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ABSTRACT 
Total-body PET imaging is a novel concept that requires a high level of automatization and 
standardization, as the large number of target tissues increases manual workload 
significantly. We introduce an automated analysis pipeline (TURBO) for preprocessing and 
kinetic modeling of total-body [15O]H2O and [18F]FDG PET data, enabling efficient and 
reproducible analysis of tissue perfusion and metabolism at regional and voxel level. The 
approach employs automated CT segmentation for ROI delineation, image-derived input 
determination, and region-specific PET data kinetic modelling.  
 
Methods: We validated the analysis pipeline using Biograph Vision Quadra (Siemens 
Healthineers) total-body PET/CT scans from 21 subjects scanned with [15O]H2O and 16 
subjects scanned with [18F]FDG using six ROIs (cortical brain gray matter, left iliopsoas, 
right kidney, pancreas, spleen and liver) representing different levels of blood flow and 
glucose metabolism.  
 
Results: Model fits showed good quality with consistent parameter estimates at both regional 
and voxel levels (R² > 0.91 for [15O]H2O, R² > 0.99 for [18F]FDG). Estimates from manual 
and automated input functions were correlated (R² > 0.86 for [15O]H2O, and R² > 0.88 for 
[18F]FDG) with minimal bias (<10% for [15O]H2O and <2% for [18F]FDG). Manually and 
automatically (CT-based) extracted ROI level data showed strong agreement (R² > 0.82 for 
[15O]H2O and R² > 0.83 for [18F]FDG), while motion correction had little impact on 
parameter estimates (R² > 0.83 for [15O]H2O and R² > 0.88 for [18F]FDG) compared with 
uncorrected data.  
 
Conclusion: Our automated analysis pipeline provides reliable and reproducible parameter 
estimates across different regions, with average processing time of <180 min per subject. 
This pipeline completely automatizes total-body PET analysis, reducing manual effort and 
enabling reproducible studies of inter-organ blood flow and metabolism, including brain-
body interactions. 
 
  



INTRODUCTION 
 
Long axial field of view (LAFOV) PET scanners present unique opportunities for scientific 
research and clinical diagnostics by enabling the simultaneous, noninvasive imaging of 
multiple organs and their physiological interactions. These systems provide clear benefits, 
including improved count sensitivity, extended image coverage, and extraction of image-
derived input function from aorta (Knuuti et al., 2023). However, they also introduce new 
challenges for data analysis. Patient movement is a major concern in LAFOV studies, as 
complete patient restraining is not possible similarly as e.g. in brain-only studies. In addition, 
manual pre-processing of total-body PET data is time-consuming, especially when analyzing 
multiple tissues. One LAFOV study may contain tens of different regions of interest (ROI), 
whose delineation alone can exceed a full workday per subject. Furthermore, manual 
approach is prone to operator bias, which may reduce reproducibility compared to automated 
methods (Karjalainen et al., 2020). Finally, the complex preprocessing, modelling and data 
analysis flow warrants comprehensive quality control to ensure accurate outputs at all stages 
and again, completing all these steps by human operators is simply not feasible.  
 
Any all-inclusive total-body PET processing pipeline should handle preprocessing, region of 
interest (ROI) delineation, and kinetic modeling using various approaches tailored to different 
radiotracers – making the development of a comprehensive PET pipeline a challenging task. 
While various tools exist for automated brain PET data analysis (Funck et al., 2018; Greve et 
al., 2014; Gunn et al., 2016; Karjalainen et al., 2020), equivalent pipelines for total-body PET 
data are not yet widely available. To address these issues, we introduce a novel open-source 
Turku Total-Body PET modelling pipeline (TURBO), which enables automated and 
reproducible processing and kinetic modeling of total-body data. It supports various 
radiotracers and kinetic models and allows fully automated processing, including 
coregistration, motion correction, input function determination, and ROI delineation. The 
pipeline enables both regional and voxel-level kinetic modeling, with the flexibility to apply 
tissue-specific models, and provides visual and numerical tools for quality control of 
preprocessing steps. 
 
Here, we describe and validate the TURBO pipeline (freely available at https://turbo.utu.fi) 
using [¹⁵O]H₂O and [¹⁸F]FDG PET data to benchmark preprocessing and modeling of tissue 
perfusion and glucose metabolism. We compared automated image derived input function 
(IDIF) with the manually delineated input, assessed results with and without motion 
correction, evaluated the results of ROI-based and voxel-level kinetic modelling, and 
compared outcome measures from manually and automatically determined ROIs. We 
hypothesized that TURBO provides rapid, accurate and reproducible approach for modelling 
total-body PET perfusion and metabolism data at voxel and regional levels. 
 
MATERIALS AND METHODS  
 
Overview of TURBO pipeline 
 
TURBO (TURku total-BOdy) pipeline runs on MATLAB (The MathWorks, Inc., Natick, 
MA, USA), and utilizes openly available tools for data processing. For all PET kinetic 
modelling, we use matlab implementations of openly available and previously validated in-
house software (http://www.turkupetcentre.net/petanalysis). The general framework involves 
CT to PET registration, PET motion correction, segmentation of the CT image into tissues 
and organs, automatic image-based input extraction and finally, kinetic modelling in regional 

https://turbo.utu.fi/
http://www.turkupetcentre.net/petanalysis


and voxel level. The pipeline outputs total-body parametric images, separate parametric brain 
images normalized to MNI space, regional outcome measures as well as quality control 
metrics. Overview of the workflow is shown in Figure 1, and detailed process documentation 
is described at https://turbo.utu.fi. 
 

 
Figure 1. Flowchart for the TURBO pipeline.  
 
