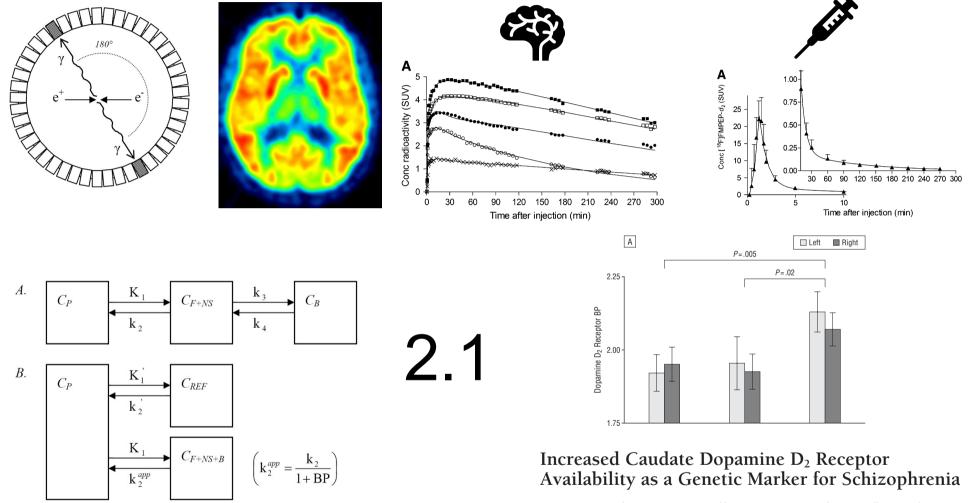


Pharmacokinetic modeling of PET neuroimaging data

Turku PET Centre Brain Imaging Course 2025

Jussi Hirvonen, Turku PET Centre



Jussi Hirvonen, MD; Theo G. M. van Erp, MA; Jukka Huttunen, MD; Sargo Aalto, MSc; Kjell Någren, PhD; Matti Huttunen, MD, PhD; Jouko Lõnnqvist, MD, PhD; Jaakko Kaprio, MD, PhD; Jarmo Hietala, MD, PhD; Tyrone D. Cannon, PhD

www.jcbfm.com

Review Article

Consensus nomenclature for in vivo imaging of reversibly binding radioligands

Robert B Innis¹, Vincent J Cunningham², Jacques Delforge³, Masahiro Fujita¹, Albert Gjedde⁴, Roger N Gunn⁵, James Holden⁶, Sylvain Houle⁷, Sung-Cheng Huang⁸, Masanori Ichise⁹, Hidehiro Iida¹⁰, Hiroshi Ito¹¹, Yuichi Kimura¹², Robert A Koeppe¹³, Gitte M Knudsen¹⁴, Juhani Knuuti¹⁵, Adriaan A Lammertsma¹⁶, Marc Laruelle², Jean Logan¹⁷, Ralph Paul Maguire¹⁸, Mark A Mintun¹⁹, Evan D Morris²⁰, Ramin Parsey⁹, Julie C Price²¹, Mark Slifstein⁹, Vesna Sossi²², Tetsuya Suhara¹¹, John R Votaw²³, Dean F Wong²⁴ and Richard E Carson²⁵

In vitro receptor binding concepts

```
B_{\text{max}} = concentration of receptor sites K_{\text{D}} = dissociation contast (conversely, 1/K_{\text{D}} = affinity of each receptor) BP_{\text{F}} = B_{\text{max}}/K_{\text{D}} = binding potential
```

The Law of Mass Action

"The rate of **association** is proportionate to the concentrations of the reactants, and the rate of **dissociation** is proportionate to the concentration of the complex."

$$L + R \xrightarrow{k_{on}} LR$$

L = ligand

R = receptor

LR = ligand-receptor complex

 $k_{\rm on}$ = the rate constant of association

= bimolecular association rate (nM⁻¹min⁻¹)

 $k_{\rm off}$ = the rate constant of dissociation (min⁻¹)

The Law of Mass Action

Thus, [LR] will increase in proportion to the product [L][R] and decrease in proportion to [LR]:

$$\frac{d[LR]}{dt} = k_{on}[L][R] - k_{off}[LR]$$

Dynamic equilibrium

At equilibrium, the rate of association equals the rate of dissociation:

$$\frac{d[LR]}{dt} = 0 \quad \text{, thus} \quad k_{on}[L][R] = k_{off}[LR]$$

rearrangement gives:

$$\frac{k_{o\!f\!f}}{k_{o\!n}} = \frac{[L][R]}{[LR]} = K_D$$
 Dissociation constant, units of concentration (nM)

