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ABSTRACT 

 

Physical exercise is beneficial for metabolic health and cognitive performance. In addition, 

exercise can be highly pleasurable and and serves as an effective stress reliever. Extant studies 

have highlighted frontal, parietal, and subcortical brain changes following acute bouts of 

exercise. However, slower, slightly delayed brain correlates after exercise at the network level 

have not been studied. Therefore, this study's objective was to investigate the changes in 

dynamic functional connectivity after 60 minutes of exercise in healthy males.  

 

Here we measured a 6-minute resting state fMRI in 24 young males at baseline and after a 60-

minute cycling exercise challenge. Apart from routine preprocessing, the data were denoised 

with FSL-FIX and modeled with i) leading eigenvector dynamics analysis (LEiDA) to probe whole 

brain network dynamics and ii) with group independent component analysis (ICA) and dual 

regression to quantify static brain connectivity. The within subject statistical tests compared 

baseline to post-exercise conditions.  

 

We found that a striato-fronto-parietal network is destabilized after exercise, as indicated by 

a lower probability of occurrence in dynamic analysis through LEiDA. The brain areas in the 

network include the bilateral caudate, putamen and pallidum as well as middle orbitofrontal, 

frontal operculum, frontal trigonum and inferior parietal cortices. No differences between 

baseline and post exercise conditions were found in the dual regression of the group ICA 

components.  

 

We conclude that 60 minutes of cycling causes a prolonged effect in brain network dynamics, 

reducing  synchronization between the striatum and frontoparietal networks with respect to 

baseline. This provides insights into the network-level neural correlates of aerobic exercise, 

which may be directly linked with the stress relieving effects of physical exercise. 

 

  



INTRODUCTION 

 

Physical exercise benefits metabolic and mental health (Myers et al., 2019). Apart from the 

well-established general health-promoting effects, exercise also positively affects cognitive 

performance (Raichlen and Alexander, 2017). Physical activity is rewarding, and endorphins 

are likely mediators of the exercise-induced pleasurable feelings (Nummenmaa et al., 2018; 

Saanijoki et al., 2018a, 2018b). Exercise, across varying degrees and protocols, improves 

cognitive task performance, elevates mood, and decreases stress (Basso and Suzuki, 2017). 

Cerebral effects of exercise are thus of interest as possible mediators of increased well-being 

and brain health.  

 

One prominent hypothesis on the acute effects of exercise is the hypoactivation of the 

(pre)frontal cortical areas, which are involved in cognitive processing as compared to areas 

that are required for motor function, such as the primary motor cortex, striatum, and 

cerebellum (Dietrich and Audiffren, 2011), which is based on a rebound surge of oxygenated 

blood post-exercise to the prefrontal cortex resulting in long-term destabilization of brain 

function. While the reasons and mechanisms for these physiological changes in these brain 

areas remain uncertain, they point out that frontal, sensorimotor, and striatal brain areas are 

regions of interest for studies mapping the neural correlates of exercise.   

 

Previous studies have focused on brain network changes following exercise and have reported 

mixed results with both increased and decreased functional connectivity within specific ICA-

derived brain networks soon after a bout of exercise (Schmitt et al., 2019) (Herold et al., 2020). 

Further experiments are thus clearly needed to replicate these effects after different types of 



exercise. Further, it is important to extend prior studies by characterizing the dynamics of brain 

networks over time as recent work points out that they can provide complementary 

information to ‘static’ functional connectivity measures (Alonso Martínez et al., 2020; Cabral 

et al., 2017; Caetano et al., 2022). Finally, the existing studies have focused on brain changes 

immediately after exercise, but have not tested, whether there are delayed changes in brain 

functional profile. Many of the exercise-related physiological changes occur during the 

recovery from exercise and it is important to study if this also applies to the brain.   

 

To gain a better understanding of the prolonged effects of physical exercise on brain dynamics, 

the current study measured a 6-minute resting state fMRI in 24 young males at baseline and 

about one hour after a 60-minute aerobic exercise challenge  (Saanijoki et al., 2018a). Leading 

Eigenvector Dynamic analysis (LEiDA) was used to identify recurrent phase-locking patterns (PL 

states) in fMRI signals and measure differences in their probability of occurrence and transition 

profiles before and after exercise. Independent component analysis (ICA) was used to identify 

static brain networks and measured potential differences in activity profiles. This study was 

explorative with no predefined hypotheses, but based on prior literature, we expected to find 

exercise-related changes in brain networks encompassing frontal and striatal brain areas. 

