

CHOOSING PREDICTORS TO LINEAR REGRESSION MODELS

Turku PET Centre Brain Imaging Course 2025

Tuulia Malen, Turku PET Centre tukama@utu.fi

'Blindly tossing variables into the causal salad is never a good idea.' - R. McElreath

Reference

- Richard McElreath, an American professor of Anthropology, Max Planck Institute, Germany
- Statistical Rethinking. A Bayesian Course with Examples in R and Stan (2nd edition, 2020). Chapman and Hall/ CRC.
 - Chapters 5-7 (mainly)
 - The 2024 edition of the course, including slides, lectures and exercise material:
 - https://github.com/rmcelreath/stat_rethinking_2024
 - https://www.youtube.com/watch?v=mBEA7PKDmiY&list=PLDcUM9US4XdPz-KxHM4XHt7uUVGWWVSus&index=5
- Visualization
 - Posit team (2025). RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, MA. URL http://www.posit.co/.
 - OpenAl's DALL·E via ChatGPT

Introduction: Linear regression modeling

- Estimate associations between one or more predictors (independent variables) and an outcome (dependent variable)
- Predictor effect on outcome
 - How age, sex, and chronic pain affect the opioid receptor availability?
 - How dopamine synthesis capacity affects the dopamine receptor availability?

Introduction: General linear regression with main effects

- If one predictor:
 - outcome = $\alpha + \beta$ *predictor + error
- α and β are estimated by the regression model based on our data so that error (distances between observations and the fit= line) is minimized
- α = intercept (outcome when predictor = 0)
- β = **the effect** = regression coefficient = the change in outcome with one-unit increase in predictor
- Syntax often something like: outcome ~ predictor

Introduction

- If one predictor:
 - outcome = $\alpha + \beta$ *predictor + error

- If two (or more) predictors:
 - outcome = $\alpha + \beta_1$ *predictor₁ + β_2 *predictor₂ + ... + error
 - Independent effects
 - The effect of predictor₁, when predictor₂ is adjusted ('controlled') for

Correlation & Causality

- Linear regression is based on correlation between the variables (predictors and outcome)
- Correlation is common and it does not necessarily reveal causality, but only association
 - Thus, the effect is only an association, although it sounds causal!
 - https://www.tylervigen.com/spurious-correlations
 - Probiotics and problems: Yogurt consumption and Google searches for "I can't even"

Correlation & Causality

Perfect Positive Correlation = 1

Perfect Negative Correlation = -1

Zero-Correlation = 0

Positive Correlation = 0.7

Negative Correlation = -0.7

Correlation & Causality

- Many times causality (the effect!) is the key interest in our studies
 - Which factors cause the disease?
 - Predictor= the factor that predicts the outcome

- Just the ones that are interesting (research question)?
- Everything that we could possibly get?

- Variables that are known to systematically explain variance in the outcome
 - Including the interesting + 'uninteresting' (covariates*) ones
 - <u>Disorder</u>, age and sex: Disorder effect that is independent of the effects of age and sex

- Everything that we variables into the causal salad is never a good idea.'

 'Blindly tossing variables into the causal salad is never a good idea.'

 - Variables that are known to systematically explain variance in the outcome
 - Including the interesting + 'uninteresting' (covariates*) ones
 - Disorder, age and sex: Disorder effect that is independent of the effects of age and sex

- Just the ones that are interesting (research question)?
- Everything that we could possibly get?

- Variables that are known to systematically explain variance in the outcome
 - Including the interesting + 'uninteresting' (covariates*) ones
 - <u>Disorder</u>, age and sex: Disorder effect that is independent of the effects of age and sex

- But with caution...
- Let's think of causality between our modeling variables to avoid confounds
 - Although many times difficult, we can try to interpret (or rule out) causality between our variables
 - Longitudinal data: Happiness today cannot cause happiness yesterday
 - Receptor availability cannot cause age

Confounds

- Let's think of causality between our modeling variables to avoid confounds
- Features of our data and model that will mislead us about the effects
 - Produce false effects
 - Hide existing effects
- Fork, pipe, collider, descendant

• What is the effect of IBS severity on receptor availability?

• Let's assume...

 Many vegan proteins, e.g. beans induce IBS symptoms in vulnerable individuals

Many vegan products are healthy for the brain

• What is the effect of IBS severity on receptor availability?

Receptor availability ~ IBS severity

Receptor availability ~ IBS severity + vegan diet

What is the effect of IBS severity on receptor availability?

Receptor availability ~ IBS severity

Receptor availability ~ IBS severity + vegan diet

• What is the effect of IBS severity on receptor availability?

Receptor availability ~ IBS severity

Receptor availability ~ IBS severity + vegan diet

The vegan effect misinterpreted as the IBS effect

• What is the effect of IBS severity on receptor availability?

