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ABSTRACT 

Sociability is central to humans. Every day, people engage in complex social 
interactions, perceiving others and the dynamics of these interactions to interpret 
situations accurately and respond appropriately. Despite the importance of social 
perception, the fundamental principles governing how individuals perceive the 
surrounding social world remain largely unresolved. 

This thesis investigates the principles of social perception. Three independent 
studies were carried out to explore the social perceptual cascade, beginning with 
visual perception, progressing through neural processing, and culminating in social 
perceptual inference. Study I investigated how people rapidly infer social situations. 
Study II mapped the functional organization of social perception in the human brain. 
Study III analyzed how external perceptual features guide visual attention during 
social scenes. 

In Study I, altogether 2,254 participants evaluated the presence of 138 social 
features in 234 movie clips and 468 images rich in social contents. Dimension 
reduction analyses were conducted to establish the basic dimensions underlying 
social scene evaluations. Study II involved functional magnetic resonance imaging 
(fMRI) of 97 participants as they viewed 96 short movie clips depicting social 
scenes, aiming to map the brain’s functional organization for social perception. 
Study III investigated the relationship between perceptual features of movie stimuli 
and eye-tracking parameters (pupil size, gaze orientation, and blinking behavior) 
across three movie-viewing eye-tracking studies (166 participants, 193 minutes of 
movie stimuli), revealing how visual attention is guided by perceptual features in 
social scenes. 

The results indicate that visual attention is predominantly guided by simple 
external features, such as human faces and visual motion, while high-level emotional 
arousal modulates pupillary responses. Subsequently, occipitotemporal brain 
network is involved in processing social perceptual information, and social situations 
are ultimately evaluated along eight basic dimensions of social perception.  

KEYWORDS: social perception, social neuroscience, fMRI, eye tracking  
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TURUN YLIOPISTO 
Lääketieteellinen tiedekunta 
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SEVERI SANTAVIRTA: Sosiaalisen havaitsemisen periaatteet: Havainto- ja 
aivomekanismien selvittäminen elokuvien avulla 
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Huhtikuu 2025 

TIIVISTELMÄ 

Sosiaalisuus on keskeinen osa ihmisten elämää. Päivittäin osallistumme moni-
mutkaisiin sosiaalisiin vuorovaikutustilanteisiin, joissa havainnoimme toisiamme ja 
vuorovaikutusta tilanteiden tulkitsemiseksi. Vaikka sosiaalinen havaitsemisen on 
tärkeää jokapäiväisessä elämässä, perusperiaatteet siitä, miten ihmiset havaitsevat 
sosiaalista ympäristöä, ovat suurelta osin tuntemattomia. 

Tässä väitöskirjassa tutkittiin sosiaalisen havaitsemisen periaatteita. Toteutimme 
kolme itsenäistä osatyötä koko sosiaalisen havaintoketjun tutkimiseksi. Sosiaalinen 
tiedonkäsittely alkaa aistihavainnoista, joista aivoissa muokataan sosiaalisia havain-
toja. Ensimmäinen osatyö selvitti millaisia sosiaalisia havaintoja ihmiset tekevät 
sosiaalisissa tilanteissa. Toinen osatyö selvitti sosiaaliseen havaitsemiseen liittyviä 
aivomekanismeja. Kolmannessa osatyössä tutkimme, miten ulkoiset ärsykkeet 
ohjaavat ihmisen katsetta ja laajempaa visuaalista tarkkaavaisuutta sosiaalisissa 
tilanteissa. 

Osatyössä I yhteensä 2254 tutkittavaa arvioi 138 sosiaalisen piirteen esiintymistä 
sosiaalisia tilanteita esittävissä 234 elokuvaleikkeessä ja 468 kuvassa. Moniulottei-
sen havaintoaineiston avulla selvitimme sosiaalisen havaitsemisen pääulottuvuudet, 
ja niiden yleistyvyyden riippumattomissa havaintoaineistoissa. Osatyössä II 
tutkimme 97 henkilön aivotoimintaa funktionaalisella magneettikuvantamisella 
(fMRI) sosiaalisia tilanteita esittävien elokuvaleikkeiden aikana, kartoittaaksemme 
sosiaaliseen havaitsemiseen liittyvät aivoverkostot. Osatyössä III tutkimme ihmisten 
silmänliikkeitä elokuvien katselemisen aikana kolmessa riippumattomassa 
aineistossa (166 tutkittavaa, 193 minuuttia elokuvia) tavoitteenamme selvittää, miten 
ulkoiset ärsykkeet ja havainnot ohjaavat visuaalista tarkkaavaisuutta sosiaalisissa 
tilanteissa.  

Tulokset osoittavat, että pääosin yksinkertaiset havainnot, kuten ihmisten kasvo-
jen tai liikkeen havaitseminen, ohjaavat visuaalista tarkkaavaisuutta sosiaalisissa 
tilanteissa. Pupillin kokoon vaikuttaa myös tilanteiden aiheuttamat tunnereaktiot. 
Aivoissa sosiaalisten havaintojen käsittelyyn liittyy laaja aivojen takaosien 
aivoverkosto, ja lopulta sosiaalisia tilanteita arvioidaan kahdeksan perusulottu-
vuuden kautta.  

AVAINSANAT: sosiaalinen havaitseminen, sosiaalinen neurotiede, fMRI, silmän-
liiketutkimus 
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1 Introduction 

In one of the most powerful scenes in cinema, Forrest and Jenny Gump share a 
conversation on her deathbed (Zemeckis, 1994). He tells her stories about the 
beautiful moments he has experienced during his adventures. “I wish I could have 
been there with you.”, she says dreamingly. “But you were.”, he replies promptly 
and assuredly, as she touches his hand. Later, Forrest is visiting her grave, visibly 
shaken and in tears, reflecting on their life after her death. In these brief moments 
the author perceives a profound emotional connecting between Forrest and Jenny, 
along with inferring the peaceful acceptance that death will tear them apart. During 
Forrest’s monologue at her grave, he expresses deep longing for her while also 
conveying that he has managed to move on and take care of their family without her. 
“If there’s anything you need, I won’t be far away.”, he concludes before leaving the 
grave. 

This scene highlights the humans’ astonishing ability to immediately parse 
complex social signals. Sociality is what has enabled humans to build advanced 
societies (Tomasello, 2014). Every day, people engage in social situations where 
individuals have differing motives, objectives, and viewpoints. Successful social 
interaction, from cooperation to competition, requires accurate perception and 
interpretation of the situation, the people, and the behavior (Funder, 2006). This 
social perception is the first step that is required for successful social interaction 
(Molapour et al., 2021). The cognitive processing from pure sensory information to 
complex social information about other people must be swift for predicting how the 
situation will unfold. Robust evidence shows that human faces and bodies are rapidly 
detected and prioritized in natural scenes (Fletcher-Watson et al., 2008; Ro et al., 
2007) highlighting their importance as fast mediators of social information. 

The example scene above also elucidates how humans can perceive instantly 
multiple simultaneously occurring social features ranging from other people’s 
identities, intentions, hopes, and desires to their actions and subtle affective 
characteristics of social interaction. All this is possible despite the complexity, high 
dimensionality, and fast unfolding of social processes (Adolphs et al., 2016). 
Considering the brain's computational constraints, it is unlikely that people attend to 
every perceivable social feature instantly and independently (Freeman et al., 2012). 
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In other domains, people use heuristics to ease the computations and to allow fast 
judgments with incomplete information (Gigerenzer & Brighton, 2009). Similar 
“short cuts” could be used to filter the most important social information based on 
easily recognizable social cues (e.g., facial expressions) for swift and accurate 
interpretation of the social situation with minimal processing effort (Freeman & 
Ambady, 2011). It is thus more likely that people infer social situations by parsing 
perceptual information from a limited number of basic social perceptual dimensions, 
but the basic dimensionality of social perception is currently not understood. 

The processing cascade for social perception begins with (audio-visual) sensory 
input. This purely physical information is then processed in the brain to infer 
complex social information about other people and their interaction. To understand 
social perception, we need to investigate the entire process. This includes the 
principles guiding visual information sampling in social situations, subsequent 
neural processing, and the resulting social inference. In this thesis, I report results 
from three independent studies, one for studying social vision, one for investigating 
functional organization of social perception in the brain, and one for establishing a 
taxonomy for social perception based on perceptual data to establish the principles 
of human social perception. 
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2 Review of the Literature 

2.1 Principles of social perception 

2.1.1 Theoretical framework for social perception 
This thesis focuses on social perception unfolding in the timescale of seconds. 
Traditionally, social psychology has conceptualized social situations as a triad 
consisting of the person, the situation, and the behavior, considering these 
components as separate entities. However, in real life, persons, situation, and 
behavior are in constant interaction (Funder, 2006). In this thesis, all available 
information about others and their interactions is considered relevant for interpreting 
social situations, rather than distinguishing between different aspects of social 
perception. 

The dynamic interactive theory of person construal (DI) provides a conceptual 
framework for understanding social perception (Freeman & Ambady, 2011). This 
theory describes social perception as a dynamic interaction between low-level 
sensory information and higher-order cognitive processes, such as prior experiences, 
motives, goals, and the current affective state. These elements influence each other 
bidirectionally, shaping how we perceive the surrounding social world. The DI 
framework helps to explain how social information is processed so quickly despite 
its complexity. 

According to the DI theory, social perception is a hierarchical processing stream 
beginning with the detection of social cues (e.g., detecting an angry face), followed 
by social categorization (e.g., the person is angry) and resulting in general 
stereotyping (e.g., inferring that the person is possibly hostile). This heuristic enables 
humans to automatically link easily detectable social cues to more complex 
inferences about others and the broad social context. While the DI framework 
provides a robust conceptual basis, it does not specify which social cues are extracted 
in different social situations or the types of perceptual inferences people make 
rapidly based on these cues. 
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2.1.2 Existing models for social perception 
Previous studies have explored the dimensionality of cognitive phenomena closely 
related to social perception, beginning with the early observation that semantic 
judgments of English words primarily vary along three main dimensions: valence, 
potency, and activity (Osgood & Suci, 1955). Relatedly, the circumplex model of 
affect maps emotions within a two-dimensional space defined by valence and arousal 
(Russell et al., 1989). Subsequent models have addressed how people and groups are 
stereotyped. The stereotype content model and the dual perspective model of agency 
and communion both describe a two-dimensional framework for understanding these 
stereotypes (Abele & Wojciszke, 2014; Fiske, 2018). The warmth/communion 
dimension reflects social traits related to others’ intentions, such as whether they are 
inclined to contribute to the community, while the competence/agency dimension 
assesses the capacity to successfully pursue these goals. The ABC of stereotypes 
extends these models by categorizing social groups based on their 
agency/socioeconomic success and conservative–progressive beliefs, with 
communion emerging as a product of these two dimensions rather than as an 
independent factor (Koch et al., 2016). Additionally, prior studies have established 
taxonomies for mental state categorization (Thornton & Tamir, 2020), personality 
traits (Goldberg, 1990; Lee & Ashton, 2004; McCrae & Costa, 1987; Simms, 2007), 
psychological situations (Parrigon et al., 2017; Rauthmann et al., 2014) and action 
understandings (Thornton & Tamir, 2022). These studies mainly focus on the 
semantic similarities of words or concepts and imagined scenarios, rather than on the 
actual perception of dynamic social situations. 