 

METHODS 

 

The study was conducted in accordance with the Declaration of Helsinki at the Turku PET 

Centre, University of Turku and Turku University Hospital (Turku, Finland). The Ethics 

Committee of the Hospital District of Southwest Finland approved the study protocol. Twenty-

four men met the eligibility criteria, signed ethics-committee-approved informed consent 



forms, and were admitted into the study (Table 1). This study includes participants from a pre-

registered study “Molecular and Functional Neurobiology of Physical Exercise; “EXEBRAIN” 

(NCT02615756) (http://www.clinicaltrials.gov).  

Table 1. Descriptive statistics of the participants 

  Mean Std. Deviation 

Age (years)  26.833  5.297  

Height (cm)  181.667  6.696  

Weight (kg)  77.688  8.827  

BMI (kg / m2)  23.483  1.640  

Activity (min/week)  253.750  144.058  

VO2max (l/min)  3.628  0.684  

VO2max (ml/kg/min)  47.154  8.286  

Lactate pre-exercise  1.033  0.347  

Lactate post-exercise  1.333  0.491  

PANAS positive pre-exercise  29.500  4.540  

PANAS positive post-exercise  31.125  4.972  

PANAS negative pre-exercise  12.417  2.603  

PANAS negative post-exercise  12.083  2.603  

Beck Depression Inventory (BDI-II)  3.458  3.753  

 

The inclusion criteria for the study were; sex male, age 18–65 years, BMI ≤ 27 kg/m2, and good 

health. The exclusion criteria were current medication affecting the central nervous system, 

history of current neurological or psychiatric disease, and any chronic medical defect or injury, 

which hindered or interfered with everyday life. For all subjects, the exclusion criteria also 

included regular use of tobacco products or illicit drugs, heavy alcohol consumption, poor 



compliance, history of other nuclear imaging studies, and presence of ferromagnetic objects 

or significant  claustrophobia, that would contraindicate MR imaging. 

 

The experimental setup 

The experimental design has been previously described (Nummenmaa et al., 2018; Saanijoki 

et al., 2022, 2018a, 2018b). The participants were invited to positron emission tomography 

(PET) and MRI scans on two separate days (in a counterbalanced order). On one of the visits, 

we acquired baseline neuroimaging with no exercise, and on the other, the participants 

performed an exercise challenge before the PET scan that began within 15–36 minutes after 

the completion of the exercise session. After the PET scan the participants relocated to an MRI 

scanner, and the resting state fMRI scan used in the current study was acquired as the first 

sequence of the MRI session (70-90 minutes after exercise). 

 

On the day of the baseline visit, the participants rested passively for 60 minutes before the 

scans without reading, music, television, or mobile entertaining devices. The exercise visit 

included 60 minutes of continuous aerobic cycling (Tunturi E85, Tunturi Fitness, Almere, The 

Netherlands) at a workload in the middle between aerobic and anaerobic thresholds 

predetermined individually in a maximal exercise test (described in detail in Saanijoki et 

al., 2018) (mean workload during exercise 157 (SD 47) W; 53 (SD 7)% from Loadmax; range 70–

265 W; average heart rate during exercise 144 (SD 15) beats per min; 74 (SD 7)% from maximal 

heart rate). Two participants had a slightly longer exercise session (76 and 77 min instead of 

programmed 60 min) due to an unexpected delay in the radiotracer supply. Music, television, 

or other technical devices were unavailable to the subjects during exercise. All participants 

completed the exercise session successfully.  



Questionnaire measurements 

The Beck Depression Inventory (BDI-II) was used to measure current depressive symptoms. 

BDI-II is a 21-item self-reporting questionnaire for evaluating the severity of depression in 

normal and psychiatric populations (Beck et al., 1988; Jackson-Koku, 2016). Subjective feelings 

of pleasant versus unpleasant emotions were measured using the Positive and Negative Affect 

Schedule (PANAS) (Watson et al., 1988) before and after exercise.  