Total-body PET data preprocessing  
 
The process begins by converting DICOM images to NIfTI using the dcm2niix tool (Li et al., 
2016), and extracting required metadata such as framing, injected dose, and subject weight 
from the DICOM header. Next, PET data are corrected for subject motion following 
previously described approach (Sundar et al., 2023), that employs diffeomorphic greedy 
registration algorithm (https://greedy.readthedocs.io). For [18F]FDG, the motion correction 
start frame is determined by normalized cross-correlation (NCC), as described in (Sundar et 
al., 2023). In our [18F]FDG validation data this varies between 4 - 6 min. Due to the variation 
in [15O]H2O distribution, early frames are discarded, and the start frame is selected as the 
time point where the heart time-activity curve (TAC) falls below half of its peak value (this 
varies between 15 – 45 s in our validation data). For both radioligands, the motion correction 
reference frame is selected as the one with the highest NCC relative to the CT. In our 
[15O]H2O validation data, this frame is typically near the scan midpoint and in [18F]FDG data 
near the scan endpoint. Subsequently, CT is registered with the PET mean image using the 
greedy algorithm to correct any misalignments and ensuring that CT-based regions of interest 
(ROIs) correspond with the PET data. The CT image is resampled to PET voxel size, 
whereafter the TotalSegmentator tool (Wasserthal et al., 2023) is used for CT-based 
segmentation of major organs and tissues, to serve as ROIs for PET quantification.  
 
Image derived input extraction 
 
Because the total-body PET image covers the heart in addition to other targets of interest, 
input function can be determined from the images. For automatic IDIF determination, a  
separate cropped PET image containing heart and aorta is extracted from the original total-
body PET image and corrected for motion using rigid motion correction method (Nordstrom 
et al., 2024), which enables motion correction also for the initial frames. Consequently, IDIF 
is extracted from descending aorta following the standard criteria for manual input 
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delineation in our centre: The lower third of myocardium is used as a higher landmark, from 
which the maximums are located and connected transaxially by gap filling algorithm 10 cm 
downwards. (Figure 2 A-B).  
 

 
Figure 2.  A-B) Manually delineated descending aorta ROI (blue) overlaid with image 
derived input (violet) for [15O]H2O and for [18F]FDG. C-D) Scatterplots of areas under the 
input curves of manually delineated descending aorta and image derived input for [15O]H2O 
and for [18F]FDG. 
 
Brain-PET data analysis 
 
The brain consists of distinct cytoarchitectonical and functionally separable regions, which 
are previously defined in various atlases in standard stereotactic space. Therefore, a separate 
analysis pathway is used to incorporate these atlases and to facilitate whole-brain analysis 
using widely used toolboxes (e.g., SPM, FSL) based on parametric mapping of spatially 
normalized brain images. In this stream, in-house Magia-toolbox (Karjalainen et al., 2020) is 
used for extracting brain from the original PET image, followed by rigid motion correction 
and spatial radioligand template-based normalization for transforming the desired atlas from 
standard MNI space to the subject native space. The pipeline includes the ROIs from AAL-
atlas (Tzourio-Mazoyer et al., 2002) containing cortical lobes and selected subcortical 
regions, but any other atlas in MNI space can also be used. Finally, kinetic modelling (see 
below) is carried out for each region, as well as in voxel level for the whole brain data. 
 
Total-body [15O]H2O PET data modelling 
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For [15O]H2O, one-tissue compartmental model (1TCM) (Kety and Schmidt, 1948) is fitted 
for each measured regional time activity curve. The model is defined using the following 
equations (see supplementary material for details): 

𝐶T(𝑇) = 𝐾1'𝐶A(𝑡)
"

#

− 𝑘2'𝐶T(𝑡)
"

#

	(1) 

𝐶PET(𝑡) = 𝐶T(𝑡) + 	𝑉A𝐶A(𝑡)	(2) 
 
where CPET is the measured PET activity concentration, CT is the tissue activity 
concentration, CA is the arterial activity concentration corrected for radiotracer delay in 
tissue, VA	is the arterial volume fraction, K1=f describes the blood flow, and k2=f/p, where 
p=K1/k2 is the partition coefficient of water (i.e. distribution volume). 
 
Because the standard 1TCM model fitting with descending aorta IDIF is not feasible in liver, 
the arterial and portal vein blood flow fractions ra= fa/( fa+ fp) and rp= fp/( fa+ fp) (Ziegler et 
al., 1996) are first estimated using the dual-input model (Kudomi et al., 2008) with the 
descending aorta IDIF CIDIF and a portal vein input curve CPV (that is estimated using CIDIF). 
Consequently, the resulting combined input 
 

𝐶liverIF(𝑡) = 𝑟a 𝐶IDIF(𝑡) + 𝑟p 𝐶pv(𝑡) 
 
is used for estimating liver parameters with the standard 1TCM.  
 
Voxel-level [15O]H2O quantification is carried out using non-negative least squares (NNLS, 
Lawson and Hanson, 1995) either with estimating all three 1TCM model parameters (K1, k2, 
VA), or basis function approach (Kudomi et al., 2009), where discrete k2 values are used for 
calculating the basis functions, and K1, VA are estimated with NNLS (see supplementary 
material for model equations). For both voxel-level methods, the radiotracer delay parameter 
is estimated separately for each voxel, except in liver with combined input, where the input 
and the delay are obtained from the ROI-level quantification.  
 
Total-body [18F]FDG PET data modelling 
 
To quantify glucose metabolism using [18F]FDG, the descending aorta IDIF is first converted 
to plasma (Phelps et al., 1979) using the individual hematocrit measurement, after which 
regional and voxel-level patlak-plot (Patlak et al., 1983), fractional uptake ratio (FUR) and 
standardised uptake value (SUV) estimates can be calculated similarly in all regions. Because 
different values for lumped constant are commonly used for different organs, the glucose 
uptake conversion is currently omitted by default in the automated processing but can be 
defined by the user on tissue-by-tissue basis if needed.   
 