Substantial evidence of the dimensionality in social perception comes from 
face perception studies, where people evaluate standardized images of faces 
(Sutherland & Young, 2022). Valence and dominance emerged as the two primary 
perceptual dimensions for face evaluation (Jones et al., 2021; Oosterhof & 
Todorov, 2008) and they extend to body perception (Tzschaschel et al., 2022). 
Youthfulness/attractiveness has been proposed as a third evaluative dimension in 
addition to valence and dominance (Sutherland et al., 2013; Vernon et al., 2014). 
Moreover, femininity-masculinity is traditionally viewed as a single evaluative 
continuum representing sex characteristics (O’Toole et al., 1998). Femininity is often 
associated with youthfulness/attractiveness (O’Toole et al., 1998; Vernon et al., 
2014) and masculinity with dominance (Oosterhof & Todorov, 2008; Sutherland et 
al., 2013), raising the question of whether sex characteristics are truly independent 
from other evaluative dimensions (but see (Lin et al., 2021)). 

Many previous taxonomies are interrelated, suggesting that they describe 
partially overlapping processes (Horstmann et al., 2021; Lin & Thornton, 2023; 
Stolier et al., 2020; Wilkowski et al., 2020). For example, learning the situational 
mental state of others influences how people evaluate their enduring psychosocial 
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traits, or vice versa, indicating that mental state and trait inferences depend on each 
other (Lin & Thornton, 2023). Additionally, social trait inferences demonstrate high 
structural similarity across face impressions, familiar person knowledge, and group 
stereotypes, pointing to their conceptual convergence which may be learned through 
experience (Stolier et al., 2020). These findings support the need for an integrated 
approach, as social perception is at the core of social cognition and likely shares 
similarities with many of the currently established taxonomies.  

2.1.3 Motivation for a unified taxonomy for social perception 
The first objective of this thesis was to establish a unified taxonomy for social 
perception, integrating previous dimensions of social cognition into a cohesive 
framework. Such a taxonomy is essential for multiple reasons.  

First, no prior taxonomy specifically focuses on the perception of dynamic social 
situations. Existing taxonomies emphasize conceptual similarities between different 
situations, semantic similarities in language, or the perception of static images. It 
remains unresolved whether the findings from these approaches can be generalized 
to the perception of real-world, dynamic social interactions. 

Second, a unified taxonomy would provide improved tools for investigating 
altered human behavior by providing a more accurate understanding of the preceding 
social perception. Many psychiatric and neurological conditions are characterized by 
difficulties in social interaction (Kennedy & Adolphs, 2012). For example, face 
perception and inferring others’ mental states are altered in autism spectrum 
disorders (ASD) (Dalton et al., 2005; Moran et al., 2011), and sensory processing 
issues have been linked with social difficulties in children with ASD (Kojovic et al., 
2019). Additionally, individuals with depression exhibit biases towards perceiving 
unpleasant characteristics in others (Liu et al., 2012), These findings suggest that 
impaired social perception may be central to social difficulties in these disorders. A 
taxonomy of social perception for the general population would provide a valuable 
reference point for studying these alterations in neurological and psychiatric 
conditions. 

Finally, seamless interaction between humans and artificial agents, such as 
intelligent robots, requires that these agents understand how humans perceive the 
social world. A comprehensive understanding of the dimensions of social perception 
could be used to improve the social capabilities of AI systems. Preliminary findings 
have demonstrated that AI models are already capable of perceiving some abstract 
social perceptual information (Malik & Isik, 2023; Santavirta, Wu, et al., 2024). 
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2.2 Brain basis of social perception 

2.2.1 Approaches for studying social perception in the brain 
Since social processes unfold rapidly, studying social perception in the living human 
brain requires methods with high temporal resolution. Most functional brain research 
has been conducted using functional magnetic resonance imaging (fMRI) due to its 
wide availability and high spatial resolution (Poldrack et al., 2011). However, other 
techniques, such as electroencephalography (EEG) (Jackson & Bolger, 2014) and 
magnetoencephalography (MEG) (Hansen et al., 2022), offer even higher temporal 
resolution making them suitable for investigating rapid social processing. Positron 
emission tomography (PET) allows studying the molecular systems in the living 
brain (Heurling et al., 2017), but its temporal resolution with standard methods is 
insufficient for capturing immediate brain responses. Nevertheless, PET can be 
valuable for investigating socioaffective states with longer-lasting effects on the 
brain (Karjalainen et al., 2017, 2018; Manninen et al., 2017). In the future, advances 
in functional PET imaging may enable studying the molecular basis of rapid social 
processes by achieving the necessary temporal resolution (Li et al., 2020). 
Intracranial recordings offer high spatial specificity and millisecond-level temporal 
resolution for studying the living brain, but they are limited to rare clinical cohorts 
in which invasive procedures are clinically justified (Mukamel & Fried, 2012). In 
addition to in vivo techniques, brain lesion studies provide valuable insights into the 
dysfunction of specific brain regions (Vaidya et al., 2019).  

2.2.2 Mapping the social brain 
Since the invention of fMRI in the early 1990s (Bandettini et al., 1992; Kwong et 
al., 1992; Ogawa et al., 1990), researchers have been investigating the brain 
mechanisms underlying social cognition. Early studies using static image stimuli 
demonstrated that the fusiform gyrus (FG) is involved in face perception (Haxby et 
al., 2000), while the lateral occipitotemporal cortex (LOTC) plays a role in body 
perception (Downing et al., 2001). When participants read social stories during 
scanning, activity in the temporoparietal junction (TPJ) was found to reflect the 
processing of others' mental states (Saxe & Kanwisher, 2003), but the TPJ might also 
serve other functions, such as processing social context and attention (Carter & 
Huettel, 2013). 

Superior temporal sulcus (STS) has been consistently identified as a central hub 
for processing multiple aspects of social perception (Deen et al., 2015; Isik et al., 
2017; Nummenmaa & Calder, 2009; Pelphrey et al., 2005; Puce et al., 1996). 
Language processing has been associated with a network that includes superior 
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temporal gyrus (STG, which includes the primary auditory cortex), STS (with 
Wernicke’s area in left posterior STS), TPJ, angular gyrus, middle temporal gyrus 
(MTG), and inferior frontal gyrus (IFG, which includes Broca’s area in the left IFG) 
(Price, 2012). Finally, medial frontal cortex (MFC) has been extensively studied in 
theory of mind tasks and self-representation (Amodio & Frith, 2006).  

2.2.3 Advanced ecological validity with complex dynamic 
stimuli 

Early studies used highly controlled study designs and simple stimuli, which lack the 
complexity of real social interaction raising questions about their generalizability 
outside the laboratory (Nastase et al., 2020; Sonkusare et al., 2019). A major 
limitation of extensively used static image stimuli is the lack of the temporal aspect 
of social perception. For example, the first comparisons between brain responses to 
static images and dynamic videos of faces revealed that the face-selective region in 
STS responded to dynamic faces, while face-related areas in LOTC and FG showed 
similar responses to both static and dynamic faces (Pitcher, Dilks, et al., 2011). 

Movies provide a rich source of naturalistic social content that can be controlled 
and presented during neuroimaging. They evoke strong emotions within the limits 
that can be used for research purposes, making them attractive stimuli for studying 
social cognition. Viewing movies also synchronizes neural responses across 
participants (Hasson et al., 2010, 2004) indicating their ability to capture attention 
and induce mental states (Nummenmaa et al., 2018). Consequently, fMRI studies 
using movie stimuli have shown that the posterior STS specifically responds to 
dynamic social stimuli (Lahnakoski et al., 2012). Not surprisingly, naturalistic 
stimuli, such as movies or spoken narratives, have become increasingly common in 
affective neuroimaging (Saarimäki, 2021). Studies utilizing movies have 
demonstrated, for example, that perspective-taking can synchronize brain activity 
across participants (Lahnakoski et al., 2014), and that the degree of neural 
synchronization can predict how closely participants are connected with each other 
in their social network (Parkinson et al., 2018).        

2.2.4 Representational spaces for cognitive processes 
Most studies investigating the neural basis of social perception, including those 
utilizing dynamic stimuli, have focused on mapping brain networks related to 
isolated social features such as faces, bodies, biological motion, or differentiating 
between social and non-social stimuli. However, a statistical combination of 
responses to a few simple stimulus features may not be able to predict the social 
brain network working in complex natural situations (Felsen & Dan, 2005). This has 
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led to the proposal of using data-driven methods with minimal prior hypotheses for 
studying social perception (Adolphs et al., 2016). 

Consequently, data-driven approaches have been developed to define neural 
representational spaces for cognitive processes. Typically, researchers first create a 
multi-dimensional stimulus model by defining an extensive set of stimulus features. 
Subsequently, the neural representational space for the broader domain is mapped 
using dimension reduction techniques applied either to the stimulus feature set or to 
the resulting neural response patterns. Using these methods, neural representational 
spaces have been identified for observed actions and objects (Huth et al., 2012; 
Tarhan & Konkle, 2020; Tucciarelli et al., 2019), language (Huth et al., 2016), and 
emotions (Koide-Majima et al., 2020; Lettieri et al., 2019), but similar 
representational spaces for social perception have not been previously investigated.   

2.2.5 Spatial specificity of brain response patterns 
Traditionally, studies utilize univariate modeling of brain activation, which means 
that each brain region or voxel is analyzed independently from others. This artificial 
separation of neuronal populations into discrete voxels fails to account for the natural 
network structure of neurons. As a result, univariate analyses are suboptimal in 
revealing the spatial specificity of brain activation patterns associated with 
experimental conditions. More specifically, univariate analyses fail to reliably 
determine whether two conditions with overlapping response patterns still exhibit 
spatially distinct response profiles. 

In contrast, multivariate pattern analysis (MVPA) provides a means to 
investigate these detailed spatial brain activation patterns (Brooks et al., 2020; Tong 
& Pratte, 2012). Pattern recognition studies using MVPA have identified unique 
spatial activation signatures for various social features. For instance, faces (Haxby 
et al., 2001) and their racial groups exhibit distinct spatial activation patterns in FG 
(Brosch et al., 2013). Different facial expressions can also be distinguished in FG, 
but also in STS (Harry et al., 2013; Said et al., 2010; Wegrzyn et al., 2015). 
Additionally, neural patterns in LOTC and inferior parietal lobe enable decoding of 
goal-oriented motor actions at varying levels of abstraction, indicating that these 
regions process conceptual aspects of actions rather than just their low-level 
properties (Wurm & Lingnau, 2015). Notably, decoding of goal-oriented actions in 
LOTC is achievable regardless of whether the actions are perceived from a first-
person or third-person perspective, further indicating that the activation patterns 
represent higher-level conceptual information (Oosterhof et al., 2012). However, the 
spatial specificity of neural activations for different perceptual social features 
remains largely unexplored. 
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2.3 Investigating human social vision with eye 
tracking 

Abundance of visual information is available during social situations. Prior to social 
perceptual processing in the brain, the (visual) attentional systems sample and extract 
the most important information from the current situation. This sampling primarily 
happens by adjusting the gaze position, fixation frequency, blinking behavior, and 
by controlling the amount of light entering the retina through pupillary control. 
Through these operations, we quickly recognize objects, evaluate affective contents 
from scenes (Nummenmaa et al., 2010) and facial expressions (Calvo & 
Nummenmaa, 2008), and prioritize human faces as the primary source of social 
signals over other information (Morrisey et al., 2019). 