"Michaelis-Menten" equation for receptor binding

• Redefine:

Total concentration of receptors:

$$B_{\text{max}} = [LR] + [R]$$

Concentration of available receptors:

$$B_{\text{max}}' = B_{\text{max}} - B = [R]$$

"Michaelis-Menten" equation for receptor binding

Thus:

$$K_{D} = \frac{k_{off}}{k_{on}} = \frac{[L][R]}{[LR]} = \frac{FB_{\text{max}}'}{B} = \frac{F(B_{\text{max}} - B)}{B}$$

"Michaelis-Menten" equation for receptor binding

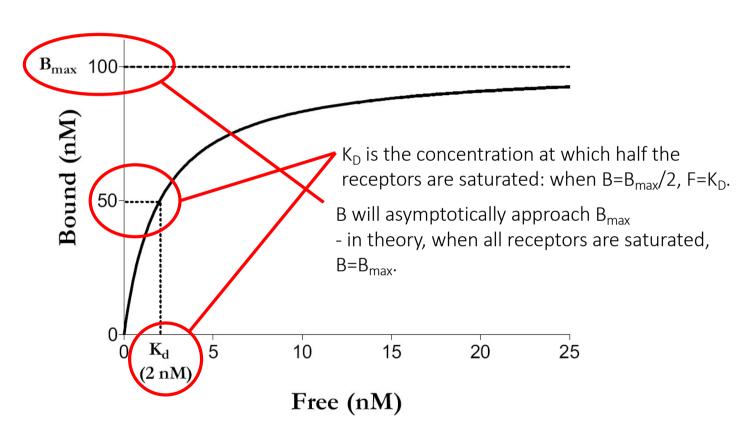
Solving for B:

$$B = \frac{B_{\text{max}}F}{K_D + F}$$

The "Michaelis-Menten" relationship

Saturation binding curve

$$B = \frac{B_{\text{max}}F}{K_D + F}$$



Saturation binding curve

• Slope of the saturation binding curve:

$$\frac{B}{F} = \frac{B_{\text{max}}}{K_D + F}$$

PET: tracer doses

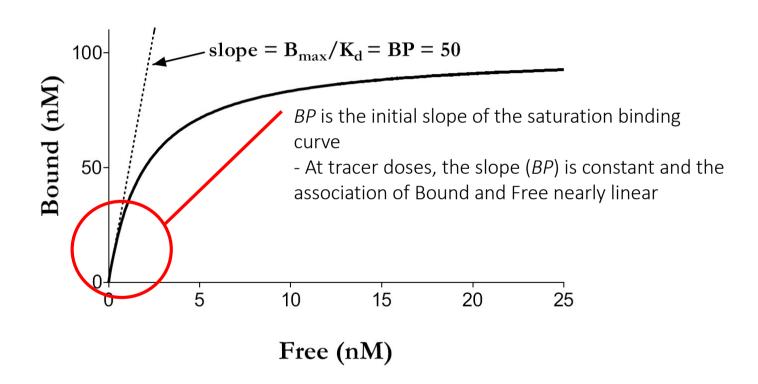
- In PET, minuscule amounts of the radiotracer are injected ("tracer" dose)
- Only <1% of the receptors are occupied (ideally)
- No pharmacological effects expected
- Molar activity (A_m , MBq/nmol): amount of labeled molecules relative to unlabeled ("cold", "carrier") molecules
 - High $A_{\rm m}$: tracer dose, <1% occupancy
 - Low $A_{\rm m}$: significant occupancy at receptors!

PET: tracer doses

Thus, $F << K_D$ (the latter being the concentration at which 50 % of the receptors are occupied), and:

$$\frac{B}{F} = \frac{B_{\text{max}}}{K_D} = B_{\text{max}} * Affinity = BP$$

Saturation binding curve

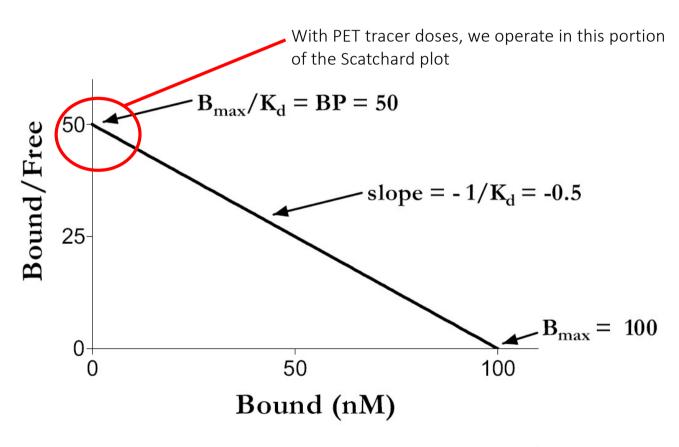


Scatchard linearization

Rearrangement of the "Michaelis-Menten" equation gives:

$$\frac{B}{F} = \left(\frac{-1}{K_D}\right) B + \frac{B_{\text{max}}}{K_D}$$
Slope= -1/K_D Y-intercept= B_{max}/K_D

Scatchard linearization



Major differences between *in vitro* measurements and *in vivo* PET

- In vivo PET: usually, tracer doses are used (F<<K_D)
- Thus, receptors are <u>not</u> occupied at all $\rightarrow B_{\text{max}}$ or K_D cannot be measured separately, only their ratio (BP_F) !
- In vitro, multiple levels of saturation is used to describe B_{max} and K_{D}
- In vivo PET: regional blood flow, extraction, binding to plasma proteins, non-specific binding, multiple populations of specific binding sites, internal milieu (pH, ion concentrations etc), radioactive metabolites of the radiotracer, endogenous neurotransmitters, factors related to PET instrumentation...

Interpretation of *in vivo* binding potential differences

From a pharmacological point of view, if BP_F differs between individuals, what is different?

- B_{max} : different individuals have different concentrations of receptors
- K_D : property of a single receptor: eg. conformational changes in the receptor protein structure may lead to differences in K_D

Receptor occupancy

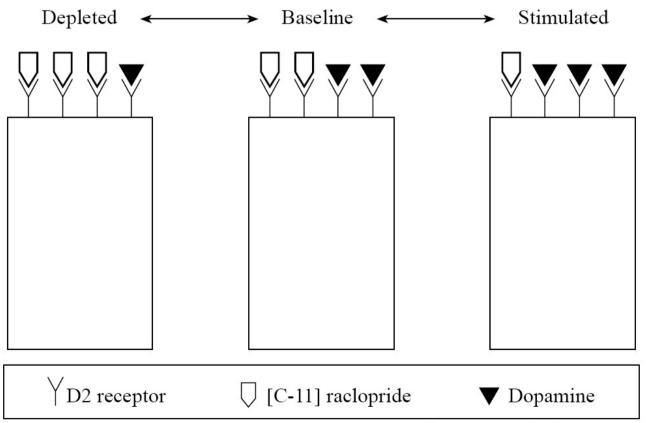


Image: Laruelle & Huang, Q J Nucl Med 2001;45:124-138

Competitive inhibition with PET

- Endogenous neurotransmitters or exogenous substances compete with the radioligand in binding to receptors
- Competitive inhibition can be studied with PET using two tracer dose scans: one in baseline, and another after pharmacological challenge
- Changes in *BP* are considered to reflect changes in the synaptic concentrations of endogenous neurotransmitters

Competitive inhibition with PET

- But what alters in vivo BP_F in competitive inhibition?
 - $-B_{\text{max}}$: the total concentration of receptor <u>cannot</u> change, otherwise not competitive inhibition!
 - $-K_{\rm D}$: the affinity of each receptor <u>cannot</u> change in competitive inhibition!
- Introducing a new term: apparent affinity

$$\frac{1}{K_D^{app}} = \frac{1}{K_D \left(1 + \sum \frac{F_i}{K_{D_i}}\right)}$$

Pharmacological interpretation of BP_F in vivo

$$BP = \frac{B_{\text{max}}}{K_D^{app}} = \frac{B_{\text{max}}}{K_D \left(1 + \sum \frac{F_i}{K_{D_i}}\right)}$$

