "sexual," "hate," "violence," and "harassment" filters 
(https://platform.openai.com/docs/api-reference/moderations/object). While these 
filters may promote the safe and child-friendly use of LLM models, they also limit their 
usability in studies examining basic human behavior such as sexuality and aggression. 
This restricts the range of material that can be evaluated and may introduce bias if certain 
emotional domains (e.g. sexuality) are overlooked systematically. 

With closed source-models, such as GPT-4, it is currently not possible to turn oF content 
moderation. Open-source models could be useful tools for research when commercial 
content moderation significantly limits the use of closed source models. However, 
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currently open-source models are inferior compared to GPT-4 in multiple benchmarks, 
and they require significant local computational resources. One major benefit for closed-
source models is how easily they can be accessed without strong computational 
background or resources, making them available for wide audiences. For these reasons 
closed-source models like GPT-4 may strike a practical balance between performance 
and accessibility. 

Cost-eFiciency 

The potential economic impact of automated approach to emotion annotation is 
considerable. For example, in the current study, the total cost of collecting emotion 
ratings from human observers exceeded 3000 dollars in participant fees, requiring a total 
of 260 hours of the participants’ time (~29 min/participant). In contrast, the collection of 
GPT-4 estimates for all datasets using the API was fast and costed roughly 100 dollars 
(around $0.02 per video query and < $0.01 per image query, Table SI-5), or just 3% of the 
cost of human data. Automated annotations are not only highly cost-eFicient, but they 
also overcome issues such as subject compliance or vigilance. In the future, laborious 
and expensive human experiments could be more eFiciently targeted to test the most 
promising hypotheses, which could be first generated in pilot studies or in preliminary 
analyses with LLMs, such as GPT-4, before being fully and specifically tested with human 
participants. 

Future directions and applications 

The results provide a strong foundation for utilizing GPT-4 and other large language 
models for studying emotions and their neural bases. The neural results demonstrate the 
potential to automatically annotate complex psychological phenomena for dynamic 
stimuli and then reliably model functional neuroimaging data with these annotations. 
This opens new avenues for automated approaches in large-scale neuroimaging 
experiments. In multidimensional and laborious stimulus mapping experiments, human 
annotations could be, at least partially, replaced by GPT-4 estimates (Dillion et al. 2023). 
This approach would accelerate the mapping of representation spaces, increase 
statistical power, and significantly reduce costs compared to previous multidimensional 
projects (Huth et al. 2016; Koide-Majima, Nakai, and Nishimoto 2020; Tarhan and Konkle 
2020; Santavirta et al. 2023). For example, automated solution would allow re-annotating 
retrospective large-scale movie fMRI datasets in unprecedented detail and temporal 
scale easily and cost-eFiciently for advanced analyses. Although the focus of this paper 
was to utilize LLMs for research purposes, automatic and real-time evaluations of 
complex socioemotional information from videos would have significant application 
potential in diverse real-life applications in surveillance and security systems, patient 
monitoring, customer experience analysis, and social robotics development, for 
example. 
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Currently, GPT-4 cannot simultaneously process high-frame-rate video with its full audio 
stream. Future research should attempt to increase the given information, especially 
auditory input, when prompting video evaluations from LLMs. However, we anticipate 
that full multimodality for native video input to the LLMs is nearby. While the present 
study used GPT-4, several other LLMs are available, and new versions of GPT as well as 
new generations of LLMs will very certainly soon emerge. Our general approach and 
specific results may provide a rationale for testing both existing and upcoming models: a 
new interdisciplinary subfield - at the crossroads of psychology, neuroscience and 
artificial intelligence – could propose standard procedures to evaluate specific LLMs with 
respect to their capacity to predict the outcomes of human psychological processes. 

Limitations 

Overall, the results supported the hypothesis that GPT-4 can indeed predict human 
emotional evaluations for video and image stimulation with accuracy that is higher than 
agreement between small groups of people. However, our human data consisted of 
ratings from ten participants for each stimulus. Collecting larger human sample might 
yield higher confidence in the overall population average and would also allow estimating 
the consistency between larger subgroups of humans, such as testing LLMs’ 
performance in predicting emotions in diFerent cultures. However, data collection costs 
would also increase significantly as described above.   

The responses produced by LLMs are also sensitive to how the prompts are formulated. 
Previous studies have demonstrated significant impact of prompt wording on LLM model 
results (L. Wang et al. 2024), while we have previously found that minor changes in the 
prompts do not significantly change how GPT-4 evaluate social information from videos 
(Santavirta et al. 2025). However, the same problem applies also to humans, who can 
interpret even simple instructions or adjectives such as “happy” in vastly diFerent ways. 
Nevertheless, we stress that we used a consistent prompt that closely mimicked the 
instructions given to human observers while ensuring that GPT-4 produced its 
evaluations in a structured format. 

Like other LLMs, GPT-4 is trained on large and non-disclosed datasets most likely 
collected from the internet, books, and other sources. This exposes the models to 
underlying cultural and societal biases. Consequently, LLMs’ responses could be biased 
towards perspectives of a specific populations, ignoring the experiences and 
interpretations of other groups (Demszky et al. 2023). However, research on these biases 
is inconclusive (Santurkar et al. 2023; Park, Schoenegger, and Zhu 2024; Almeida et al. 
2024), and the rapid evolution of models makes it diFicult to keep up with investigating 
the properties of any specific version. While the precise impact of these biases on our 
estimates is unknown, our study focused on predicting population average emotional 
responses rather than ideological attitudes. Hence, it is reasonable to assume that the 
impact of potential biases on emotion assessments is minimal. Additionally, the human 
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ratings included participants from over 30 nationalities ensuring diversity in the reference 
data. The human data for video datasets was collected for this study and they have not 
been made public before publications, which ensures that they have not being included 
in the GPT-4 training.  

Conclusions 

Our study provides the first empirical demonstration that a large language model - GPT-4 
- can accurately predict  the intensity of 48 distinct emotions that humans feel when 
viewing a large array of videos and static images. GPT-4's emotional ratings were found to 
be highly consistent with human average ratings. This consistency was higher than 
agreement between two groups of five human participants for most emotions. The 
structural representations of emotions were consistent between GTP-4 and human 
ratings, and also across two independent video datasets. Modelling the neural circuits for 
emotional processing in fMRI datasets with GPT-4 derived stimulation models predicted 
similar neural response patterns compared to traditional models based on human 
annotations. This opens significant possibilities in cognitive and aFective neuroscience 
research where laborious multimodal human annotation can be complemented or 
sometimes even replaced with LLM-based annotations, allowing also large-scale 
reanalysis of existing datasets with novel stimulus models. Altogether our results show 
that multimodal language models provide a valuable tool for investigating the self-
reported human aFective experience and its neural basis.  

Data and code availability 

The anonymized GPT-4 and human rating data and the collection and analysis scripts are 
available in the project’s GitHub repository (https://github.com/Lauri301/GPT-4-
predicts-human-emotions). According to Finnish legislation, the original (even 
anonymized) neuroimaging data used in the experiment cannot be released for public 
use. The voxelwise (unthresholded) result maps from fMRI analyses can be requested 
from the authors. The stimulus movie clips of VD1 can be made available for researchers 
upon request, but copyrights preclude public redistribution of them. Short descriptions 
of each movie clip in VD1 can be found in the supplementary materials (Table SI-1). VD2 
and ID are standardized datasets available from the original authors.  
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