 

Physical activity and aerobic fitness measurements 

Self-reported physical activity was assessed with a questionnaire in which participants rated 

the frequency (days/week) and duration (hours and minutes/week) of moderate-to-vigorous 

physical activity and other physical activity during the last three months. Fitness was evaluated 

as peak oxygen consumption (VO2peak), which was determined in a maximal exercise test 

performed on a cycle ergometer starting at 40-50 Watt (W) and followed by an increase of 30 

W every 2 minutes until volitional exhaustion. Ventilation and gas exchange were measured 

(Jaeger Oxycon Pro; VIASYS Healthcare) and reported as the mean value per minute. The 

highest 1-min mean value of oxygen consumption was expressed as the VO2peak.  

 

MRI acquisition 

Data were acquired with a 3-Tesla Philips Ingenuity PET-MR scanner at Turku PET Centre. 

Resting-state fMRI data were acquired with echo-planar imaging (EPI) sequence, sensitive to 

the BOLD signal contrast with the following parameters: TR = 2000 ms, TE = 20 ms, 90° flip angle, 

240 mm FOV, 80 × 80, 53.4 kHz bandwidth, 3 × 3 × 4 mm3 voxel size. Each volume consisted of 35 

interleaved slices acquired in ascending order without gaps. A total of 180 functional volumes 

were acquired (total scan duration 6 minutes). Anatomical reference images were acquired 



using a T1-weighted sequence with 1 mm3 resolution (TR=8.1 ms, TE=3.7 ms, flip angle 7°, scan 

time ~5 minutes). 

 

fMRI preprocessing  

Resting-state fMRI data were preprocessed using FSL 5.0.3 (FMRIB's Software Library, 

www.fmrib.ox.ac.uk/fsl). Preprocessing steps included: the removal of the first five volumes of 

the acquisition to allow for signal stabilization/magnetization equilibrium; slice-timing 

correction using Fourier-space time-series phase-shifting; high-pass temporal filtering 

(Gaussian-weighted least-squares straight line fitting, with sigma=50.0s); motion correction 

with MCFLIRT (Jenkinson et al., 2002), including default rigid body alignment of every volume 

to the middle image of the acquisition and subsequent calculation of mean functional image 

and registration of individual images to the mean image; skull stripping of the functional data 

with the Brain Extraction Tool (BET ) (Smith, 2002); spatial smoothing using a Gaussian kernel 

of FWHM 5mm; grand-mean intensity normalization of the entire 4D dataset by a single 

multiplicative factor. Resting-state fMRI scans were first registered to the respective T1 

structural scan using boundary-based registration as implemented in FSL’s Linear Image 

Registration Tool (FLIRT) (Jenkinson et al., 2002) and then to a standard space template using 

non-linear registration (FNIRT) (Andersson et al., 2007).   

 

After the basic preprocessing, FMRIB’s Independent Component Analysis (ICA)-based 

Xnoiseifier (ICA-FIX v1.068) was used to automatically denoise the data (Griffanti et al., 2014; 

Salimi-Khorshidi et al., 2014). Training data ‘Standard.RData’ was used with ICA classification 

threshold of 20 and high-pass filtering full width (2*50s) for motion confounds clean-up. 

Following the automated denoising, all registrations and FIX classifications were manually 



inspected. For FIX classifications, 70% of the data was checked randomly. No misclassified 

signal components were found during this inspection. The noise component classification was 

thus deemed successful for the current data.   

 

Dynamic Functional Connectivity with Leading Eigenvector Dynamics Analysis (LEiDA)  

To measure dynamic functional connectivity, Leading Eigenvector Dynamics Analysis 

(LEiDA)(Cabral et al., 2017) approach was carried out in MATLAB R2018b (MathWorks, Natick, 

MA, USA). To apply LEiDA, average fMRI signals were obtained in 90 cortical and subcortical 

areas defined according to the Automated Anatomical Labelling (AAL) atlas 

using fslmeants from FSL. The time courses were then bandpass filtered (0.02 – 0.10 Hz); the 

analytic phase was obtained using the Hilbert transform, and the leading eigenvectors of the 

phase coherence matrices were calculated at each time point (Cabral et al., 2017). The 

eigenvectors were then clustered via K-means clustering using cosine similarity as distance, 

and optimizing across 200 replicates in line with prior work (Lord et al., 2019; Vohryzek et al., 

2020).  