Amygdala

Irritated bowel syndrome (IBS) symptoms

What is the effect of IBS severity on receptor availability?

Disclaimer: These are not the regression lines from the model (we do not get IBS effect separately for vegans and non-vegans from main effects model), but this is describing the characteristics of the data that induces the confound! (Considers also the upcoming examples)

Amygdala

Irritated bowel syndrome (IBS) symptoms

The general rule of thumb

• What is the effect of cold exposure on brain perfusion?

• Let's assume...

Pain increases perfusion

• What is the total effect of cold exposure (including the pain-mediated effect) on brain perfusion?

Perfusion ~ cold exposure

Perfusion ~ cold exposure + pain

PERFUSION

• What is the total effect of cold exposure (including the pain-mediated effect) on brain perfusion?

Perfusion ~ cold exposure

Perfusion ~ cold exposure + pain

• What is the total effect of cold exposure (including the pain-mediated effect) on brain perfusion?

Perfusion ~ cold exposure

Perfusion ~ cold exposure + pain Pain (mediator) DOES NOT ESTIMATE THE TOTAL EFFECT Cold exposure NO EFFECT

 Include pain if interested in the pain-independent effect of coldexposure

Hippocampus

Cold exposure (water temperature in Celsius)

Hippocampus

Cold exposure (water temperature in Celsius)

The general rule of thumb

- Let's not include treatment consequences as predictors if interested in the total treatment effect
 - Drug reduces heart rate that lowers anxiety
 - Anxiety ~ drug + heart rate
 - The drug doesn't work (bad conclusion, post-treatment bias)

• What is the effect of genetic vulnerability for pathological gambling (PG) on environmental stressors?

• Let's assume...

 Both genetic vulnerability and environmental stressors increase the likelihood of pathological gambling

=(->>)=

• What is the effect of genetic vulnerability on environmental stressors?

Environmental stressors ~ genetic vulnerability

Environmental stressors ~ genetic vulnerability + clinical status

=(->>)=

• What is the effect of genetic vulnerability on environmental stressors?

Environmental stressors ~ genetic vulnerability

Environmental stressors ~ genetic vulnerability + clinical status

=(->>=)=

• What is the effect of genetic vulnerability on environmental stressors?

Environmental stressors ~ genetic vulnerability

Environmental stressors ~ genetic vulnerability + clinical status

Genetic vulnerability for PG

• What is the effect of genetic vulnerability on environmental stressors?

- Clinical status is a problematic collider
 - Clinical status (pathological gambler, healthy control) as a predictor
 - Creates a fake association between genetic vulnerability and environmental stressors

The thresholding effect

The thresholding effect

- If either genetic vulnerability or environmental stressors big enough, then onset of pathological gambling
- The higher the one, the lower the other needs to be for onset
- Either one must be high
- Looking at the genetic-environmental association at each level of clinical status, there is an arbitarily strong association

The thresholding effect

- So it can well be true, that subjects with PG show this 'higher the one, lower the other' -tendency
- Yet, it does not mean that genetic vulnerability for PG protects from environmental stressors (higher the vulnerability, lower the stressors)

The general rule of thumb

- The subpopulations we have in the data
- In which population we want to assess the interesting effect
 - Visualizing data is always useful

Confounds: The Descendant

Cold exposure

- Muscle tension is a descendant (child) for pain (parent)
- Behavior depends on where the descendant is attached to (here pipe)
- Including muscle tension like including its 'parent' pain, but a bit weaker - not a clone but includes some of the same information
- If interested in the total effect, leave out both the parent and the child
- If interested in the mediator-independent effect, I would include the parent but not child

Theory vs practice

- The DAGs make sense in theory. In practice, they may become extremely large and cryptic as the number of variables increases
- Often, we do not know the causal paths between the variables
 - If we did, would we study them?
- Awareness!

Useful practices

• Correlation of the predictors, multicollinearity metrics (e.g. VIF)

- High correlations: Are the predictors measures of the same thing?
 - Yes: Can we choose only one of them or combine several variables into one umbrella variable (metabolic strain from body mass index, waist measurement, cholesterol...)?

Model comparison

- Modify the set of the predictors, then compare models: Essential changes in the findings?
 - No: No signs of major problems with the predictor combination, might be good to report the model comparison
 - Yes: Analyze more in detail and consider the causal paths

Underfitting & Overfitting

- Not too few, not too many predictors
- Underfitting: Too few
 - Too general
 - Is missing meaningful predictors that in real life influence the outcome
 - Missing the age effect in brain data, while neural functions and structures are clearly affected by age

Underfitting & Overfitting

Not too few, not too many predictors

Overfitting: Too many

- Difficult to interpret: The causal paths become difficult to handle
- Fits the current sample 'perfectly' but does not generalize well in the population

'Blindly tossing variables into the causal salad is never a good idea.' - R. McElreath