 K_D = equilibrium dissociation constant of <u>the tracer</u>

 F_i = concentration of *i* competing substances

 K_{Di} = equilibrium dissociation constant of *i* competing substances

Occupancy

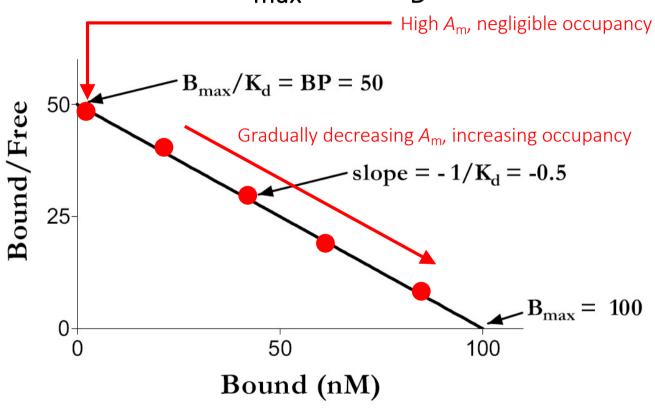
For the measurement of occupancy of endogenous or exogenous ligands using two PET scans with tracer doses:

Occupancy (%) =
$$\frac{BP_{BEFORE} - BP_{AFTER}}{BP_{BEFORE}} * (100\%)$$

Scatchard analysis *in vivo* for the differentiation of B_{max} and K_{D}

- Multiple PET scans are needed with decreasing specific activities
 - Thus, gradually increasing the amount of unlabeled ("cold") radioligand to yield significant occupancy at the receptors
- From multiple observations, pairs of B and B/F are calculated and plotted in the Scatchard plot
 - B can be measured at equilibrium as $C_B(t)/A_m$, where $C_B(t)=C_T(t)-C_{REF}(t)$
 - B/F can be measured as C_B/C_{REF}

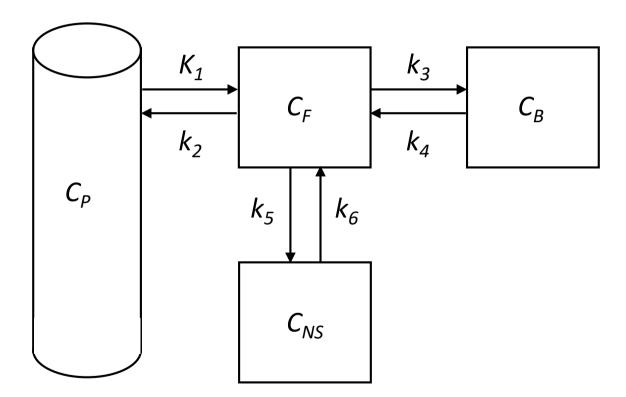
Scatchard analysis in vivo for the differentiation of $B_{\rm max}$ and $K_{\rm D}$



Confounding factors and complications

- Properties of the radioligand
 - Target receptor population (affinity states etc.)
 - Physiological receptor variants
 - Is it comparable to the endogenous ligand?
- Receptor trafficking
 - Agonist-induced receptor internalization
 - How does is affect B_{max} ?
 - Do PET radioligands bind to internalized receptors? How?
- Non-competitive inhibition, changes in receptor conformation

Full compartmental model



Practically, too many parameters to achieve reliable fits...

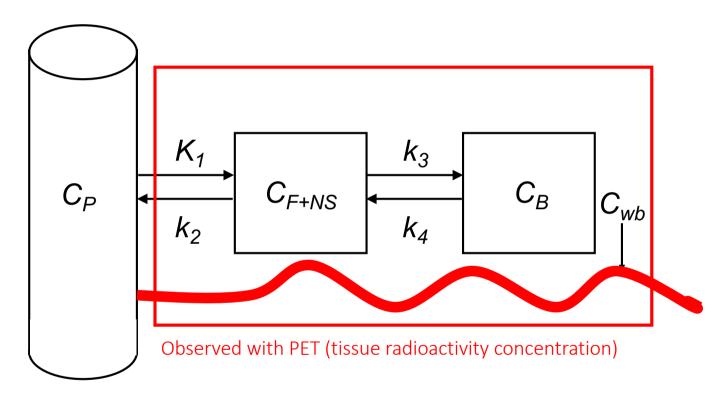
Full compartmental model

- C_P = radioactivity concentration in <u>arterial plasma</u>
- C_F = radioactivity concentration of <u>free radioligand in tissue</u>
- C_B = radioactivity concentration of <u>specifically bound radioligand</u>
- C_{NS} = radioactivity concentration of <u>non-specifically bound radioligand</u>
- K_1 = rate constant for transit between plasma and tissue (ml tissue)/(ml plasma)/min
- k_2 = rate constant for transit between tissue and plasma (min⁻¹)
- k_3 , k_4 = rate constants for transit between free and specifically bound compartments and vice versa (min⁻¹)
- k_5 , k_6 = rate constants for transit between free and non-specifically bound compartments and vice versa (min⁻¹)