 

For this explorative study, the number of clusters (K) was varied between 2 and 8, based on 

previous studies indicating that the optimal number of intrinsic networks is typically between 

3 and 8 (Cabral et al., 2017, Lord et al., 2019, Vohryzek et al., 2020). Each K-means clustering 

yielded K clusters of patterns, where each cluster is represented by the average of all the 

patterns assigned to that cluster. These clusters represent distinct patterns in which brain 

areas are connected together in terms of phase alignment, and are referred to as phase-locking 

states or brain states (Hancock et al., 2022; Lord et al., 2019; Vohryzek et al., 2020). Two 

derived brain measures of interest were evaluated:  probability of occurrence (the percentage 



of time points during which a certain brain state occurred) and switching probability (the 

likelihood of transitioning from a given state into any of the other states) (Vohryzek et al., 2020; 

(Marschall et al., 2023).  

 

Static Brain Connectivity with Independent Component Analysis (ICA) 

Group ICA across both the baseline and the exercise fMRI data was performed using FSL’s 

MELODIC (Probabilistic independent component analysis for functional magnetic resonance 

imaging) with the number of components set to 25 (Schmitt et al., 2019). This was followed by 

dual regression that uses the group-level ICA maps to perform multivariate temporal 

regression of the individual component time courses to yield subject-specific spatial maps. 

Differences between these spatial maps was then investigated in a voxel-wise general linear 

model (GLM) that tests associations within each network in activation patterns across the 

measurement.   

 

Statistical analysis  

Baseline vs. post-exercise conditions: The descriptive statistics and correlations were 

estimated with JASP (Version 0.16.4). The main statistical model compared baseline and post-

exercise conditions within subjects. LEiDA models for probability of occurrence and between 

network transitions were tested with a two-tailed paired t-test using 5000 permutations tests 

in Matlab. Multiple comparisons correction was performed with FDR q < 0.05 and Bonferroni 

corrections. The group ICA brain networks were used in dual regression that includes statistical 

inference with a general linear model (GLM; ‘paired t-test contrast’) and FSL randomize for 

which multiple comparison corrections were performed with 500 permutations and threshold-

free cluster enhancement (TFCE) corrected p < 0.05 (Smith and Nichols, 2009). 



 

Exploratory correlations analyses: Given the exploratory nature of the study, we were utilized 

correlation analysis to map associations between demographics, questionnaire data (Table 1) 

and brain measures that show statistical between condition differences without formal 

correction for multiple comparisons.  

RESULTS 

 

Exercise destabilizes striato-fronto-parietal brain state 

We found that the probability of occurrence of a striato-fronto-parietal network was 

significantly reduced in the post-exercise condition compared to baseline, with a concomitant 

increase in the probability of occurrence of a pattern of global functional connectivity, where 

no functional network is activated (Figure 1, Table 2). This striato-fronto-parietal brain state is 

consistently detected when varying the number of clusters K between 2 and 8, showing 

statistically significant differences in occupancy between baseline and exercise condition (p < 

0.05), but only survives multiple comparisons correction (FDR q < 0.05) when considering up 

to 4 clusters/states. (Supplement 1). Brain areas in the implicated brain state included the 

bilateral caudate, putamen, and pallidum, as well as the middle orbitofrontal, frontal 

operculum, frontal trigonum, and inferior parietal cortices (Figure 1, Supplement 2).

 

  



 

Figure 1. The destabilization of brain network dynamics in striatal and frontoparietal brain areas when 
comparing baseline (BL) to exercise condition ca. 1h after cycling exercise challenge as compared to the 
baseline measurements. A) The cluster centroids representing the three brain states are shown on a glass brain 
where? the network of brain areas are synchronizing together (top plot), as well as the corresponding phase 
coherence matrices representing the pattern of functional connectivity (FC) between brain areas (middle plot), 
as well as violin plots of the distribution of state probabilities of occurrence (bottom plot). The probabilities of 
occurrence were statistically compared between pre and post exercise using a permutation-based paired t-tests 
over 5000 permutations, with (*) indicating uncorrected p-value < 0.05; (x) FDR-corrected q < 0.05; and (o) 
Bonferroni corrected p < 0.05). B) Visualization of the brain areas in the network of interest brain state #2 showing 
the cortical distribution of the network. C) Visualization of the brain areas in brain state #2 showing the subcortical 
distribution of the network. Note that we use different colors and plotting range in B and C to improve distinction 
between brain areas. 
 