After voxel-level modelling, the parametric maps are clustered into three subregions within 
selected areas using hierarchical clustering. This supports regional analysis of functionally 
distinct areas, such as kidney cortex and medulla or brain grey and white matter. 
Additionally, the CT-based ROIs can be trimmed by removing a specified distance from their 
edges to reduce signal contamination from nearby high intensity areas, or due to motion. For 
instance, it may be necessary to exclude spill-in from the cardiovascular system in the 
segmented liver. 
 



Output 
As a final step in the processing, the parameter estimates, CT-based ROI volumes, and model 
goodness of fit metrics (Pearson’s R2) are saved for each region in standard format. These 
results can then be retrieved for selected subjects using a dedicated function. Regional results 
from voxel-level parameter maps and from clustered regions can also be collected similarly. 
 
Also, quality control plots illustrating the CT to PET registration, corrected PET motion, 
regional model fits and overlay-images of CT and voxel level parameters are saved in html-
file for later visual check (see supplementary material for quality control output for 
representative cases of [15O]H2O and [18F]FDG). 
 
Validation  
 
For validation purposes in the main report, we chose six ROIs (cortical brain gray matter 
(GMctx), left iliopsoas, right kidney, pancreas, spleen and liver) representing different levels 
of blood flow, quantified as K1 adjusted for the vascular contribution (K1(1-VA)), and glucose 
metabolism, quantified as patlak Ki. The results from all other segmented regions (n=72; ribs 
and vertebrae are excluded for clarity), are shown in the supplementary material. Because the 
dual input [15O]H2O model in liver may have parameter identifiability issues in K1 and k2 
parameters, we replicated the outcomes using distribution volume K1/k2 (see supplementary 
material for results). 
 
We validated the automated [¹⁵O]H₂O and [¹⁸F]FDG analysis pipeline by comparing 
automatically and manually derived input functions, assessing agreement between regional 
and voxel-level modeling, evaluating the effect of motion correction, and comparing results 
from manual and automatic ROI delineation. The accuracy of the automatically derived 
descending aorta IDIF was tested by comparing the model parameter estimates from 
segmented CT-based ROIs using both automated and manually drawn input, which was 
delineated using the above described criteria with Carimas software (Rainio et al., 2023).  
Agreement between regional and voxel-level estimates was evaluated by comparing 
parameters estimated from averaged regional TACs to voxel-wise estimates which were 
averaged within each ROI. To assess the motion correction, parameter estimates from motion 
corrected and uncorrected data were compared using CT-based ROIs. Finally, using 
descending aorta IDIF, the modelling results from three manually drawn axial ROIs (in liver, 
kidney cortices, and spleen) for [15O]H2O and two ROIs (iliopsoas and liver) for [18F]FDG 
were compared with the corresponding results from automatically segmented CT-based 
ROIs. Since the manually drawn ROIs were substantially smaller than the automatically 
segmented ones, we also compared the voxel-level results using manual ROI in spleen and 
liver with results from CT-based ROIs where the volume was reduced (20 mm from the ROI 
borders in liver and 10 mm in spleen). Similarly in the kidneys, the manual ROI results were 
compared with functionally distinct PET-based cluster in kidney cortex, and in the brain, 
where PET-based cortical GM cluster results were compared with results from the 
corresponding AAL-atlas ROI from the PET-template-based brain processing. For [15O]H2O, 
we compared also myocardial blood flow (MBF) measured as k2 with descending aorta IDIF 
to manually assessed MBF using Carimas software with left ventricle input (Nesterov et al., 
2009).  
 
All regional [15O]H2O parameter estimates were calculated using non-linear least squares 
estimation with 100 randomly initialized parameters from following lower and upper bounds: 
K1:[0, 1800] ml/(min*dl), K1/k2:[0, 1], VA:[0, 0.8]. Voxel-level [15O]H2O parameters were 



estimated using 500 basis functions with uniformly distributed k₂ values from the range [0, 6] 
1/min.  
 
Validation Data 
 
The automated processing and kinetic total-body modelling for perfusion imaging was 
validated using total-body [15O]H2O PET data from 21 healthy subjects, which were acquired 
at Turku PET centre with Biograph Vision Quadra (Siemens Healthineers) total-body 
PET/CT scanner with spatial resolution of 3.3-3.8 mm FWHM and an axial field of view of 
106 cm (Prenosil et al., 2022). Validation for imaging the glucose metabolism was carried out 
using [18F]FDG PET data from healthy control and obese subjects (n=16). Data acquisition 
details are described in the supplementary material. The study was approved by the 
institutional ethical review board and conducted following the principles of the Declaration of 
Helsinki. All participants provided written informed consent prior to the examinations. The 
subject’s demographic details are listed in Table 1.  
 
Table 1. Study sample characteristics. 

Demographic [15O]H2O [18F]FDG 
n (Males/Females) 8 / 13 4 / 12 
Age y (mean ± sd) 65.4 ± 8.9 38.0 ± 7.0 

Dose MBq (mean ± sd) 359.6 ± 23.8 171.8 ± 8.8 
BMI kg/m2 (mean ± sd) 28.0 ± 4.9 30.6 ± 9.2 

 
Statistical methods 
 
All statistical comparisons were carried out in R (version 4.4.1) using Pearson’s correlation 
and Bland-Altman analysis describing the relative difference and 95% limits of agreement 
between the methods.  
 