2.3.1 Complexity of the human social vision 
Complex spatiotemporal dynamics of social situations challenge the investigation of 
real-life visual attention. Different people, objects and features are present 
simultaneously and more abstract social events unfold in different yet overlapping 
temporal scales. This complicates the traditional eye-tracking paradigms that use 
highly controlled and typically static stimuli. Highly controlled and static 
experimental designs, however, abolish the real dynamics and richness of social 
interaction. Therefore, it is debated how the findings from static stimuli transfer to 
dynamic social environments (Williams & Castelhano, 2019), particularly as the 
visual system responds differently to dynamic and static stimuli (Dorr et al., 2010). 
Furthermore, studies usually focus on modeling a single eye-tracking parameter 
(e.g., pupillary response, gaze direction, blinking etc.) with only a few external 
features. Yet, a more comprehensive understanding of the visual system in dynamic 
situations would require parallel investigation of the different parameters of the 
visual system with rich stimulus models to establish whether they are uniquely or 
similarly influenced by external factors.  

Generating rich stimulus models from dynamic stimuli requires data-driven 
approaches due to complex and overlapping temporospatial dynamics of the stimulus 
features. Previous research has shown that the pupil responds to luminance changes 
but is also indicative of emotional arousal (Bradley et al., 2008; Hess & Polt, 1960). 
Additionally, people recognize objects before they are able to evaluate the objects’ 
affective properties (Nummenmaa et al., 2010). These exemplary findings indicate 
that the visual system can be influenced by features from different levels of the 
cognitive processing cascade. However, we do not yet know whether cognitively 
high-level social perceptual features (e.g., pleasantness of the situation) are mere end 
products inferred from the low- and mid-level perceptual features (e.g., luminance 
or faces). Alternatively, high-level social perception could influence the sampling of 
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visual information alongside low-level perceptual features. Thus, simultaneous 
investigation of the human visual system with low-level (e.g., luminance), mid-level 
(e.g., faces), and high-level perceptual features (e.g., perceived pleasantness) is 
required for more comprehensive understanding of the external drivers of visual 
attention.  

2.3.2 Visual attention and gaze synchronization 
Gaze position is the most studied variable in eye-tracking studies. Gaze patterns are 
remarkably consistent across individuals viewing the same dynamic stimulus (Dorr 
et al., 2010; Franchak et al., 2016; Smith & Mital, 2013), indicating that humans 
largely sample the same information in a time-locked fashion. This suggests that 
physical stimulus features are major modulators of gaze. Synchronization in gaze 
positions and concomitant information sampling could result in common 
understanding of the events. Gaze synchronization can be measured with (eye gaze) 
intersubject correlation (eISC), which can be as high as 0.4 – 0.6 during movie 
viewing (Hasson et al., 2008; Wang et al., 2012). 

Previous research has established how gaze is directed by external or intrinsic 
features during scene perception using both top-down and bottom-up models (J. M. 
Henderson, 2003). Early bottom-up models can predict the gaze probabilities 
reasonably well by computing saliency maps from local color, intensity and 
orientation information (Itti & Koch, 2000), but these models tend to overestimate 
gaze probabilities on the object boundaries while people really gaze at the center of 
objects. Bottom-up models also fail to explain the strong preference for human faces 
and eyes in social scenes (Birmingham et al., 2008, 2009). Consequently, more 
emphasis on top-down models has been proposed since (Stoll et al., 2015), with the 
latest evidence suggesting that low-level visual saliency and object-information 
together yield the best performance (Nuthmann et al., 2020; Roth et al., 2023). 
Advances in deep learning models provide an alternative solution where gaze 
patterns can be predicted without feature engineering. They can, at least in theory, 
learn high-level object and semantic information (e.g., faces) in pure bottom-up 
fashion from the complex interactions between low-level features. Increasingly 
accurate models are currently being developed for gaze prediction for images 
(Cornia et al., 2018; Lou et al., 2022) and videos (Bellitto et al., 2021; Jain et al., 
2021). Although these models can increase the prediction accuracy, indirect 
measures are needed to interpret how these models produce the predictions (Hayes 
& Henderson, 2021). Currently, the primary focus of this research has been to 
develop ever more accurate models, while advancing the understanding of the human 
visual system itself has been given lower importance. 
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2.3.3 Pupillary responses 
Pupillary responses index perceptual and cognitive processing. The pupil controls 
the amount of light entering the retina but adjusts depending on internal states such 
as emotions and cognitive effort. Pupil dilates when perceiving pleasant and 
unpleasant stimuli (Babiker et al., 2013; Bradley et al., 2008; Hess & Polt, 1960; 
Kawai et al., 2013), as well as when presented in auditory format (Oliva & Anikin, 
2018; Partala & Surakka, 2003), and when imagining emotion-evoking situations (R. 
R. Henderson et al., 2018). Additionally, pupil dilates as a function of cognitive load 
(Ayres et al., 2021; Hyönä et al., 1995; Kahneman & Beatty, 1966; van der Wel & 
van Steenbergen, 2018). Conversely, pupil constricts when observing attractive 
individuals or aesthetic visual objects such as natural scenes (Liao et al., 2021). Pupil 
constriction also indexes the novelty of a scene and indicates how well a scene is 
memorized (Naber et al., 2013). In fact, pupil is shown to constrict even during 
sudden changes of simple stimuli when luminance is held constant indicating a 
general response for rapidly changing visual input (Kimura et al., 2014). Adrenergic 
and cholinergic neurotransmitter systems engage during emotions and cognitive 
effort and these systems likely also mediate the luminance-independent pupillary 
responses (Joshi et al., 2016; Reimer et al., 2016). All in all, real-life pupillary 
response is a complex combination of the pupillary light reflex and effects reflecting 
different cognitive states, such as emotions (Cherng et al., 2020; Steinhauer et al., 
2004), but it is not well established how the different factors simultaneously 
influence the pupillary responses during dynamic vision.  

2.3.4 Blinking 
Blinking can reveal higher-order cognitive processes. The main function of blinking 
is to clean and lubricate the eye surface, but  sudden, intense tactile, visual, or 
auditory stimuli also modulate blinking behavior (Grillon & Baas, 2003). However, 
blinking is modulated by other cognitive and affective factors as well, and together 
with pupil size they are sensitive markers for many physiological measures and 
cognitive load (Ayres et al., 2021). A study investigating the blinking behavior of 
the contestants in the Mastermind TV-quiz showed nicely that blinks tend to occur 
during attention breakpoints during high stress (Wyly et al., 2024). Additionally, 
blink rates vary based on attention and the emotional contents of the stimuli (Maffei 
& Angrilli, 2019), spontaneous blinks synchronize between participants sharing the 
same stimuli (Nakano et al., 2009), and blink synchronization is stronger between 
participants that are interested in the stimuli (Nakano & Miyazaki, 2019). These 
findings indicate that blinking can reveal attentional disengagement which is 
supported by functional neuroimaging. Neural activity in the dorsal attention 
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network has been shown to decrease after blink onset, while activity in the default 
mode network simultaneously increases (Nakano et al., 2013). 

2.4 Brigding the information gap in social 
perception research 

The objective of this thesis is to establish the principles of social perception. Based 
on the literature review, several understudied areas and open questions remain: (1) 
Social perception research has mostly relied on static stimuli neglecting the temporal 
aspects of social perception. (2) While taxonomies have been established for other 
domains within social cognition, a detailed model for social perception in dynamic 
situations is currently lacking. (3) Neural representations for complex social features 
have not been established using naturalistic and dynamic stimuli. (4) An integrative 
analysis of how multiple perceptual features modulate human social vision remain 
unexplored and cannot be fully inferred from studies using simple features. (5) To 
understand the basic principles of social perception, research should investigate the 
entire social perceptual cascade from sensory input through neural processing to 
social perceptual inference. 

This doctoral research project aims to bridge these gaps in the literature. Three 
independent studies were conducted, each focusing on a different part of the social 
perceptual cascade (Study I: social perceptual inference, Study II: neural processing, 
Study III: social vision). Each study utilizes movies as stimuli to study life-like 
dynamic social perception. Given the replicability crisis in psychological science 
(Open Science Collaboration, 2015), this research focuses on exploratory, data-
driven approaches and replicability testing rather than narrowly focusing on theory-
driven hypotheses. Specifically, data-driven models for social perceptual inference 
(Study I), neural representations for social perception (Study II), and social vision 
(Study III) were established by first collection multi-dimensional perceptual datasets 
from the movie stimuli and then refining the perceptual space using dimension 
reduction techniques. Final conclusions are drawn by integrating findings across 
these three studies of the social perceptual cascade, ultimately establishing the 
principles of social perception. 
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3 Aims 

The aim of this thesis was to map functional, neural, and attentional mechanisms of 
social perception in uncontrolled dynamic settings. Three independent studies were 
conducted to investigate the social perceptual processing cascade from the audio-
visual input to neural processing and the resulting perceptual inference. To this end, 
we used movies as naturalistic social stimuli and collected multimodal datasets 
containing social perceptual evaluations, functional neuroimaging, and eye-tracking. 
Furthermore, novel analytical methods were developed for each of these datasets and 
study questions. 
 
The objectives of the specific studies were: 
 

I. To establish a low-dimensional perceptual taxonomy for social perception. 

II. To investigate the neural organization of social perception. 

III. To establish how the external stimulus features guide the visual system 
during dynamic social scenes. 
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4 Materials and Methods 

4.1 General methodology 

4.1.1 Design and stimuli for perceptual study (Study I) 
Study I examined how people perceive social information in complex social 
situations. A total of 1,140 participants were recruited to watch short, unrelated 
movie clips rich in social content (N = 234). The clips were selected primarily from 
Hollywood movies. Some of the same movie clips from this stimulation set were 
used in Studies II and III. The average duration of the movie clips was 10.5 s (range: 
4.1 - 27.9 s) with a total duration of 41 min. The stimulus set was an extension of a 
previously validated set of socioemotional movies used in several previous 
neuroimaging studies (Karjalainen et al., 2017, 2018; Lahnakoski et al., 2012; 
Nummenmaa et al., 2021). The participants were instructed to evaluate the presence 
of 138 pre-defined social perceptual features from the movie clips to get a detailed 
description of their social content. The ratings were collected on a continuous visual 
scale to allow for detailed investigation of the perceptual rating distributions. The 
participants were asked to evaluate the magnitude of the presence of a given social 
feature between abstract endpoints “absent” and “a lot”. To investigate the 
generalizability of the results across dynamic and static perception, another set of 
participants (N = 1,109) was recruited to evaluate the same social features from 468 
images that were captured from the primary stimulus movie clips (two images were 
captured from each clip). Generalization across different movie stimuli was tested 
using a retrospective dataset where five participants evaluated the presence of the 
same 78 social features when watching a full-length (70 min 14 s) Finnish historical 
movie (Louhimies, 2008) in short clips. The perceptual ratings were collected with 
online experiment platform Gorilla (Gorilla, 2024). The Ethics Committee of the 
Faculty of Social Sciences, University of Turku, waived the study from ethical 
review due to its minimal impact on human participants. 
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4.1.2 Design and stimuli for fMRI (Study II) 
Study II investigated the neural processing of social perceptual information. A total 
of 104 participants were recruited to participate in fMRI brain imaging at Turku PET 
Centre. During the fMRI scan, the participants watched 96 short movie clips that 
were rich in social content. These stimuli were part of the previously validated 
neuroimaging stimulation set, also used in Study I. The ethics board of the Hospital 
District of Southwest Finland approved the protocol (ethical approval Dnro: 
46/1801/2017), and the experiment was conducted in accordance with the 
Declaration of Helsinki. 