 
Descriptive Statistics Baseline vs. post exercise 

  Mean Std. Deviation p 

State #1 baseline 
 

0.608 
 

0.165 
 

p = 0.0135 
State #1 post exercise 

 
0.687 

 
0.140 

 

State #2 baseline 
 

0.156 
 

0.085 
 

p = 0.0170 
State #2 post exercise 

 
0.126 

 
0.079 

 

State #3 baseline 
 

0.142 
 

0.073 
 

p = 0.1359 
State #3 post exercise 

 
0.105 

 
0.066 

 

 
 

 

Table 2. Descriptive statistics for probabilities of occurrence. P values are based on paired 
sample t-test and permutation testing over 5000 permutations.  
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Exercise-related differences in brain states have minor influence on network transitions 

The brain state to brain state switching profiles were different between the baseline and post-

exercise conditions, but the differences were not statistically significant (Figure 2). This 

additional analysis implicates that exercise increased the probability of occurrence of the 

‘global brain state’ and decreased the probability of occurrence of the striato-fronto-parietal 

brain state without affecting the overall dynamic patterns of brain activity.  

 

 

 

Figure 2. The transition probabilities between different brain states. The matrices show the mean probabilities 

and standard deviations for remaining in a brain state (diagonal) and transitioning to any of the other brain 

states both at baseline condition (left) and exercise condition (right). The transition profiles showed minor 

variance between conditions, but the differences were not statistically significant.  
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ICA-derived brain networks are not modulated by exercise 

We detected canonical resting-state networks across the group ICA across fMRI data from the 

baseline and exercise conditions across all participants (Eyre et al., 2021); Rajasilta et al., 2020), 

and 11 networks were identified (Figure 3) and compared between conditions using dual 

regression. No statistically significant differences between baseline and exercise conditions 

were found.  

 

 

Figure 3. The 11 brain networks identified in ICA analyses. Each network is represented in 9 axial slices. None of 

the identified networks showed statistically significant differences between baseline and post-exercise 

conditions.   

 

Exploratory correlation analyses  

Correlations of brain network probabilities of occurrence and demographics are provided in 

Supplementary Tables 1 and 2. The correlations were not statistically significant except for 

3 occipital 
networks

4 somatosensory
and cerebellar 
networks

4 frontoparietal 
networks



pre-exercise lactate levels and the probability of occurrence of brain state #1 in post-exercise 

scans (Spearman’s rho = 0.468, p = 0.021) (Supplementary Tables 1 and 2). 

 

DISCUSSION 

 

Our main new finding was that the post-exercise state was associated with reduced periods of 

synchronization between striatal, frontal, and parietal regions and increased periods of global 

synchronization. Given that increased global synchronization has been previously found to be 

significantly related with higher cognitive task performance in healthy older adults (Cabral et 

al., 2017) and to be reduced in patients with schizophrenia (Farinha et al., 2022), and that 

reduced connectivity between the frontal and subcortical brain areas has been linked with 

lower scores of perceived stress (Caetano et al., 2022). Together these findings suggest that 

the exercise-induced network changes observed here may be directly associated with known 

positive effects of physical exercise in brain function. Moreover, the fact that no statistically 

significant differences were detected following exercise using ICA analysis that does not take 

into account the temporal evolution of functional connectivity, reinforce the need to include 

the temporal dimension in the analysis of resting-state fMRI signals.  

 

There is mounting evidence that exercise training in older adults improves functional 

connectivity (FC) within several resting-state networks, that is altered during both healthy and 

pathological aging (Burdette et al., 2010; Voss et al., 2010). In addition, a single acute bout of 

exercise in young adults can lead to increased connectivity in sensorimotor resting networks 