RESULTS  
 
Processing time: 
 
Typical total running time for processing one subject using one CPU (CT segmented using 
GPU) was 160 min for [15O]H2O data, and 115 min for [18F]FDG data (Supplementary 
Table 1).  
 
Model fits  
 
Visual inspection indicated good model fits in in all regions, except in kidneys, where the 
model underestimated the measured TAC in the latter part of scan. There was a moderate 
variability between subjects, but data and model fits had high correlation across subjects 
(mean R2 > 0.88 for [15O]H2O, and mean R2>0.92 for [18F]FDG) in all studied regions 
(Figure 3).  
 



 
Figure 3. A) Between subject mean [15O]H2O PET time-activity curves (blue) and the mean 
one tissue compartment model fits (red) in brain cortical gray matter (GMctx), left iliopsoas, 
liver, right kidney, spleen and pancreas for 21 subjects scanned at rest. Shaded areas illustrate 
the standard deviation of the data and the corresponding model fits. B) [18F]FDG patlak-plots 
in GMctx, left iliopsoas, liver, right kidney, spleen and pancreas for 16 subjects.  
 
Automated versus manual ROI delineation 
 
There was moderate overlap between the manually drawn and automatically derived input 
function mask images for both datasets, and in [18F]FDG data the manual input volume was 
larger compared to IDIF (Suppelmentary Table 2). Despite this, the between the areas under 
the curves (AUCs) of manually derived input function and IDIF (Figure 2 C-D) were almost 
perfectly correlated (R2=0.99).  
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Figure 4. Comparisons between manual vs. automatic input determination methods, motion 
corrected and uncorrected data, and regional versus voxelwise (ROI vs. VOX) methods. A) 
Correlation coefficients (Pearson’s R) and B) mean relative regional differences (%) of 
regional [15O]H2O parameter estimates. C) Correlation coefficients (Pearson’s R) and D) 
mean relative regional differences (%) of regional [18F]FDG Ki.  
 
The parameter estimates using manual and automatically derived input functions had high 
correlation (R2>0.97 for [15O]H2O, and R2>0.91 for [18F]FDG) in all selected six regions, 
with negligible bias for both radioligands (Figure 4: manual vs. automatic input, 
supplementary information Figure S1). When all regions were considered, the correlation 
and bias estimates were comparable in the analyzed regions, but lower correlation and higher 
mean relative difference was observed in arteries and in heart and lung subregions 
(supplementary information Figure S2).  
 
Motion correction 
 
To estimate segment-wise motion for each subject, we tracked the Euclidean distance of a 
single voxel, located at the mean of x-, and the maximum of y-, and z-coordinates in each 
segment, between the data with and without motion correction, and the results of corrected 
frame-wise motion for each ROI are summarized in Supplementary Table 3. Despite of the 
motion, parameter estimates using motion corrected data had high correlation (R2>0.83 for 
[15O]H2O, and R2>0.88 for [18F]FDG) with the estimates obtained using uncorrected data 



(Figure 4: uncorrected vs. motion corrected). The mean relative difference varied by 
region, with higher difference in right kidney (24%) and in pancreas (13%) in [15O]H2O data 
and in the right kidney (-27%) and in spleen (-11%) in [18F]FDG data, compared to the other 
selected regions. When all regions were considered, lower correlation and higher mean 
relative difference were found mainly in arteries and in heart (supplementary information 
Figure S3). 
 
Regional versus voxel-level results 
 
Results for regional and voxel level modelling were almost perfectly correlated for both 
radioligands (Figure4: ROI vs. VOX, Figure 5). The mean relative difference between 
regional and voxel level [18F]FDG modelling was less than 2%, and below 10% for [15O]H2O 
When all regions were considered, lower correlation and higher mean relative difference 
were observed only in [15O]H2O data in arteries, lungs and in heart (supplementary 
information Figure S4). 
 

 
Figure 5. Voxel level average intensity projection images for representative subjects.  A) 
K1(1-VA) image for [15O]H2O and B) Ki image for [18F]FDG. C-D) Boxplots illustrating the 
regional (ROI) and voxel level (VOX) estimates in brain cortical gray matter (GMctx), left 
iliopsoas, right kidney, spleen and pancreas for [15O]H2O (n=21) and [18F]FDG (n=16) data.  
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Voxel-level results obtained using basis function method yielded higher correlation, and less 
bias with the ROI-level modelling results compared to the results of voxel-level model, where 
all three parameters were estimated (supplementary information Figure S5). 
Liver distribution volumes (K1/k2) showed similar results in all validation tests 1-3, as 
compared with the K1(1-VA) estimates (supplementary information Figure S6), but with 
significantly lower coefficient of variation (6.8% in K1/k2 vs. 65.8% in K1(1-VA)) 
 
Manually drawn ROIs were substantially smaller than the automatically segmented CT-based 
ROIs (Supplementary Table 4). However, comparison between [15O]H2O and [18F]FDG 
parameter estimates from manually delineated ROIs and segmented CT ROIs showed high 
correlation (R2>0.82 for [15O]H2O, and R2>0.83 for [18F]FDG), but moderate mean relative 
differences (18% in kidney, 21% in spleen, 10% in liver and 8% in myocardium for 
[15O]H2O, and -19% in liver and 7% in iliopsoas for [18F]FDG; Figure 5).  
 