Traditional fMRI studies use blocked or event-related designs, which assume 
that a condition is present or absent either for a prolonged or a transient period. Such 
designs do not fit well with an uncontrolled movie stimulus, in which stimulus 
features are present at varying intensities, and events occur simultaneously but with 
different temporal scales. Thus, a parametric stimulation model, in which the 
predictors dynamically reflect intensity changes in the stimulus features, is often 
used with movie stimulation (Hudson et al., 2020; Karjalainen et al., 2018). To allow 
parametric modeling of the functional brain imaging data, the movie clips were rated 
for 112 social perceptual features at four-second temporal resolution by five 
independent annotators, similar to those in Study I. 

4.1.2.1 Functional magnetic resonance imaging 

In magnetic resonance imaging (MRI), the contrast is based on protons’ interaction 
with an external magnetic field. A thorough explanation of the process is beyond of 
the scope of this thesis and can be found elsewhere (McRobbie & Graves, 2007). 
Briefly, elementary particles and composite particles, such as protons, have a 
property called spin, which gives the particles a magnetic momentum. In the absence 
of external magnetic field, the magnetic moments of different protons can have any 
orientation. However, in an external magnetic field they (1) align with the external 
magnetic field and (2) precess around the direction of the field with an angular 
frequency, called the Larmor frequency, which is directly proportional to the 
magnitude of the external magnetic field (McRobbie & Graves, 2007). 

In MRI scanning, the axis of precession is briefly altered by modifying the 
external magnetic field locally with radio frequency (RF) pulses. As a result of an 
RF pulse, the precessing axes of protons turn in relation to the static magnetic field. 
After the pulse, the precessing axes realign again with the static magnetic field in a 
process called relaxation. During relaxation, the protons return to a lower energy 
state emitting energy as a signal detectable by the MRI scanner. Tissues have 
different relaxation properties, most importantly differing relaxation durations, 
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which enable tissues to be differentiated in MR images as color contrasts (McRobbie 
& Graves, 2007). 

Functional MR imaging (fMRI) quantifies dynamic changes in brain metabolism 
through changes in the blood-oxygen-level-dependent (BOLD) contrast (Bandettini 
et al., 1992; Kwong et al., 1992; Ogawa et al., 1990). The dynamic changes in BOLD 
contrast are based on the fact that the magnetic properties of hemoglobin are 
dependent on the amount of oxygen bound to it (Pauling & Coryell, 1936). 
Hemoglobin oxygenation in arterial blood depends on the blood flow and oxygen 
consumption, among other factors. Typically, an increase in the BOLD signal is 
observed after stimulation, which is then inferred to measure a reactive increase in 
blood flow, whereas the initial oxygen consumption is rarely observed in the BOLD 
signal (Hillman, 2014). In functional brain imaging, the BOLD signal is used as an 
indirect measure of neuronal activity, although the measure is a net effect including 
metabolic changes, such as respiratory and cardiac changes, that may not directly 
relate to specific neuronal activity (Keilholz et al., 2017). 

 Stimulus-evoked BOLD responses are relatively slow. Studies with simple and 
brief stimuli, such as single flashes of light, have established that the hemodynamic 
response takes a specific shape, which is typically modeled with the canonical 
hemodynamic response function (HRF) (Lindquist et al., 2009). The BOLD signal 
peaks (indicating a maximal increase in blood flow) approximately five seconds after 
a stimulus and then decreases to baseline or even briefly below it within the next 
twenty seconds completing the response. Thus, stimulation models need to be 
transformed to match the expected hemodynamic response using convolution prior 
to statistical modeling (Poldrack et al., 2011). In addition to the dynamics of the 
BOLD signal itself, the repetition time (TR) of the MRI scanner for BOLD 
acquisition restricts how dynamically the hemodynamic changes can be measured. 
TR is the “frame rate” of the MRI scanner, specifying how long it takes to collect 
one full volume, which is typically between two and three seconds. 

4.1.2.2 FMRI acquisition and preprocessing 

MR imaging was conducted at the Turku PET Centre. The functional MRI data were 
acquired using a Philips Ingenuity TF PET/MR 3-T whole-body scanner. High-
resolution structural images were obtained with a T1-weighted (T1w) sequence (1.0 
mm3 resolution, TR 9.8 ms, TE 4.6 ms, flip angle 7°, 250 mm FOV, 256 × 256 
reconstruction matrix). A total of 467 functional volumes were acquired for the 
experiment with a T2∗-weighted echo-planar imaging sequence sensitive to the 
BOLD signal contrast (TR 2,600 ms, TE 30 ms, 75° flip angle, 240 mm FOV, 80 × 
80 reconstruction matrix, 62.5 kHz bandwidth, 3.0 mm slice thickness, 45 
interleaved axial slices acquired in ascending order without gaps). 
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The acquired MR data were preprocessed using the standardized fMRIPrep 
preprocessing pipeline (Esteban et al., 2019). The following preprocessing was 
performed on the anatomical T1w image: correction for intensity non-uniformity, 
skull-stripping, brain surface reconstruction, spatial normalization to the ICBM 152 
Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009), and brain 
tissue segmentation. The following preprocessing was performed on the fMRI data: 
coregistration to the T1w reference and spatial normalization to the MNI152NL 
2009c Asym template, slice-time correction, motion correction, and spatial 
smoothing with a 6 mm Gaussian kernel, followed by the non-aggressive automatic 
removal of motion artefacts (ICA-AROMA) (Pruim et al., 2015). The data were then 
detrended using a 240-s Savitzky–Golay filtering to remove scanner drift (Cukur et 
al., 2013) and demeaned to make the regression coefficients comparable across 
participants (G. Chen et al., 2017). 

4.1.3 Design and stimuli for eye tracking (Study III) 
Study III investigated the influences of perceptual features on gaze control during 
dynamic social perception. Three eye-tracking experiments were carried out, 
enabling generalizability testing across independent datasets. In Experiment 1, 110 
participants watched 68 short movie clips with rich social content (14 min 26 s). 
These stimuli were part of the previously validated neuroimaging stimulation set, 
also used in Studies I and II. In Experiment 2, 28 participants watched a full-length 
(70 min 14 s) feature film (Louhimies, 2008), and other 28 participants watched a 
full-length (109 min 3 s) horror movie (Wan, 2016) in Experiment 3. Eye movements 
and other eye-tracking parameters were dynamically measured during the 
experiments with an eye-tracker. The Ethics Committee of the Faculty of Social 
Sciences, University of Turku, waived the study from ethical review due to its 
minimal impact on human participants. 

4.1.3.1 Eye tracking 

Optical eye tracking is commonly used for non-invasive recording of eye 
movements, pupil size changes, and blinks. Typically, the stimulus is presented on a 
computer screen while head movement is minimized with a head mount. A camera 
measuring visible or infrared frequencies records the reflections from the cornea to 
track the eye and measure pupil size (Klaib et al., 2021). Before and during the 
experiments, the eye-tracker is calibrated by instructing the participant to gaze at 
certain points on the presentation monitor so that the measured gaze positions can be 
transformed into screen coordinates. The recorded data are then processed using eye-
tracking algorithms to divide the measured eye movements into fixations (moments 
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of stationary gaze position), saccades (moments when the focus shifts to another 
location), and blinks among other parameters of interest. Eye tracking is a useful tool 
for studying social perception and cognition because it has a high temporal 
resolution, up to 2,000 Hz. 

In Experiment 1, the eye-tracking data were collected with an SR EyeLink 1000 
Plus (SR Research, Ontario, Canada) eye tracker with the following setup: v5.15 Jan 
24 2018, Eyes: Right, File filtering level: Extra, Pupil tracking algorithm: Centroid. 
The eye tracker was calibrated and validated using a five-point calibration, and a 
one-point validation was repeated before the experiment (validation error < 1°). 
Validation was repeated three times during the experiment. In Experiments 2 and 3, 
the eye-tracking data were collected with an EyeLink 1000 (SR Research, Ontario, 
Canada) eye tracker with the following setup: v4.594 Jul 6 2012, Eyes: Right, File 
filtering level: Extra, Pupil tracking algorithm: Ellipse. The full-movie stimuli were 
presented in ~3-4-minute-long segments, and the above-described calibration was 
performed between each segment. 

Fixation and saccade reports were generated with EyeLink DataViewer 4.1.1 
software (SR Research, 2025). Fixations shorter than 80 ms were considered 
unreliable, and the previous reliable fixation was extrapolated to continue until the 
next reliable fixation to create a continuous time series of fixation information. 

4.2 Participants 
All participants gave an informed consent prior to participation in the reported 
studies.  

4.2.1 Perceptual evaluators (Study I) 
For the primary movie clip experiment, English-speaking adults were recruited 
through the online platform Prolific (Prolific, 2025) until ten ratings were collected 
for each movie clip and evaluated social feature. A total of 1,140 fluent English-
speaking adults completed the experiment. The final sample, after excluding 44 
participants based on data quality control, included 1,096 participants from 60 
nationalities and various ethnicities. Of these, 515 participants were females (47%), 
and the median age of the participants was 28 years (range 18 - 78 years). 

A similar protocol and target sample size were selected when recruiting 
participants for evaluating social features in images for the generalizability analysis 
across dynamic and static stimuli. A total of 1,109 fluent English-speaking adults 
completed the experiment. The final sample, after excluding 15 participants based 
on data quality control, included 1,094 participants from 56 nationalities and various 
ethnicities. Of these, 448 participants were females (41%), and the median age of the 
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participants was 32 years (range 18–77 years). The final dataset contained ten ratings 
per image and social feature.  

To allow generalizability analyses across different movie stimuli, retrospective 
social feature evaluations for the full-length movie were used. This dataset included 
evaluations from five Finnish participants. 

4.2.2 Neuroimaging participants (Study II) 
A total of 104 participants took part in the fMRI study. This sample size was 
considered sufficient for one-group analyses based on information from a previous 
simulation study about fMRI replicability with different sample sizes (Cremers et 
al., 2017).  The study-specific exclusion criteria included a history of neurological 
or psychiatric disorders, alcohol or substance abuse, BMI under 20 or over 30, and 
the current use of medication affecting the central nervous system. Two participants 
were excluded due to a gradient coil malfunction and two others because of 
anatomical abnormalities in structural MRI. Additionally, three participants were 
excluded based on visible motion artifacts in the preprocessed fMRI data. The final 
sample included 97 participants (50 females, mean age 31 years, range 20 - 57 years). 

4.2.3 Eye-tracking participants (Study III) 
A total of 166 volunteers participated in one of three independent experiments (Exp. 
1: 110, Exp. 2: 28, Exp. 3: 28), and 15 participants were excluded based on 
quantitative data quality control. The final sample included 151 participants (Exp. 1: 
total sample 106, 66 females, mean age 27.1, range 19 - 74; Exp. 2: total sample 21, 
19 females, mean age 23.6, range 19 - 38; Exp. 3: total sample 24, 19 females, mean 
age 27.0, range 19 - 57). 