Assumption in all compartmental models

- Only free radioligand in arterial plasma in considered to pass the blood-brain barrier
- Free radioligand in plasma = not bound to proteins
- The fraction of total plasma radioactivity originating from free radioligand = $f_{\rm P}$

Standard 3-compartmental model (2TC)



$$C_{PET} = (1 - V_b)C_T + V_bC_{wb}; \quad C_T = C_{F+NS} + C_B$$

Assumptions in the 3-compartmental model

- Free and non-specifically bound compartments are assumed to be at equilibrium rapidly
- Thus, these are treated as a single compartment
- The fraction of radioactivity in this combined compartment originating from free radioligand = f_{ND}

Volume of distribution (V_T)

The ratio of radioactivity concentration in a compartment and in plasma:

$$V_{j} = \frac{C_{j}}{f_{P}C_{P}}$$

 $V_{\rm j}$ = the distribution volume of the *j*th compartment

 C_i = radioactivity concentration in the *j*th compartment

 f_P = plasma "free fraction"

 C_P = radioactivity concentration in arterial plasma

Derivation of V_T from rate constants: Total V_T for 2-compartmental model (1TC)

$$\frac{dC_T}{dt} = K_1 C_P - k_2 C_T$$

Derivation of V_T from rate constants: Total V_T for 2-compartmental model

At equilibrium, no net transfer between plasma and tissue:

$$\frac{dC_T}{dt} = 0 \quad ; \quad K_1 C_P = k_2 C_T$$

and

$$V_T = \frac{C_T}{C_P} = \frac{K_1}{k_2}$$

Derivation of V_T from rate constants: Total V_T for 3-compartmental model (2TC)

$$C_T = C_{F+NS} + C_B$$

$$\frac{dC_{F+NS}}{dt} = K_1 C_P - k_2 C_{F+NS} - k_3 C_{F+NS} + k_4 C_B$$

$$\frac{dC_B}{dt} = k_3 C_{F+NS} - k_4 C_B$$

Derivation of V_T from rate constants: Total V_T for 3-compartmental model

At equilibrium:

$$\frac{dC_B}{dt} = 0 \Longrightarrow k_3 C_{F+NS} = k_4 C_B; \quad C_B = \frac{k_3}{k_4} C_{F+NS}$$

thus

$$V_{T} = \frac{C_{T}}{C_{P}} = \frac{C_{F+NS} + C_{B}}{C_{P}} = \left(1 + \frac{k_{3}}{k_{4}}\right) \frac{C_{F+NS}}{C_{P}}$$

Derivation of V_T from rate constants: Total V_T for 3-compartmental model

At equilibrium:

$$C_{F+NS} = \frac{K_1}{k_2} C_P$$

thus:

$$V_T = \left(\frac{K_1}{k_2}\right) \left(1 + \frac{k_3}{k_4}\right)$$

How do rate constants relate to pharmacological binding parameters?

$$k_3 = k_{on} f_{ND} \left(B_{\text{max}} - \frac{C_B(t)}{A_{\text{m}}} \right)$$

$$k_4 = k_{off}$$

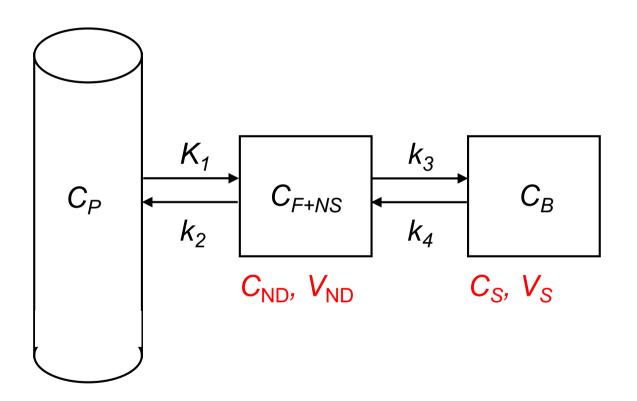
How do rate constants relate to pharmacological binding parameters?