 
Figure 6. A-C) Scatterplots and Bland-Altman plots illustrating correlation and relative 
difference between [15O]H2O parameter estimates of interest in manually drawn ROIs and 
segmented CT-based ROIs. D) Scatterplot and Bland-Altman plot illustrating correlation and 
relative difference between myocardial blood flow (MBF) measured as k2 and manually 
assessed k2 MBF with left ventricle input and descending aorta IDIF. E-F) Scatterplots and 
Bland-Altman plots illustrating correlation and relative difference between [18F]FDG Ki in 
manually drawn ROIs and segmented CT ROIs.  
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After reducing the volumes of segmented liver and spleen CT ROIs, the parameter estimates 
were more closely aligned with the results from manually drawn ROIs (Figure 7). Similarly, 
PET-based clustering gave corresponding estimates in brain as compared to the results of 
PET-template based processing, but in kidney, the clustered ROI produced higher estimates 
compared to the manually drawn ROI (Figure 7). 
 

 
Figure 7. Boxplots illustrating voxel-level [15O]H2O (n=21) and [18F]FDG (n=16) results 
using manually drawn ROIs, CT-based ROIs, CT-based ROIs where the volume was reduced 
(in liver and spleen), and PET-based clustered ROIs (in brain and kidneys). 
 
DISCUSSION 
 
We developed a unified pipeline for total-body PET processing and kinetic modelling and 
demonstrated that it produces consistent regional estimates of radiotracer uptake for both 
tested radioligands ([15O]H2O and [18F]FDG) and that the estimates using automatically 
delineated input and target ROIs yield consistent estimates with those based on manually 
drawn ROIs. In contrast with existing pipelines that are limited to specific tissues such as the 
brain or can handle only a single step of the data preprocessing such as kinetic modelling 
(Besson and Faure, 2024; Tjerkaski et al., 2020), our pipeline automates the full total-body 
workflow from pre-processing (image registration, segmentation, and motion correction) to 
kinetic modelling, making it more versatile and comprehensive compared to the other 
pipelines (Funck et al., 2018; Gunn et al., 2016; Karjalainen et al., 2020). This complete 
automatization of the total-body PET data preprocessing and voxel- and region-level kinetic 
modelling provides significant advantages for the data analysis by improving reproducibility 
of the analysis through automatization and logging of the processing steps and parameters. It 
also enables efficient whole-body region-wise studies by removing the operator load through 
automatization and by reducing inter-operator variability in ROI delineation. Overall, this 
approach allows standardized large-scale analysis of total-body PET data, paving way for 
harmonized analysis and data integration in multi-center studies.  
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PET data kinetic modelling requires the input function typically obtained either from blood 
samples or from the image. Blood sampling introduces additional labour to the imaging 
protocol, but with sufficiently long axial FOV and short imaging frames the input can be 
derived reliably from the aorta if it is visible in the image (Palard-Novello et al., 2024). Our 
results confirm that the automatic input delineation implemented in the TURBO pipeline is 
robust and comparable with manual delineation, and thus it can be reliably used instead of 
time-consuming manual input ROI drawing.  
 
We also established that the regional outcome measures had high correlation between 
manually and automatically derived ROIs, and between voxel-level and region-level 
analyses. Voxel-level [15O]H2O modelling with basis functions improved alignment with the 
ROI-based results, when compared to full three-parameter voxel-level model. However, this 
method requires more processing time because the delay parameter must be estimated for 
each voxel. Nevertheless, all processing and modelling for one subject was carried out in less 
than three hours for [15O]H2O and in two hours for [18F]FDG using a single core from our 
computational server, and with parallel computing, larger batches can be completed within a 
day. Altogether, these results show, that TURBO provides reproducible, reliable and 
computationally fast approach for modelling and investigating whole-body PET data and 
facilitates the investigation of inter-organ interactions in tissue perfusion and metabolism. 
 
Motion correction 
 
Subject motion is significant source of variation in PET studies affecting to the accuracy of 
modelling results, particularly in total-body PET where multiple anatomical regions are 
involved and cannot be restrained as effectively as for example, in brain-only scans. 
Although controlling the subject motion is crucial to obtain high quality data, involuntary 
motion, such as breathing and heart motion are still present during image acquisition, as 
observed in our motion correction results. While the motion during PET scanning and 
misalignment between CT and PET should ideally be corrected already during image 
reconstruction, our pipeline also includes post-reconstruction correction methods. To account 
for complex body movements, we included in our pipeline a diffeomorphic correction 
method (Sundar et al., 2023), that employs both rigid and nonlinear deformations. Our 
findings showed high correlation between corrected and uncorrected data, but noticeable 
differences in absolute values, especially in the kidney and pancreas, which highlights the 
importance of motion correction. 
 
Although previous research suggests that cardiac motion may require nonlinear correction 
methods (Lamare et al., 2014), the recent findings have showed that rigid correction methods 
may be sufficient (Christensen et al., 2023). For practical reasons, we used only rigid motion 
correction for heart and neighbouring aorta, to minimize altering the original data, and to 
avoid possible image distortions from diffeomorphic correction. In our pipeline, we use the 
descending aorta for calculating the IDIF, which can benefit from cardiac motion correction. 
Based on our results the automated IDIF produced comparable results with the manually 
derived input without motion correction. The remaining small bias between the results of 
automated and manual method is likely caused by differences in the input ROI volumes, and 
because the subject motion is corrected in the automated IDIF. Apart from the input, the other 
manually drawn ROIs were substantially smaller than the automatically segmented CT-based 
ROIs, because the manual ROIs were drawn only to a limited number of slices. This likely 
explains the relative differences between the regional results from automatically derived and 



manual ROIs. Because the CT-based segmented ROIs are large entities, the pipeline includes 
also additional reduced ROIs, which mitigate the effects of subject motion and spill in from 
other nearby regions. Also, hierarchical clustering of voxel-based parametric maps within a 
selected region into separate subregions allow to examine the functionally distinct 
subregions, such as the kidney cortex and medulla. 
 