4.3 Social perceptual features 
All studies used specific sets of dynamically evaluated social perceptual features 
from the stimulus movies. Prior to this doctoral research, there was no clear 
understanding about which important features people perceive in dynamic social 
situations. The feature set for annotation should be comprehensive enough to capture 
the underlying dimensionality of social perception while being limited enough for 
data collection purposes. Some studies leave the feature selection for the participants 
(Koch et al., 2016; Nicolas et al., 2022; Osgood & Suci, 1955), but letting 
participants freely describe what they perceive could bias the research towards 
conscious reasoning, overlooking unconscious but important processing of social 
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features. Therefore, we decided to define the feature set based on previous 
taxonomies within social cognition. 

First, we selected broad categories that would cover the perception of people, 
their actions, and qualities of social interaction. These broad categories were a 
person’s traits, a person’s physical characteristics, a person’s internal situational 
states, somatic functions, sensory states, qualities of the social interactions, 
communicative signals, and a person’s movement. Second, we searched through 
previous narrow taxonomies of social cognition (Abele & Wojciszke, 2014; Fiske, 
2018; Goldberg, 1990; Lee & Ashton, 2004; Parrigon et al., 2017; Rauthmann et al., 
2014; Russell et al., 1989; Schwartz et al., 2012; Wilkowski et al., 2020) to find 
several candidate features for the above-mentioned broad categories. The feature 
selection was also guided by previous work in social perception from a neuroscience 
perspective (Hudson et al., 2020; Karjalainen et al., 2017; Lahnakoski et al., 2012; 
Manninen et al., 2017; Nummenmaa et al., 2011).  

A set of 112 candidate social perceptual features from the broad categories was 
initially defined for Study II, which focused on the brain basis of social perception. 
This feature set was further refined with additional theory-based features for Study 
I, which focused on mapping the low-dimensional structure of social perception. A 
more detailed explanation of the feature selection can be found in the original 
publication I (Page 3, section: “Evaluated Social Features”). Based on the evolving 
understanding of the social perceptual structure from Studies I and II, eight social 
features (pleasant feelings, unpleasant feelings, arousal, pain, talking, body 
movement, feeding, and playfulness) were selected for Study III to investigate the 
association between social perception and the human visual system. For Study I, the 
perceptual features were evaluated separately for each unrelated movie clip, resulting 
in an approximately ten-second temporal resolution, but to allow parametric 
modeling of fMRI and eye-tracking data, the evaluations were collected in a four-
second temporal resolution in Studies II and III. 
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4.4 Statistical analyses 

 
Figure 1. Analytical pipeline for Study I. First, an investigation into how people perceive, and rate 

individual social features was carried out. Second, a low-dimensional taxonomy for 
social perception was defined using principal coordinate analysis and hierarchical 
clustering. Third, the generalizability of the low-dimensional organization for social 
perception was tested across dynamic (movie) and static (image) stimuli, and across 
different movie stimuli. Modified from the original publication. Copyright © 2024 by 
American Psychological Association. Adapted with permission (Santavirta, Malén, et al., 
2024). 
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4.4.1 Analyses of the perceptual ratings (Study I) 
Figure 1 shows the analytical pipeline for Study 1. 

4.4.1.1 Principal coordinate analysis 

It is unlikely that the participants perceive each evaluated social feature 
independently of all other features. To investigate the low-dimensional space for 
social perception, we used principal coordinate analysis (PCoA) on the Pearson 
correlation matrix of social feature ratings to decompose the correlation structure 
into orthogonal principal components (PC) (Gower, 1966). PCoA is based on the 
eigenvalue decomposition of a symmetric diagonal matrix, where the N x N matrix 
is decomposed into N PCs with one scalar eigenvalue and one eigenvector of size N 
x 1 for each component. The sum of the eigenvalues represents the total variance 
explained by all components. Consequently, the variance explained can be calculated 
for each PC by dividing its eigenvalue by the sum of all eigenvalues. The eigenvector 
reflects the direction of the PC axis in relation to the original variables of the matrix. 
When a correlation matrix of social feature ratings is used as input for PCoA, the 
corresponding eigenvector value indicates the loading or “importance” of a given 
social feature for the given PC. Thus, the social perceptual information that the 
component conveys can be inferred by investigating the eigenvector values. The 
social perceptual label for each identified PC was formed by reaching a consensus 
among the original authors, local researchers (N=10), the general population (N=92), 
and ChatGPT 3.5 (OpenAI, 2024). A full explanation of the labeling process can be 
found from the original publication I (Page 9, section: “Naming the Identified Social 
Dimensions and Clusters”). 

After defining N orthogonal principal components with PCoA, it is necessary to 
identify how many PCs explain more variation in the data than would be expected 
by chance, since most PCs likely model just random noise in the data. If a given PC 
explains more variance than expected by chance, this will indicate that it describes 
some real social perceptual structure in the current data. Thus, a permutation test was 
implemented to generate null distributions for eigenvalues and eigenvectors. The 
columns of the social feature dataset (evaluations x features) were independently 
shuffled, and PCoA was conducted on this random data, repeating the process 
1,000,000 times to produce null distributions. Finally, the true eigenvalues of the 
PCs and the eigenvector values of each PC were ranked within their corresponding 
null distributions to assess their statistical significance (exact p-value). 
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4.4.1.2 Consensus hierarchical clustering analysis 

PCoA forces the social perceptual dimensions to be strictly orthogonal. However, 
finer-grained social semantic categories could emerge as specific combinations of 
orthogonal dimensions. To investigate this, we used an additional dimension-
reduction method, consensus hierarchical clustering analysis (HC) (Chiu & Talhouk, 
2018; Murtagh & Contreras, 2012) to generate social feature clusters that are not 
strictly orthogonal. A consensus approach was selected to achieve a stable clustering 
solution within subsets of the data and across different numbers of clusters. The final 
clustering solution was based on the consensus over 1,000 subsets of the data 
(randomly selected 80% of the rating data) and over different numbers of clusters 
(from 5 to 45). The final clustering solution was obtained by hierarchically ordering 
the resulting consensus matrix. 

4.4.1.3 Concordance analysis 

To further investigate how the fine-grained social semantic information contained in 
the social feature clusters arises from the basic evaluative dimensions (PCs from 
PCoA), we investigated whether HC-based social feature clusters can be explained 
as combinations of information from the identified PCoA dimensions. T-distributed 
stochastic neighbor embedding (t-SNE) (Van der Maaten & Hinton, 2008) was used 
to map the overall association between the PCoA derived social dimensions and the 
HC based social clustering structure. The social features were mapped to a 2D 
projection based on their loadings for statistically significant PCs with t-SNE, and 
the HC cluster membership was plotted as a color-coded representation in the same 
plot. If the features form separable clusters in this t-SNE space, this will indicate that 
the PCoA and HC solutions for social perception are structurally similar. To study 
the associations between PCs and HC clusters in more detail, we also estimated the 
cluster-level PC loadings by averaging the feature-specific loadings over all features 
within each cluster.  

4.4.1.4 Generalizability analyses 

The generalizability of the PCoA and HC structures for social perception was tested 
with image and movie datasets where participants viewed images with social content 
or a full-length movie in short intervals instead of unrelated movie clips. PCoA and 
HC were conducted independently for these validation datasets prior to 
generalizability testing. To assess the similarity of PCoA components, we identified 
how many components were statistically significant in the validation datasets 
similarly to the main analysis (null distribution generation with 1,000,000 
permutations) and correlated the feature loadings of the significant components 



Severi Santavirta 

 34 

between the datasets. The structural similarity of the HC analysis was assessed with 
a non-parametric Mantel test with 1,000,000 permutations (Mantel, 1967) between 
the correlation and consensus matrices of the primary and validation datasets. 

4.4.2 Neuroimaging data analyses (Study II) 
Figure 2 shows the overview of Study II. 

 
Figure 2. Overview of Study II. The neural responses to movie stimuli were modeled with 

annotated social perceptual features using univariate regression analysis to establish 
brain networks sensitive to social features. Additionally, the social perceptual context 
was predicted based on brain activation patterns using multivariate pattern analysis to 
reveal whether spatial brain activation patterns differentiate the social perceptual 
processing within the brain. The response patterns for social perception were compared 
to the neural synchronization patterns measured across participants with intersubject 
correlation analysis. Reprinted from the original publication (Santavirta et al., 2023). 

4.4.2.1 Perceptual models for the fMRI data 

112 social perceptual features were evaluated dynamically from the stimulus movie 
clips with the goal of developing a data-driven, low-dimensional model for 
predicting fMRI responses. Focusing on the most consistently evaluated social 
features across participants was justified, as the evaluators themselves did not 
participate in fMRI scanning. Based on the intra-class correlation coefficient (ICC; 
a two-way random model with absolute agreement), 45 social features were 
perceived with sufficient consistency (ICC > 0.5), and were also present in at least 
five rating points in the current stimulus set. Hierarchical clustering was used to 
further identify six meaningful clusters within these 45 reliable social features 
(Antisocial behavior, Sexual & affiliative behavior, Play, Feeding, Communication, 
and Body movement) while seven original features were not assigned to any cluster 
(Male, Female, Crying, Using an object, Running, Walking, and Searching). These 
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13 predictors (clusters + independent features) formed the social perceptual model. 
Cluster predictors were calculated as the mean of all feature ratings within the 
cluster. Clustering ensured that the social predictors are meaningful and relatively 
uncorrelated with other predictors allowing multiple regression. More detailed 
explanation of the clustering analysis can be found from the original publication II 
(Page 4, section: “2.7. Dimension reduction of the social perceptual space”). 

To control for confounding effects, we defined a low-level model that contained 
the first eight principal components computed from a set of 14 different audio-visual 
features that were extracted from the movie clips. The extracted low-level features 
included six visual features (luminance, first derivative of luminance, optic flow, 
differential energy, and spatial energy with two different frequency filters) and eight 
auditory features (RMS energy, first derivative of RMS energy, zero crossing, 
spectral centroid, spectral entropy, high frequency energy, and roughness). The low-
level model was extended with mean signals from the cerebrospinal fluid and white 
matter and with a binary “non-social” regressor indicating time points when no 
people were present in the stimuli. The regressors in both models were convolved 
with a canonical HRF prior to the statistical modeling of fMRI data.  

4.4.2.2 Cross-validated Ridge regression 

Clustering does not yield strictly uncorrelated social features, and ordinary least 
squares regression (OLS) may overfit the model, reducing the generalizability of the 
results. Hence, Ridge regression was selected for fitting the social perceptual model 
to the BOLD signals (Hoerl & Kennard, 1970). Ridge regression introduces a penalty 
term λ that shrinks the regression coefficients towards zero. Consequently, the 
shrinkage of coefficients may yield more accurate out-of-sample predictions by 
reducing overfitting to the training data. The λ parameter was optimized with leave-
one-participant-out cross-validation by minimizing the prediction error of the left-
out participant’s BOLD data. 