At tracer doses, $A_m >> C_P(t)$ (that is, negligible occupancy by the radiotracer), and k_3 formula reduces to:

Since
$$\frac{k_{on}f_{ND}B_{\max}}{\frac{k_{off}}{k_{on}}}=K_{D}\ ,$$

$$\frac{k_{3}}{k_{4}}=\underbrace{f_{ND}B_{\max}}_{K_{D}}=\underbrace{BP_{ND}}$$

Standard 3-compartmental model

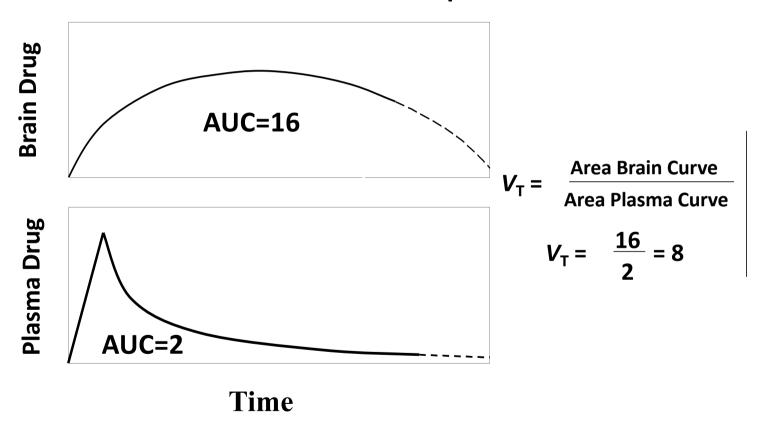


Nomenclature

BP notation	Pharmacological interpretation	Kinetic interpretation	V _⊤ interpretation	f _P	f _{ND}
<i>BP</i> _F	$\frac{B_{\mathrm{max}}}{K_D}$	$\frac{K_1 k_3}{f_P k_2 k_4}$	$\frac{V_T - V_{ND}}{f_P}$	No	No
<i>BP</i> _P	$\frac{f_P B_{\max}}{K_D}$	$\frac{K_1 k_3}{k_2 k_4}$	$V_T - V_{ND}$	Yes	No
BP _{ND}	$\frac{f_{ND}B_{\max}}{K_D}$	$\frac{k_3}{k_4}$	$\frac{V_T}{V_{ND}} - 1$	No	Yes

Distribution Volume (V_T)

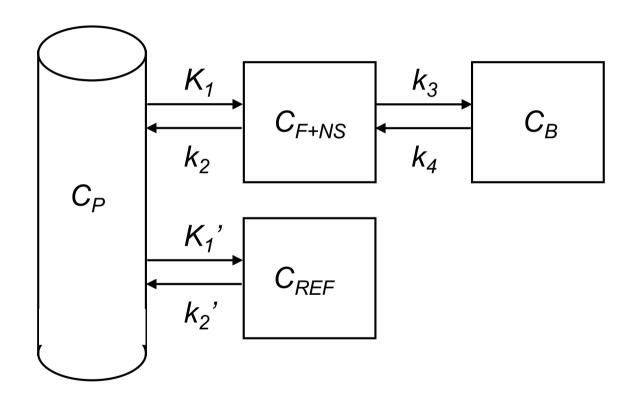
 V_T equals uptake in brain relative to how much activity is delivered in arterial plasma



Methods for estimating BP in vivo

- Direct method
 - From rate constants: complicated
- Indirect method
 - Calculation from V_T values derived from target and reference regions using arterial plasma input: more robust
 - Calculation using reference region models: robust, arterial blood sampling not required
 - Caveat: critically dependent on the validity of the reference region to accurately estimate $V_{\rm ND}$