(Rajab et al., 2014). However, these prior studies assumed that the functional connectivity  

between distinct regions of interest remains constant in a task-free setting. While this 



assumption offers a useful framework for analysis and interpretation, it fails to account for the 

dynamic and adaptive nature of human brain activity. Furthermore, considerable within-

subject variation in FC has been observed within a single imaging session where changes in FC 

strength and direction were noted in timescales of minutes or even seconds. In the current 

study, we used the relative phase of the fMRI signals (as in LEiDA), where the modeling is 

sensitive to the underlying network patterns with the advantage that the networks can have 

spatial overlap and occur transiently at different frames in time (Marschall et al., 2023). Other 

available approaches for dynamic connectome modeling include the sliding window technique, 

time-frequency analysis, dynamic connectivity regression, and dynamic connectivity detection 

(Hutchison et al., 2013). Despite the interesting findings yielded by studies using dynamic 

modeling (Kaiser et al., 2016; Pan et al., 2022; Zhao et al., 2022), some controversy exists 

regarding the methodology (Hindriks et al., 2016), confounding effects (Nikolaou et al., 2016), 

and reliability (Zhang et al., 2018) of dynamic functional connectivity. 

 

Significant changes in brain hemodynamics in response to acute physical exercise have been 

observed and some of these can be attributed to increases in blood flow during and 

immediately after exercise (Smith and Ainslie, 2017). In addition, changes in circulating 

metabolites, such as lactate, may improve the brain energy metabolism and function 

(Tsukamoto et al., 2016). While these factors may directly affect brain activity, near-infrared 

spectroscopy (NIRS) and fMRI studies have established robust post-exercise changes in brain 

activity, which can be discerned from physiological changes alone (Herold et al., 2018; Yu et 

al., 2021). Still, given that the destabilization of the striato-fronto-parietal network was 

observed at the expense of increased stability of a state of global synchrony, it is possible that 



the impact of exercise in brain function is directly linked with   global changes in physiological 

processes interacting with the brain.  

 

Since resting fMRI data in the current study were acquired after the cessation of cycling 

exercise and the subsequent PET scanning (approx. 60 mins), physiological changes pertaining 

to perfusion and cardiac output unlikely explain the results. However, comparisons to studies 

that focused on acute and prolonged physical exercise and brain function are not 

straightforward due to influence of different factors such as exercise protocols (Mehren et al., 

2019), cardiorespiratory fitness level (Li et al., 2019), sex of the participants (Mehren et al., 

2019), and time delays between the cessation of exercise and cognitive testing (Chang et al., 

2012). 

 

A recent meta-analysis of 20 studies investigated the influence of physical exercise on 

cognition-related functional brain activation (Yu et al., 2021). The findings suggested that 

physical exercise interventions lead to changes in functional activation patterns primarily 

located in the precuneus and those associated with frontoparietal, dorsal attention, and 

default mode networks. The precuneus plays a key role in the frontoparietal network by 

interconnecting parietal and prefrontal regions and thus has a strong engagement in core 

cognitive domains, including attention and executive functions (Bullmore and Sporns, 2009). 

In addition, dynamic network models may enable novel means to explore the hypofrontality 

hypothesis (Loprinzi et al., 2019). The hypofrontality hypothesis specifically entails that 

prefrontal cortex-dependent tasks (e.g., working memory tasks) may be compromised during 

high-intensity exercise. While the current study did not include cognitive measurements, the 

brain areas that jointly showed a change in dynamics have been implicated in cognitive 



processing, and future studies could test whether brain dynamics mediate acute and longer-

term links between exercise and cognition.   

 

The study has several limitations. The current study aimed to capture the effects of exercise at 

the recovery phase after about 60 minutes. The inclusion of more repeated measurements is 

needed in the future studies. Age and sex of the participants can influence biophysical 

determinants of acute exercise. The current study only included healthy males with good 

fitness levels, whereas a more diverse group, including females, more variable fitness levels, 

and age groups should be considered. The study only employed a rather short fMRI sequence 

with limited time points (180 volumes) to control the overall scan session time, and future 

studies may benefit from longer and/or faster fMRI sequences.  

 

In conclusion, dynamic modeling was used to ascertain how exercise affects the brain’s 

repertoire of functional network states under task-free conditions. The study showed that 

dynamic brain states are sensitive and could capture theoretically relevant changes in striatal 

and frontoparietal networks in the recovery phase of a 60-minute bout of exercise, which 

provides a unique viewpoint on the literature by pointing out neural changes in the recovery 

phase post exercise. This provides new insights for future studies with repeated neuroimaging 

and coupled cognitive measures to unravel the network-level neural underpinnings of exercise.  
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