A summary-statistics approach for mixed-effects modeling was used in fMRI 
analysis. The participants were treated as a random effect by first modeling each 
participant’s fMRI data separately (first-level analysis) and then subjecting the 
parametric maps to a one sample t-test at the population level (second-level analysis) 
(Poldrack et al., 2011). A region-of-interest (ROI) analysis was used to summarize 
the results in anatomically segmented bilateral regions using the AAL2 atlas (Rolls 
et al., 2015). 

To conservatively control for low-level confounds, we first fitted the low-level 
model to the preprocessed fMRI data and then modeled the residuals of this analysis 
with the social model, still including the low-level predictors as covariates. Adding 
the low-level features to the second model was motivated by the possibility of 
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interaction effects between confounds and social features, as well as potential 
correlations between social features and the confounds. As a post hoc analysis, we 
fitted the social and low-level models independently to the BOLD signals and 
compared where in the brain the social model predicted the BOLD signal better than 
the low-level model based on adjusted R2. 

4.4.2.3 Multivariate pattern analysis 

Regression analysis can be used to identify the brain areas where the BOLD signal 
is associated with specific social features. If the activation maps for two features 
overlap, there are two competing interpretations about the function of the 
overlapping region: 1) The regional activity reflects a cognitive process (e.g., 
attention or working memory) that is similarly activated by perceiving different 
social features, or 2) the region is involved in the processing of specific social 
information. Spatial specificity of the neural activation patterns within such a region 
would favor the processing of specific social information while failure to identify 
spatially differing activation patterns would suggest a shared cognitive process 
activated by different social features. Multivariate pattern analysis (MVPA) (Hanke 
et al., 2009) was thus conducted to find evidence for specific social processing by 
investigating the spatial specificity of the neural activation patterns evoked by 
different social features. A successful prediction of the social context based on the 
neural activation patterns for different social contexts would indicate that the 
regional brain activation patterns are overlapping but spatially different supporting 
the interpretation of specific social processing. 

For classification, we identified time periods of similar social context, which we 
call events. This was achieved by first labeling each fMRI time point with the main 
social context by selecting the social features with the highest Z-score among all 11 
social features. Next, fMRI data were divided into events by identifying time points 
with the same social label within ~39-second-long time windows. For each event 
and participant, an OLS regression model without covariates was fitted to the BOLD 
data (see Figure 1 and sections “2.10.2. Discrete social labelling for each stimulus 
time point” and “2.10.3. Time window selection and general linear modelling before 
classification” of the original publication II for more information). Finally, a shallow 
neural network model (two hidden layers) was trained to predict the social label of 
each event, based on the neural activation patterns associated with that event using 
leave-one-participant-out cross-validation. The accuracy of the trained model was 
determined by calculating the percentage of correct classifications of the left-out-
participant’s events in each cross-validation round. Chance-level prediction 
accuracy was estimated with 500 permutations of the model training by shuffling the 
event labels before each iteration. 
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In the primary analysis, the classifier was trained with whole-brain data in the 
3,000 most selective voxels (the voxels with the highest F-scores in ANOVA voxel 
selection). Separate classifiers were trained also for each ROI. To account for 
possible low-level confounding in the classification results, the confound-controlled 
residual fMRI time series (regressed with the low-level model) were used as input 
data instead of the original fMRI data. 

4.4.2.4 Intersubject correlation analysis 

Movies effectively synchronize neural activity between participants (Hasson et al., 
2010, 2004) and the degree of synchronization can be measured with intersubject 
correlation analysis (ISC) (Kauppi et al., 2014). Synchronization is highest in the 
primary sensory regions, but robust synchronization occurs also in associative brain 
areas, such as LOTC and STS (Hasson et al., 2010). This indicates that higher-order 
processes, such as shared social perception, could also synchronize brain responses. 
To investigate this, we assessed whether the neural activation patterns of the 
regression and MVPA analyses are associated with neural synchronization. ISC was 
calculated over the experiment, and the spatial ISC distribution was compared to the 
cumulative activation map of social features and to the regional classification 
accuracies indicated by the MVPA analysis.  

4.4.3 Eye-tracking data analyses (Study III) 
Pupil size, gaze position, fixation rate, and blink rate were extracted dynamically as 
time series from the eye-tracker reports. Intersubject correlation analysis of eye gaze 
patterns (eISC) was used to identify gaze synchronization dynamically 
(Nummenmaa, Smirnov, et al., 2014). The primary temporal resolution for analyses 
was 500 milliseconds, which allows modeling swift changes in the eye-tracking 
parameters.  

4.4.3.1 Stimulus model for eye tracking 

The aim of the eye-tracking study was to investigate how stimulus features guide the 
visual system in dynamic social scenes. These features were identified at three 
different levels of cognitive processing: (1) low-level features that describe purely 
audio-visual properties of the stimulus (e.g., luminance), (2) mid-level features that 
require semantic categorization (e.g., faces), and (3) high-level social perceptual 
information (e.g., pleasantness of the situation). This categorization into low-, mid-, 
and high-level features reflects the cognitive complexity of each feature. Low-level 
physical information is processed early in the brain before socio-affective 
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information (Dima et al., 2022), and semantic categorization precedes affective 
evaluation (Nummenmaa et al., 2010), justifying this division. 

Six visual and eight auditory features, along with their time derivatives, were 
extracted from the stimulus videos to describe the physical qualities of the audio-
visual input. Visual features included luminance, visual entropy, optic flow, spatial 
energy for edge detection, and differential energy for measuring the total change 
between consecutive frames. Auditory features included audio intensity (RMS), 
properties of the frequency spectrum (geometric mean, standard deviation, entropy, 
and high-frequency energy), waveform sign change rate or “noisiness”, and sensory 
dissonance or “roughness”. Scene cuts are known to influence the eye movements 
(Bruckert et al., 2023), and these were identified with ffmpeg tool (ffmpeg, 2025). 

Open-source computer vision models were used to segment each movie frame 
into the following mid-level semantic categories: bodies, objects, background, eyes, 
mouth, and face (Deng et al., 2020; Keles et al., 2022; Kirillov et al., 2019; Wu et 
al., 2019). To first segment the whole image into bodies, animals, objects, and 
background, we used a panoptic feature pyramid network (FPN) segmentation model 
from the Deceptron2 Python library (Wu et al., 2019). Next, we used the RetinaFace 
face detection model (Deng et al., 2020), following the implementation of a previous 
eye-tracking study on autism, to segment rectangular face, eye, and mouth areas from 
the videos (Keles et al., 2022). Areas not recognized by the models were tagged as 
unknown. Based on Studies I and II, we selected eight important social perceptual 
features (pleasant feelings, unpleasant feelings, arousal, pain, talking, body 
movement, feeding, and playfulness) that are also consistently evaluated across 
participants. These high-level social perceptual features were evaluated in the movie 
stimulus dynamically in a four-second temporal scale.  

The final design matrix for modeling the eye-tracking parameters was generated 
by identifying feature clusters among all 39 extracted features using hierarchical 
clustering (Murtagh & Contreras, 2012) to limit the multicollinearity of the 
predictors. This clustering identified a total of 16 clusters: seven clusters for low-
level features, five clusters for mid-level semantic categories, and four clusters for 
high-level social information. 

4.4.3.2 Total gaze time analysis 

To investigate attentional prioritization during dynamic perception, we calculated 
how long each participant gazed at each semantic category during the experiments. 
A long total gaze time can be observed just by chance if a category is present 
frequently (i.e., frequently present and spanning large areas of the screen). A long 
gaze time could also be due to a centrality bias (Dorr et al., 2010). Hence, a long 
gaze time does not itself indicate prioritization. The true gaze times should thus be 
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compared to the estimated chance-level gaze times for the features to reveal the 
degree of prioritization. A permutation test in which the gaze coordinate time series 
were circularly bootstrapped (Politis & Romano, 1992) was implemented to break 
the synchrony between the stimulus and gaze. Chance-level gaze times for semantic 
categories were calculated after bootstrapping the participants’ gaze coordinate time 
series. This procedure was repeated 500 times to generate the null distribution for 
gaze times. 

4.4.3.3 Multi-step regression analysis 

Independent associations of the 16 perceptual predictors with pupil size, eISC, 
fixation rate, and blink rate were established with a multi-step regression analysis. 
Even after clustering, the predictors were not fully independent. Hence, a multi-step 
regression analysis was developed to control the feature-specific association with 
other predictors and to test the predictive power of different perceptual models. 
Leave-one-experiment-out cross-validation (three independent eye-tracking 
datasets) was used to test the prediction accuracy of the regression models in each 
analysis step. 

First, simple regressions were run separately for each social feature. If the 
regression coefficient’s signs for a given predictor were consistent across cross-
validation rounds, the predictor was included in the second analysis phase. 
Otherwise, inconsistency between cross-validation rounds indicated that there was 
no evidence of significant association between the feature and the given eye-tracking 
parameter. In the following stepwise regression, consistent predictors were added to 
a multiple regression model one by one, and the out-of-sample prediction accuracy 
was tested for each model. If the prediction accuracy for left-out experiment data 
was higher than would be expected by chance, the feature was considered to be 
significantly associated with the eye-tracking parameter. 

The chance-level prediction accuracy was estimated with a permutation test, in 
which the last column of the design matrix (newly added predictor) was circularly 
bootstrapped before fitting the regression model. This procedure was repeated 500 
times to generate null prediction accuracies. If the predictor was not considered 
significant (p < 0.05) it was dropped from the next regression model so that the 
following regression models only included predictors that increased the model’s 
predictive capabilities. 

The order of the added predictors likely influences the results, such that the first 
added predictors are more likely to be considered significant. Thus, we added 
predictors based on their out-of-sample prediction accuracy in the original simple 
regression, to give more weight to the features that are expected to have a robust 
association with the eye-tracking parameter. Weaker predictors in the initial 
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regression still had a chance to be added to the model if they improved the model’s 
predictions.   

4.4.3.4 Gaze prediction analysis 

The regression analysis described above was not designed to predict exact gaze 
locations at any given time. Next, we aimed to predict the population-level gaze 
probability distributions (gaze heatmaps) in short 200 ms time windows. We selected 
random forest regression as the analytical approach because it allows data-driven 
model generation and supports non-linear relationships while at the same time being 
computationally efficient compared to even more flexible deep neural networks. 
Random forest regression is based on decision trees in which the original dataset is 
resampled multiple times and a decision tree is generated for each sample (Breiman, 
2001). The final predictions are based on the consensus of all individual decision 
trees. The method involves optimizable hyperparameters (number of trees, number 
of branches in each tree, and resampling parameters) Based on within-experiment 
optimization (80% train / 20% test split), 50 decision trees and 63 branches (6 
branches from the tree trunk to the leaf) were selected for the final model fitting. 
Default resampling parameters of the fitrensemble function (The MathWorks Inc, 
2024a) were used (selecting N out of N observations and ⅓ of the predictors).  

Random forest models were trained separately for each experiment and then 
tested to the other two experiments. The primary performance metric was the linear 
correlation between the out-of-sample predictions and true gaze heatmaps. As a 
secondary measure, we calculated the Euclidean distance between the predicted and 
true peak gaze probability values for each heatmap to better understand how well the 
models can locate the most important areas. Relative predictor importance (The 
MathWorks Inc, 2024b) was used as a metric to identify which predictors were most 
influential for predictions. Relative importance does not indicate whether the 
predictor is positively or negatively associated with gaze probability. Hence, we used 
simulation to reveal the sign and shape of the association between predictors and 
gaze probability. The simulation was repeated for each trained model on 200 000 
randomly selected pixels from the training dataset by keeping other predictor values 
constant and randomly testing how the predictions change when the value of a given 
predictor is altered. 