Limitations 
 
Radiowater model in liver may have issues with parameter identifiability due to dual input 
model (Becker et al., 2005). Although the validation results were similar between  K1(1-VA) 
and distribution volume K1/k2, the coefficient of variation was significantly lower for K1/k2 
and thus it would be preferred measure for quantification. There was also discrepancy 
between the region-level and voxel-level results in [15O]H2O data in arteries, lungs and in 
heart, which likely occurs due to high arterial volume fraction in these regions. Particularly, 
the K1 and VA parameters of 1TCM are highly correlated in regions with to high arterial 
volume fraction and cannot be reliably estimated (Johnson et al., 2023). In such regions, it is 
possible to used fixed value (VA) for arterial volume fraction, which may help to overcome 
the parameter identifiability issues. 
 
Model fits were generally satisfactory across regions, except in kidneys in [15O]H2O data, 
where slight underestimation was observed in the late phase of the scan, likely due to 
complex tracer kinetics behavior that is not described well by the standard [15O]H2O model.  
Since this deviation occurs only in the later part of the scan, perfusion may still be reliably 
estimated using the earlier data. However, the pipeline is flexible and modular and tailored 
models with customized inputs can be included, but this warrants further research and careful 
validation. 
 
Future directions 
 
Future improvements of our pipeline could include the use of pseudo-CT segmentation to 
reduce possible misalignment between CT and PET images, even though our pipeline already 
coregisters CT to the PET mean image. This might be useful in e.g. long or multi-scan studies 
where acquiring additional whole-body reference CT images would increase the radiation 
load significantly. Another potential development is the spatial normalization of total-body 
data to a standard template, which is a common approach in brain imaging. Creating such 
total-body templates for specific tracers would enable voxel-level statistical analysis, which 
would expand the restricted local regional analysis further to cover the full total-body image 
volume. Finally, due to the modular structure, the TURBO pipeline can be extended with 
additional kinetic models. 
 
CONCLUSION 
 
Our results demonstrate that TURBO pipeline offers a fast, accurate, and reproducible 
solution for analyzing total-body PET perfusion and metabolism at both regional and voxel 
levels. TURBO provides reproducible, reliable and computationally fast approach for 
modelling and investigating whole-body PET data and enables interorgan interaction studies 
in tissue perfusion and metabolism. 
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Methods 
 
One-tissue compartmental model (1TCM) (Kety and Schmidt, 1948) is defined using the 
following differential equation: 

𝑑𝐶!(𝑡)
𝑑𝑡 = 𝐾"𝐶#(𝑡) − 𝑘$𝐶!(𝑡)		(1). 

Assuming that initial concentration in tissue compartment is zero (𝐶!(0) = 0), eq (1) can be 
integrated to provide the tissue concentration at time 𝑇: 

𝐶!(𝑇) = 𝐾"/𝐶#(𝑡)𝑑𝑡 −
!

%

𝑘$/𝐶!(𝑡)𝑑𝑡
!

%

	(2). 

The measured PET radioactivity concentration in tissue is contaminated by spillover from 
adjacent blood vessels 𝐶& and vascular volume 𝑉& inside the measured region 𝐶'(!(𝑡), which 
can be formulated as follows: 

𝐶'(!(𝑡) = 𝑉&𝐶&(𝑡) + 𝐶!(𝑡)  (3). 
Substituting 𝐶!(𝑡) in eq (3) with eq (2) gives the following equation: 

𝐶'(!(𝑡) = 𝑉&𝐶&(𝑡) + 𝐾"/𝐶#(𝑡)𝑑𝑡 −
!

%

𝑘$/𝐶!(𝑡)𝑑𝑡		(4)
!

%

. 

Integration and rearrangement of eq (3) gives 

/𝐶!(𝑡)𝑑𝑡 = 	/𝐶'(!(𝑡)𝑑𝑡
!

%

!

%

− 𝑉&/𝐶&(𝑡)𝑑𝑡		(5)
!

%

, 

which is then substituted in eq (4), providing the following equation: 

𝐶'(!(𝑡) = 𝑉&𝐶&(𝑡) + 𝐾"/𝐶#(𝑡)𝑑𝑡 −
!

%

𝑘$/𝐶'(!(𝑡)𝑑𝑡
!

%

+ 𝑘$𝑉&/𝐶&(𝑡)𝑑𝑡
!

%

	(6). 

If the radioactivity concentration in blood can be represented by the model input function, as 
is the case with [15O]H2O, then 𝐶&(𝑡) = 𝐶#(𝑡)	and  𝑉& = 𝑉#, and then eq (6) simplifies to eq 
(7): 

𝐶'(!(𝑡) = 𝑉#𝐶#(𝑡) + (𝐾" + 𝑉#𝑘$) ∫ 𝐶#(𝑡)𝑑𝑡 −
!
% 𝑘$ ∫ 𝐶'(!(𝑡)𝑑𝑡

!
%   (7). 



Equation (7) is a multilinear equation 𝑦 = 𝑝"	𝑥" +	𝑝$𝑥$ +	𝑝)𝑥), where the coefficients   
𝑉# = 𝑝"	
𝑘$ = 𝑝)	
𝐾" = 𝑝$ − 𝑉#𝑘$ 

can be estimated with least squares method (Oikonen, 2003). Particularly, non-negative least 
squares (NNLS, Lawson and Hanson, 1995) is well-suited method for estimating the 
coefficients. 
 