Reference region methods



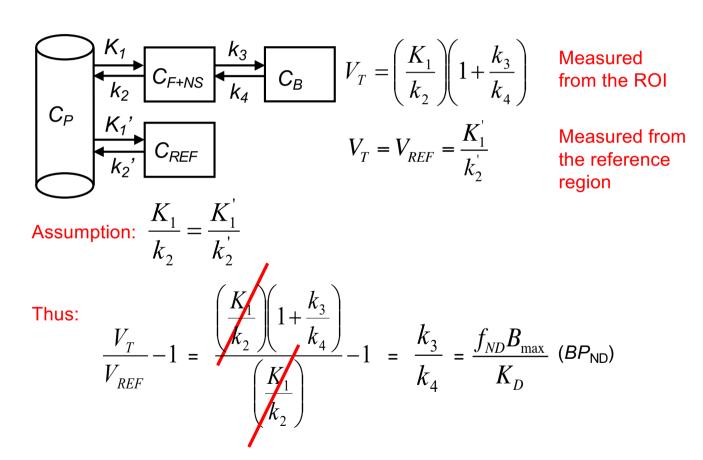
Reference region methods

- Estimation of the free and non-specific compartment (C_{F+NS}) from a reference region would obviate the need of arterial blood sampling
 - A major advantage in clinical studies!
- In a valid reference region, $V_{\rm ND}$ represents only free and non-specific radioligand no specific binding to receptors
- Central assumption: free and non-specific binding is same between brain regions, *i.e.*:

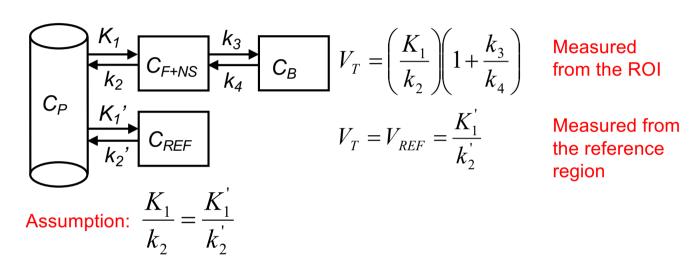
$$\frac{K_1}{k_2} = \frac{K_1'}{k_2'}$$

Note that blood flow is not assumed to be equal across brain regions - only the ratio K_1/k_2 .

Reference region methods: indirect BP estimation from V_{T} values



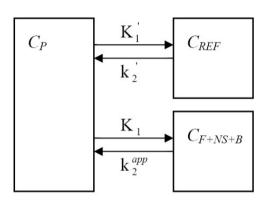
Reference region methods: indirect BP estimation from V_T values



Accordingly:

$$V_T - V_{REF} = \left(\frac{K_1}{k_2}\right) \left(1 + \frac{k_3}{k_4}\right) - \left(\frac{K_1}{k_2}\right) = \frac{K_1 k_3}{k_2 k_4} = \frac{f_P B_{\text{max}}}{K_D}$$
 (BPP)

Reference region methods: simplified reference tissue model (SRTM)



Further assumptions: bound and free+nonspecific compartments reach equilibrium rapidly C_{REF} K_{1} C_{F+NS+B} C_{F+NS+B} C_{F+NS+B} C_{F+NS+B} C_{F+NS+B} C_{F+NS+B} C_{F+NS+B} C_{F+NS+B} C_{F+NS+B} C_{F+NS+B}

$$\left(k_2^{app} = \frac{k_2}{1 + BP}\right)$$

$$C_T(t) = R_1 C_{REF}(t) + \left(k_2 - \frac{R_1 k_2}{1 + BP}\right) C_{REF}(t) \otimes e^{-\left(\frac{k_2 t}{1 + BPND}\right)}$$

 $C_T(t)$ = radioactivity concentration in the region of interest (= $C_{F+NS}+C_B$) $C_{RFF}(t)$ = radioactivity concentration in the reference region R_1 = ratio of K_1 and K_1 BP_{ND} = binding potential

Scenario 1.

• Radioligand 1 has no reference region, you choose:

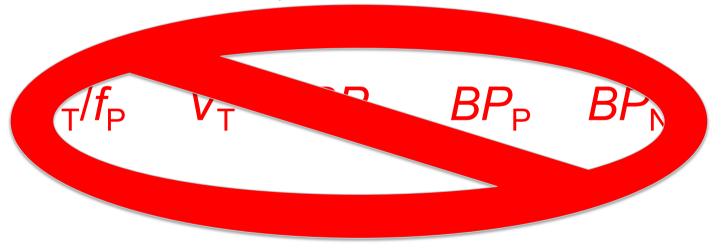
$$V_T/f_P$$
 V_T BP_F

Scenario 2.

• Radioligand 2 may have different plasma protein binding (f_P) between subjects, difficult to measure... you choose:

Scenario 3.

• Radioligand 3 has a brain-penetrant radiometabolite, you choose:



Conclusions

- Nomenclature concerning the parameters estimates for specific binding may be confusing
- Always check what is really meant by "BP"
- Always state explicitly in an article what you mean by "BP"
- Keep in mind the limitation and vulnerabilities of each model
- Learn the model configurations and common formulas