4.4.3.5 Scene cut effect analysis 

Scene transitions artificially influence the eye-tracking parameters in cinematic 
experiments (Bruckert et al., 2023). To quantify the dynamics of the visual system 
after a scene transition, we extracted pupil size, eISC, and blink rates dynamically 
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for a 3,600 ms time window around each identified scene cut (from cut – 600 ms to 
cut + 3,000 ms) for each participant. The population level dynamic was identified by 
taking the mean response over participants separately for each Experiment. To 
estimate whether the eye-tracking parameters deviate from the baseline after a scene 
cut, 3,600 ms time periods were sampled from 100 random time points and then 
averaged to get a random response pattern. This procedure was repeated 500 times 
to generate null distributions for eye-tracking parameter dynamics for a random 
3,600 ms period. Significant deviation from baseline was identified for time points 
with p < 0.05, based on the permutation test. 

4.5 Data and code availability 
Copyrights preclude public redistribution of the stimulus movies. The anonymized 
perceptual data and the analysis scripts for Study I are publicly available in the 
project’s GitHub repository (Santavirta, 2024b).  In accordance with Finnish 
legislation, the original (even anonymized) neuroimaging data used for Study II 
cannot be released for public use. The voxel-wise (unthresholded) result maps are 
available in NeuroVault (Santavirta, 2023b), and the analysis scripts are available in 
the project’s GitHub repository (Santavirta, 2023a). The subjects’ consent for public 
distribution of the subject-level eye-tracking data for Study III was not collected, and 
hence the eye-tracking data cannot be distributed, but the analysis scripts are 
available in the project’s GitHub repository (Santavirta, 2024a). 
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5 Results 

5.1 How humans perceive social environments 
(Study I) 

5.1.1 Low-dimensional model for social perception 
Principal coordinate analysis with permutation testing indicated that eight 
orthogonal principal components explained more variation than expected by chance 
(p < 10-7 or p < 0.05) for the correlation structure of 136 social features (Figure 3), 
accounting for 78% of the total variation. PC1 (Pleasant - Unpleasant) extracted the 
overall emotional valence of the presented social situation by ordering features from 
pleasant (e.g., “Pleasant”, “Interacting positively”, and “Feeling calm”) to 
unpleasant ones (e.g., “Feeling displeasure”, “Feeling disappointed”, and “Feeling 
pain”). PC2 (Empathetic - Dominant) revealed the perceived dominance structure of 
the social interaction by ordering features from dominant (“Dominance”, 
“Authority”, and “Stubborn”) to empathetic characteristics (“Intimate”, 
“Affectionate”, and “Crying”). PC3 (Physical - Cognitive) ordered features from 
physical engagement, energy consumption and impulsive behavior (e.g., “Interacting 
physically”, “Nude”, “Feeling energetic”, “Moaning”, and “Jumping”) to cognitive 
reasoning and controlled behavior (e.g., “Thinking or reasoning”, “Formal”, and 
“Intelligent”). PC4 (Disengaged - Loyal) captured the perceptual distinction between 
inactive self-related behavior, where people are disengaged from others (e.g., 
“Lazy”, “Superficial”, “Daydreaming”, “Eating something”, and “Hungry/thirsty”) 
and proactive behaviors (e.g., “Conscientious”, “Loyal”, and “Brave”). PC5 
(Introvert - Extravert) related to the perception of broad social engagement and 
personality types, introversion (e.g., “Alone”, “Pursuing a goal”, and “Introvert”) 
and extraversion (e.g., “Talking”, “Making gaze contact”, and “Extravert”). PC6 
(Playful - Sexual) described the evaluation of social interactions based on their 
affiliative (e.g., “Joking”, and “Laughing”) versus sexual nature (e.g., “Sexual”, 
“Sexually aroused”, and “Nude”) of the interaction. PC7 (Alone - Together) simply 
described whether the scene involved social interaction between people or not, and 
PC8 (Feminine - Masculine) described a dimension for perceived sex characteristics. 



Results 

 43 

  

Fi
gu

re
 3

. 
So

ci
al

 p
er

ce
pt

ua
l d

im
en

si
on

al
ity

 b
as

ed
 o

n 
th

e 
PC

oA
 a

na
ly

si
s.

 E
ig

ht
 P

C
s 

ex
pl

ai
ne

d 
st

at
is

tic
al

ly
 s

ig
ni

fic
an

t a
m

ou
nt

s 
of

 v
ar

ia
tio

n 
(7

8%
 in

 to
ta

l).
 

Th
e 

ex
pl

ai
ne

d 
va

ria
nc

e 
of

 e
ac

h 
PC

 is
 s

ho
w

n 
in

 p
ar

en
th

es
es

. D
es

cr
ip

tiv
e 

na
m

es
 fo

r t
he

 p
er

ce
pt

ua
l d

im
en

si
on

s 
w

er
e 

in
fe

rre
d 

fro
m

 th
e 

fe
at

ur
e 

lo
ad

in
gs

 (t
he

 im
po

rta
nc

e 
of

 th
e 

or
ig

in
al

 fe
at

ur
e 

fo
r t

he
 P

C
). 

Th
e 

ba
rp

lo
ts

 s
ho

w
 th

es
e 

or
ig

in
al

 fe
at

ur
e 

lo
ad

in
gs

. A
 p

er
m

ut
at

io
n 

te
st

 w
as

 u
se

d 
to

 a
ss

es
s 

w
he

th
er

 th
e 

lo
ad

in
gs

 d
ev

ia
te

 s
ta

tis
tic

al
ly

 fr
om

 z
er

o 
to

 e
as

e 
th

e 
in

te
rp

re
ta

tio
n.

 M
od

ifi
ed

 fr
om

 th
e 

or
ig

in
al

 p
ub

lic
at

io
n.

 C
op

yr
ig

ht
 ©

 
20

24
 b

y 
Am

er
ic

an
 P

sy
ch

ol
og

ic
al

 A
ss

oc
ia

tio
n.

 A
da

pt
ed

 w
ith

 p
er

m
is

si
on

 (S
an

ta
vi

rta
, M

al
én

, e
t a

l.,
 2

02
4)

.  

 



Severi Santavirta 

 44 

5.1.2 Social perceptual clusters and their concordance with 
PCoA components 

Hierarchical clustering confirmed that social perception organizes most saliently 
around emotion valence, indicated by the negative correlation between pleasant and 
unpleasant features (Figure 4). The main difference between the PCoA components 
and HC clusters was that clustering revealed a more fine-grained representation of 
social information. The concordance analysis, based on t-SNE plotting and the 
estimation of PC loadings for each HC cluster, indicated that the information 
conveyed by the clusters can be constructed as unique combinations of PC 
information. This was indicated by separability of clusters in the t-SNE space (Figure 
5). More specifically, PC cluster loadings described how each cluster could be 
described with the PCs (see Figure SI-3 of the original publication I). For example, 
features that were assigned to the “Antisocial behavior” cluster were perceived as 
unpleasant (PC1) and dominant (PC2) based on their PCoA component loadings. 
This distinguished them from features in the “Unpleasant feelings” cluster, which 
described unpleasant (PC1) but not dominant (PC2) characteristics. Similarly, 
features in the cluster “Emotional affection” loaded as pleasant (PC1) and empathetic 
(PC2), while features in the cluster “Extraversion & playfulness” loaded as pleasant 
(PC1) and dominant (PC2), distinguishing these pleasantly perceived characteristics 
from the solely pleasant features in the cluster “Pleasant feelings & prosociality”. 
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Figure 4. Results of the clustering analysis. The upper triangle shows the consensus matrix, and 

the lower triangle the correlation matrix of social features. The consensus matrix 
indicates how many times, out of all subsamples, the pair of features were clustered 
together. The boxes at the bottom show which social features belonged to each cluster. 
Reprinted from the original publication. Copyright © 2024 by American Psychological 
Association. Reproduced with permission (Santavirta, Malén, et al., 2024). 
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Figure 5. The relationship between HC clusters and PCoA components. T-SNE projects the 

original 136 social features into a two-dimensional plane based on their loadings to the 
eight significant PCs. The color and number of each point indicate which cluster the 
feature was assigned to in the HC analysis, and the cluster labels are embedded in the 
figure. The clusters are well separated in the t-SNE space indicating that the PCoA 
components and HC clusters have a structural relationship. Modified from the original 
publication. Copyright © 2024 by American Psychological Association. Adapted with 
permission (Santavirta, Malén, et al., 2024).  

5.1.3 Generalizability of the social perceptual structure 
After establishing the social perceptual structure for the primary movie clip dataset, 
we tested the generalizability of the social perceptual structure with two independent 
datasets by using PCoA and HC analysis. Generalizability across different movie 
stimuli was tested with a retrospective full-movie dataset with similar perceptual 
ratings for a subset of the features. Each identified PC in the primary dataset 



Results 

 47 

correlated significantly with a corresponding PC in the validation full-movie dataset 
(p < 0.05, Figure 6a). The structure of social perception based on HC analysis also 
generalized well (similarity of correlation matrices: r = 0.68, p < 10-6, similarity of 
consensus matrices: r = 0.54, p < 10-6, Figure 6b). Figure 7 shows how the clustering 
result changed between the independent datasets. 

Generalizability across stimulus types, from videos to images, was tested 
prospectively with a dataset of images captured from the primary movie clip dataset. 
Each PC in the primary movie clip dataset showed significant and high correlation 
with a corresponding PC in the movie frame dataset (p < 0.05) and the structural 
similarity based on clustered correlation matrices was high (r = 0.92, p < 10-6). 

 
Figure 6. Generalizability of social perceptual structure across cinematic stimuli. A) Correlations 

between the PC feature loadings of corresponding PCs between primary movie clip 
dataset and validation full-movie dataset (only significant p < 0.05 correlations are 
shown). B) Independently clustered correlation matrices between primary and validation 
datasets were highly similar (r = 0.68, p < 10-6). Modified from the original publication. 
Copyright © 2024 by American Psychological Association. Adapted with permission 
(Santavirta, Malén, et al., 2024). 
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Figure 7. Generalizability of clustering structure across movie stimuli. The two columns are 

ordered based on the independent clustering result of the datasets. The alluvial diagram 
thus shows how the clustering structures align between the datasets. Modified from the 
original publication. Copyright © 2024 by American Psychological Association. Adapted 
with permission (Santavirta, Malén, et al., 2024). 
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5.2 How the brain processes social information in 
dynamic scenes (Study II) 

5.2.1 Neural responses for social perceptual features 
Based on data-driven hierarchical clustering of 45 most consistently perceived social 
features (ICC > 0.5), we defined a social perceptual model that included 13 distinct 
social predictors. Multiple regression with Ridge regularization established the 
neural activation patterns for social features (Figure 8). Social perceptual processing 
engaged areas in both hemispheres and in all brain lobes. Most features were 
associated with the brain responses in occipital, temporal, and parietal regions, while 
frontal and subcortical regions responded more selectively to only a few features. 
The Heschl’s gyrus and superior temporal gyrus in temporal lobe, and superior 
occipital gyrus and calcarine sulcus in occipital lobe, were significantly associated 
with all social features. A few social features, mainly those that are arousing or 
pleasurable (Antisocial behavior, Sexual & affiliative behavior, Feeding), were 
associated with brain responses in frontal midline and subcortical areas. 

