

EXPERIMENTAL DESIGNS FOR FUNCTIONAL NEUROIMAGING

Turku PET Centre Brain Imaging Course 2025

Lauri Nummenmaa, Turku PET Centre

Lecture contents

- Basic problems in experimental design and model fitting
- Basic experimental designs
 - Boxcar design
 - Event-related design
 - Parametric designs
 - Analysing unconstrained conditions

Magnetic resonance imaging (MRI)

- Based on the magnetic resonance of the hydrogen nuclei
- Measuring the behaviour of hydrogen nuclei in the strong magnetic field of the MRI device allows studying different tissues in vivo
- Adjusting imaging sequence allows highlighting different tissues or their different characteristics

Experiment: Linking stimulation model with measurements

BACKGROUND LUMINOSITY

Independent variable
Controlled by experimenter

PUPIL DIAMETER

Dependent variable
Researcher measures if changes in
the independent variable cause
changes in the dependent variable

SIGNAL Experiment-

induced variations in pupil size

NOISE

Errors in measurement, individual differeneces

STATISTICS = SEPARATING NOISE FROM SIGNAL IN A PROBABILISTIC FASHION

Cognitive subtraction

Induce brain in states A and B and calculate the differential activation

Problem: assumption of pure insertion

Pure insertion: assumption that inserting another component to the task does not affecting the remaining process

A) Multiple Identity Tracking (MIT)

4 s

B) Multiple Object Tracking (MOT)

Typical fMRI experiment

Acquiring one 3D functional volume takes about 1.5 seconds We can distinguish events ~100ms apart, yet their actual timing can be resolved with about 2-s accuracy

Fitting the model to the data

Basic idea: model how well the stimulation model predicts BOLD time course at tech voxel

First level model with LEGO brains

First level model with LEGO brains

Basic tool 1: Boxcar design

16-second house block

16-second face block

16-second face block

AIM: Localize brain regions that are more involved in process 1 vs. process 2

DESIGN: Blocked experiment using cognitive subtraction assuming pure insertion

ADVANTAGES: Simple, powerful, often short experiments

Networks for vicarious pain perception

Feel pain trial

Cause pain trial

Nummenmaa et al (2014 J Neurosci)

Basic tool 2: Event-related design

AIM: Localize brain regions that are more sensitive to process 1 vs. process 2

DESIGN: Event-related design with cognitive subtraction assuming pure insertion

ADVANTAGES: More accurate model, trial wise analysis, randomisation

Putkinen et al (submitted)

Basic tool 3: Parametric design

AIM: Localize brain regions that respond to vicarious pain

DESIGN: Parametric design with continuous stimulation model

ADVANTAGES: Quantitative stimulation model, high statistical power

Karjalainen et al (2018 Cereb Cortex)

Basic tool 4: Unconstrained conditions and active experiments

Model-based analysis of an unstructured gameplay session

- Stimulus model is stored based on player behaviour
- Events of interest modelled as
- Stick functions
- Everyone free to play as they want,
- But gameplay is parsed into similar event

Kätsyri et al 2013 Cereb Cortex

Response variability across session

Sources of variation

- Random variation (noise)
- Physiological state
- Arousal level
- Attention
- Learning effects
- Stimulus / event differences

Haxby et al (Science 2001)

Anatomical differences

- Localization of the 'fusiform face area' in 18 subjects
- Localizations vary considerably due to differences in
 - Gross anatomy
 - Functional specialization
 - Warping in normalization
- Also, consider differences in signal intensity across subjects
- All these factors are bound to lower SNR

How to improve experimental power?

- 1. Ask a good question
- 2. Improve design efficiency
- 3. Increase scan duration (to reasonable limits)
- 4. Minimize individual differences in cognitive / affective state
- 5. Maximize subject engagement (e.g. game > movie > picture)
- 6. Maximize similarity of subjects

Remember: your results are only as good as your theory!

High reliability and good SNR do not safeguard against stupid research questions and Bad Science™