The differential equation (1) can also be directly solved using convolution: 

𝐶!(𝑡) = (1 − 𝑉#)𝐾"𝐶# ∗ 𝑒*+!,	(8), 
 
where 𝐶!(𝑡) is the radioactivity concentration in tissue, 𝐶#(𝑡) is the arterial input function 
and * is the convolution operator. By denoting 𝐶&(𝑡) = 𝐶#(𝑡)	and  𝑉& = 𝑉#, and substituting 
eq (8) to eq (3), we get   

𝐶'(!(𝑡) = (1 − 𝑉#)𝐾"𝐶# ∗ 𝑒*+!, + 𝑉#𝐶#(𝑡)	(9).	 
The equation (9) can be rewritten as a multilinear equation: 

𝐶!(𝑡) = 	𝜃"𝐵(𝑘$, 𝑡) + 𝜃$𝐶#(𝑡),	 
using basis functions 

𝐵(𝑘$, 𝑡) = 𝐶#(𝑡) ∗ 𝑒*+!, , 
and where the coefficients 

𝜃" = (1 − 𝑉#)𝐾"	
𝜃$ = 𝑉# 

can be estimated with least squares method (Kudomi et al., 2008). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Data acquisition 

[15O]H2O PET data were acquired for 280 s following 359.6 ± 23.8 MBq bolus injection over 
10–15 seconds (Radiowater Generator, Hidex Oy, Finland). Imaging started 30 seconds after 
the start of the bolus injection. The data were reconstructed into 24 frames (14 × 5 s, 3 × 10 s, 
3 × 20 s, 4 × 30 s) using an image matrix of 220 × 220 × 380 and a voxel size of 1.65 × 1.65 
× 2.80 mm³. Reconstruction was performed with an ordered-subsets expectation 
maximization (OSEM) algorithm (3 iterations, 5 subsets) using point-spread function and 
time-of-flight modelling, and included corrections for decay, randoms, attenuation, and 
scatter. 

[18F]FDG PET were acquired 55 minutes during euglycemic hyperinsulinemic clamp after 
171.8 ± 8.8 MBq bolus injection. Before the scan, two venous catheters were inserted in the 
opposite forearms, one for the insulin and glucose infusions and for injecting [18F]FDG, and 
the other for collecting venous blood samples, arterialised by placing a hot water bottle 
distally on the arm. After the collection of fasting plasma blood samples, hyperinsulinemic, 
euglycemic clamp was started (DeFronzo et al., 1979). Insulin (Actrapid, Novo Nordisk A/S, 
Bagsvaerd, Denmark) was administered with a reduced dose of 37 mU/min/m2 of body 
surface area, and a variable rate of 20% glucose was infused based on plasma glucose 
measurements performed every 5–10 min to maintain euglycemia (plasma glucose 5.0 
mmol/L). Data were reconstructed using OSEM algorithm (4 iterations, 5 subsets) using 
point-spread function and time-of-flight modelling, and included corrections for decay, 
randoms, attenuation, and scatter. The data were reconstructed into 34 frames (l2 x 5s, 6 
x10s, 6 x 20s, 2 x 60s, 2 x 120s, 4 x 300s, 2x 600s) with 440 x 440 x 354 matrix size and 1.65 
x 1.65 x 3.0 mm3 voxel-size. 

Prior to the PET image acquisition, the total-body CT images were acquired and 
reconstructed to 512 × 512 × 380 image matrix with a voxel size of 0.977 × 0.977 × 2.80 
mm3. 
 
 
 
Quality control plots for representative [15O]H2O subject: 
 

 
QC figure 1. CT segments overlaid on CT image. 
 



 
QC figure 2. CT segments overlaid on mean PET image. 
 
 

 
 
QC figure 3. Corrected motion for heart myocardium. 
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QC figure 4. Example model fits
 
 
Results 
 
Supplementary tables 1-4 and figures S1-S6. 
 
Supplementary Table 1. Typical TURBO-pipeline processing times for representative cases 
of [15O]H2O and [18F]FDG data. 

Process 
[15O]H2O 

processing 
time (min) 

[18F]FDG 
processing 
time (min) 

CT segmentation 5 7 
CT coregistration 7 12 

PET motion correction 45 73 
TAC extraction 1 6 

Input data processing 2 3 
Quality control 2 3 

ROI-level modelling 6 4 

Voxel-level modelling 85 2 

Magia brain processsing 4 6 

Magia brain modelling 3 1 

Turbo processing total time 66 108 
Turbo modelling total time 94 6 

Total running time 160 115 
 
 
 
 
 
 
 



Supplementary Table 2. Input ROI volumes. 

 [15O]H2O  
 [18F]FDG  

Measure Manual input IDIF p-value*  Manual input IDIF p-value* 
Volume 

(ml) 4.0 (2.2) 4.0 (0.7) 0.99  8.2 (2.0) 4.5 (0.9) p < 0.01 

AUC/1000 120.7 (28.2) 120.4 
(28.8) 0.53  167.5 (29.2) 167.3 (30.1) 0.84 

Dice 
coefficient 0.5 (0.1) 

  0.5 (0.1)  
*paired t-test 

 
Supplementary Table 3. Corrected frame-wise motion (mm) for selected six regions in 
[15O]H2O and [18F]FDG test data. 

  [15O]H2O   [18F]FDG 

Region Mean motion (mm) 
mean (sd) 

Max motion (mm) 
mean (sd)   

Mean motion (mm) 
mean (sd) 

Max motion (mm) 
mean (sd) 

Brain GMctx 0.6 (0.6) 2.1 (1.0)   2.3 (0.9) 6.1 (2.0) 
Left iliopsoas 2.4 (0.7) 4.7 (1.2)   3.8 (1.9) 6.9 (3.3) 

Liver 5.0 (1.9) 18.7 (7.8)   4.3 (1.9) 18.5 (17.6) 
Right kidney 5.1 (1.5) 16.4 (7.5)   4.1 (1.5) 9.9 (3.1) 

Spleen 3.1 (0.8) 6.5 (3.3)   3.9 (1.2) 8.0 (2.6 
Pancreas 4.4 (1.4) 11.1 (6.1)   4.6 (1.4) 13.5 (6.1) 

 
Supplementary Table 4. Volumes of manually drawn ROIs and segmented CT ROIs. 

Radioligand Region  Segmented CT volume 
(ml) mean (sd) 

Manual ROI volume 
(ml) mean (sd) 

  Liver 1510.7 (464.6) 42.4 (20.6) 
[15O]H2O Spleen 181.2 (63.7) 13.9 (5.3) 

  Kidney 382.6 (137.0) 47.4 (16.9) 
        

[18F]FDG  
Liver 1639.8 (330.5) 29.6 (12.9) 

Iliopsoas 578.9 (92.3) 11.6 (4.5) 
 
 
 
 



 
Figure S1. Pearson’s correlation and Bland-Altman plots of parameter estimates (K1(1-VA) 
for [15O]H2O and patlak Ki for [18F]FDG) in six example regions, calculated using manually 
derived, and image derived input (IDIF) from descending aorta.  
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Figure S2. A) Pearson’s correlation of model parameter estimates calculated using manually 
derived, and image derived input (IDIF) from descending aorta. B) Mean relative differences 
between model parameter estimates calculated using manually derived, and image derived 
input (IDIF) from descending aorta. Regional [15O]H2O  
K1(1-VA) estimates are coloured in blue and [18F]FDG Ki estimates in red.  

BA [11C]H2O [18F]FDG

humerus right
pulmonary vein
iliac artery right

superior vena cava
heart atrium left

clavicula left
heart ventricle right

brachiocephalic vein right
pulmonary artery

subclavian artery right
kidney left

iliac artery left
heart atrium right

kidney right
subclavian artery left
lung upper lobe right

aorta
lung upper lobe left

duodenum
spleen

heart
common carotid artery left

brain
lung lower lobe left

thyroid gland
liver

atrial appendage left
skull

humerus left
pancreas

inferior vena cava
lung middle lobe right

adrenal gland right
adrenal gland left

hip left
heart ventricle left

clavicula right
hip right

colon
brachiocephalic trunk

spinal cord
sacrum

heart myocardium
esophagus

small bowel
stomach

lung lower lobe right
portal vein and splenic vein

iliac vena left
iliac vena right

costal cartilages
trachea

gallbladder
femur right

femur left
scapula left

scapula right
iliopsoas left

sternum
iliopsoas right

autochthon left
urinary bladder

autochthon right
gluteus maximus left
gluteus minimus left

gluteus maximus right
prostate

gluteus medius left
gluteus medius right

gluteus minimus right
brachiocephalic vein left

common carotid artery right

0.0 0.5 1.0
Pearson's R

aorta
brachiocephalic trunk
lung upper lobe right

iliac artery left
subclavian artery right

humerus right
lung lower lobe right

lung middle lobe right
lung upper lobe left
lung lower lobe left

common carotid artery left
common carotid artery right

subclavian artery left
iliac artery right

heart ventricle left
atrial appendage left

pulmonary vein
heart

brachiocephalic vein left
liver

trachea
sternum

esophagus
iliac vena left

superior vena cava
iliac vena right

clavicula left
costal cartilages

kidney right
kidney left

iliopsoas left
prostate

iliopsoas right
heart myocardium

duodenum
urinary bladder

gluteus medius right
skull

gluteus minimus right
gluteus minimus left

autochthon left
gluteus maximus right

gluteus maximus left
scapula right

autochthon right
gluteus medius left

femur right
femur left
hip right

hip left
small bowel
spinal cord

colon
scapula left

brain
sacrum

inferior vena cava
gallbladder

stomach
adrenal gland right

thyroid gland
portal vein and splenic vein

humerus left
adrenal gland left

spleen
pancreas

heart atrium right
heart ventricle right

brachiocephalic vein right
clavicula right

pulmonary artery
heart atrium left

−20 −10 0 10 20
Mean relative difference (%)

>25%

<25%



 
Figure S3. A) Pearson’s correlation of model parameter estimates calculated using data with 
and without motion correction. B) Mean relative differences between model parameter 
estimates calculated using data with and without motion correction. Regional [15O]H2O K1(1-
VA) estimates are coloured in blue and [18F]FDG Ki estimates in red. 
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Figure S4. A) Pearson’s correlation of model parameter estimates calculated using ROI- and 
voxel level modelling. Basis function method was used at voxel-level.  B) Mean relative 
differences between model parameter estimates calculated using ROI- and voxel level 
modelling. Regional [15O]H2O K1(1-VA) estimates are coloured in blue and [18F]FDG Ki 
estimates in red.  
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Figure S5. A) Pearson’s correlation of [15O]H2O 1-tissue compartment model K1(1-VA) 
estimates calculated using ROI- and voxel level modelling. B) Mean relative differences 
between [15O]H2O 1-tissue compartment model K1(1-VA) parameter estimates calculated 
using ROI- and voxel level modelling. Red markers show the comparison between a three-
parameter (K1, k2, VA) ROI-level model and three-parameter voxel-level model (method 1), 
and blue markers show the comparison between three-parameter ROI level-model and basis 
function voxel-level model (method 2) with two estimated model parameters (K1, VA). 
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Figure S6. Scatterplots and Bland-Altman plots illustrating correlation and relative 
difference between [15O]H2O liver partition coefficient of water (p=K1/k2) estimates, where 
A) parameter estimates obtained with manual input are compared with parameter estimates 
calculated using IDIF, B) parameter estimates calculated using uncorrected data are 
compared with parameter estimates calculated using motion corrected data, and C) ROI-level 
parameter estimates are compared with voxel-level parameter estimates. 
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