 
Figure 8. Brain regions that were positively associated with the social features in multiple 

regression analysis. Results show the statistically significant positive T-values (voxel-
level FDR-corrected, q = 0.05). Reprinted from the original publication (Santavirta et al., 
2023). 
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5.2.2 Cerebral gradient in social perception 
Figure 9a shows the cumulative activation map (a binarized sum of the results 
visualized in Figure 8) over the 13 social features. This map highlights a cerebral 
gradient in social perception, where temporal and occipital areas were associated with 
most of the social features. The regional selectivity increased towards frontal and 
subcortical areas, where associations were observed with only a few social features. 
The functional network, including superior temporal sulcus (STS), lateral 
occipitotemporal cortex (LOTC), temporoparietal junction (TPJ), fusiform gyrus (FG), 
as well as precuneus and auditory and visual cortices, were broadly tuned to different 
social features. Figure 9b shows the voxel-specific ISCs over the cortex, indicating the 
brain areas that were highly synchronized across participants during the experiment. 
The association between the cumulative neural activations for social features and ISC 
was high (r = 0.86), indicating that response generality vs. selectivity for social features 
was positively associated with the neural synchronization. 

 
Figure 9. The cumulative activations for social features. A) A cumulative activation map showing 

how many social features were positively associated (voxel-level FDR-corrected, q = 
0.05) with the neural responses at each voxel. Major gyri are localized with white lines. 
B) Neural synchronization based on intersubject correlation (FDR-corrected, q = 0.05). 
Selected functional regions are highlighted. Modified from the original publication 
(Santavirta et al., 2023). 
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5.2.3 Classifying social context from the neural responses 
To further investigate how specific the spatial activation patterns were for each social 
feature, a multivariate pattern analysis (MVPA) was conducted to predict the social 
context (i.e., the most prevalent social feature) from the spatial hemodynamic 
activation patterns of the fMRI data. The whole-brain classifier achieved a 52% 
accuracy in predicting the correct social context from 11 possible choices, which was 
significantly above the permuted chance level (p < 0.01, accchance = 0.128). Prediction 
accuracies/positive predictive values for each social feature in the whole-brain 
classification were: walking: 0.49/0.51, using an object: 0.53/0.50, searching: 
0.70/0.69, running: 0.56/0.62, sexual & affiliative behavior: 0.45/0.48, play: 
0.53/0.51, feeding: 0.46/0.48, crying: 0.46/0.51, communication: 0.55/0.55, body 
movement: 0.52/0.50, and antisocial behavior: 0.55/0.53. 

The whole-brain classifier achieved higher prediction accuracy than any of the 
ROI classifiers. The 3,000 ANOVA-selected voxels for the whole-brain 
classification localized in the social perceptual areas in STS, LOTC, TPJ, FG, and in 
the occipital cortex (Figure 10a). Regional classifiers yielded lower classification 
accuracies than the whole-brain classifier and revealed a cerebral gradient from high 
classification accuracies in the occipital and temporal cortices to low and near 
chance-level classification accuracies in the frontal and subcortical areas (Figure 
10b). The association between regional prediction accuracies and the ISC of neural 
responses was high (r = 0.85), indicating that neural responses are spatially more 
specific for social context in highly synchronizing brain regions. 
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Figure 10. Results of the multivariate pattern analysis. A) Bar plots show the classification 

accuracies of the whole-brain classifier for each social feature, alongside the localization 
of the voxels that provided information for the classifier. B) Violin plots show the 
prediction accuracies of ROI classifiers compared to the whole-brain classification 
(shown on the right). The lobar localization of each ROI is indicated with color-coding, 
and the permuted chance-level classification accuracy (acc = 0.128) is plotted as a 
horizontal line. Modified from the original publication (Santavirta et al., 2023). 

5.2.4 Comparison between the social and low-level models 
As a post hoc analysis, we investigated where in the brain the social model predicted 
the BOLD signals more accurately compared to the low-level model (Figure 11). 
The social and low-level models were separately fitted to the BOLD data, and their 
fits were estimated with adjusted R2. Based on the adjusted R2-values, the social 
model predicted neural responses more accurately in the identified social perceptual 
network (STS, LOTC, TPJ, FG, and IFG), while the low-level model was 
significantly more accurate, particularly in the primary visual and auditory areas (as 
well as outside grey matter). MVPA, conducted within voxels where the social 
model predicted neural responses significantly more accurately than the low-level 
model (hot areas in Figure 11), achieved 35% (p < 0.01) classification accuracy, 
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which was slightly higher than the highest ROI classification accuracy (34% in 
lingual gyrus). 

 
Figure 11. Comparison between the social and low-level models. Hot colors indicate areas where 

the social model predicted the BOLD signal more accurately (FDR-corrected, q = 0.05) 
than the low-level model, while blue colors indicate regions favoring the low-level model. 
Modified from a supplementary figure in the original publication (Santavirta et al., 2023). 

5.3 How the visual system is externally modulated 
by dynamic social scenes (Study III) 

5.3.1 Attentional prioritization of social cues 
The gaze time analysis revealed how much time participants allocated to viewing 
specific semantic categories of the stimulus movies (Figure 12). In all three 
experiments, the participants showed an attentional preference for the eyes and 
mouth areas. Between 21% and 33% of the total viewing time was allocated to the 
eyes, which was significantly more than expected if people had watched the scenes 
randomly (p < 0.005, estimated chance gaze time = 4% - 9%). Between 10% and 
11% of the viewing time was allocated to the mouth area (p < 0.005, estimated 
chance gaze time = 2% - 4%). The difference between viewing times for objects and 
face areas (excluding eyes and mouth) was small and inconsistent between 
Experiments. A relatively high proportion of viewing time was allocated to bodies 
(18% - 28%) and the background (15% - 23%), but these areas were still given low 
priority, since more viewing time would have been expected by chance (p < 0.005). 
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Figure 12. Results of the gaze time analysis. Total gaze times for the semantic categories are 

plotted separately for each Experiment. The red bars show how long (proportional to the 
total stimulus duration) the participants on average gazed at each given category, while 
the blue bars indicate the expected total gaze times if people had watched the scenes 
randomly. All differences between true and chance gaze times were statistically 
significant (p < 0.005). Reprinted from the original publication (Santavirta, Paranko, et 
al., 2024). 

5.3.2 Multi-step regression results 
Multi-step regression established reliable associations between stimulus features and 
the dynamic eye-tracking parameters of interest. An association was considered 
reliable if the feature (1) showed consistent association with the eye-tracking 
parameter across cross-validation rounds in simple regression, and (2) significantly 
increased the stepwise multiple regression model’s out-of-sample prediction 
performance (p < 0.05). Reliable associations are marked with asterisks in Figure 13. 

Pupil size was reliably associated with low-level features and perceived 
unpleasantness of the social scenes. The final model with the five reliable predictors 
yielded high performance in predicting dynamic pupil size changes in the left-out 
experiment data (Exp. 1 as the test set: r = 0.36; Exp. 2 as the test set: r = 0.49; Exp. 
3 as the test set: r = 0.50). 

EISC was reliably modeled with mid-level features and overall scene motion. 
The final model with the four reliable predictors yielded high performance in 
predicting dynamic eISC (Exp. 1 as the test set: r = 0.43; Exp. 2 as the test set: r = 
0.33; Exp. 3 as the test set: r = 0.40).  
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Fixation rate was reliably associated with mid-level features and audio 
intensity/roughness. The final model with the seven reliable predictors yielded 
moderate performance in predicting changes in fixation rate (Exp. 1 as the test set: r 
= 0.26; Exp. 2 as the test set: r = 0.21; Exp. 3 as the test set: r = 0.24).  

Blink rate reliably associated with three predictors. However, the final model 
with these predictors was unable to predict substantial variation in blink rate changes 
(Exp. 1 as the test set: r = 0.03; Exp. 2 as the test set: r = 0.02; Exp. 3 as the test set: 
r = 0.03). 

 
Figure 13. Independent associations between pupil size, eISC, fixations rate, blink rate and the 

stimulus features in the multi-step regression analysis. The regression coefficients from 
simple regressions are plotted with a blue (negative) - red (positive) color gradient to 
indicate the features that had a consistent association with the eye-tracking parameters 
(not tested for statistical significance). Gray color indicates that the coefficient estimate 
was inconsistent between the cross-validation rounds. An asterisk indicates that adding 
the feature increased the stepwise regression model’s out-of-sample prediction 
performance (p < 0.05), signifying a reliable association. (V) denotes low-level visual 
predictors, (A) denotes auditory low-level predictors, and D denotes the time derivative 
of the feature. Reprinted from the original publication (Santavirta, Paranko, et al., 2024). 

5.3.3 Gaze probability prediction 
Random forest regression models were trained separately on each Experiment’s data 
to predict the out-of-sample gaze probability distributions from the other 
Experiments’ data in 200 ms temporal resolution. The trained models achieved 
robust out-of-sample prediction performance, as indicated by the high correlations 
(0.41 - 0.47) between the true and predicted gaze probability distributions (Figure 
14). On average, the predicted peak gaze probability was located within 10% - 16% 
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of the image width from its true location, highlighting the models’ ability to 
consistently capture the most gazed areas. 

Based on their relative importance, the eyes, mouth, visual motion, and visual 
luminance/entropy were the most influential predictors of gaze location (Figure 14, 
bar plots) consistently across the independently trained models. These four 
predictors were all positively associated with gaze probability, based on the 
subsequent simulations using the trained models. High-level social information does 
not localize to any specific screen position, which prevents a direct association 
between momentary gaze locations. Instead, social information could have 
influenced predictions by interacting with a pixel-wise predictor (e.g., the eyes are 
viewed more closely in unpleasant situations). Exploratory simulations of 
interactions between the perceived social predictors and the four most important 
predictors, however, did not indicate any clear interaction effect. 
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Figure 14. Performance and interpretation of the gaze prediction models. Top: The left confusion 

matrix shows the correlation between the true and predicted gaze probability 
distributions. The right matrix shows the average distance between the true and 
predicted locations of the peak gaze probabilities. Middle: Relative importance bar plots 
show how influential each predictor was in gaze prediction. Bottom: Violin and density 
plots indicate the simulated associations between the most important predictors and 
gaze probability. (V) denotes low-level visual predictors, (A) denotes auditory low-level 
predictors, and D denotes the time derivative of the feature. Modified from the original 
publication (Santavirta, Paranko, et al., 2024). 
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5.3.4 Scene cut effects 
Figure 15 shows the average temporal dynamics of pupil size, eISC, and blinking 
behavior after a scene cut in the stimulus movies. The results were consistent 
between Experiments. Pupil diameter decreased shortly after the transition and 
remained smaller compared to baseline from 350 ms to 1,150 ms in all datasets (p < 
0.05). In contrast, eISC increased after a scene cut briefly, lasting between 200 ms 
and 800 ms (p < 0.05) in Experiments 2 and 3, where the stimuli were continuous 
movies. In Experiment 1, with unrelated short movie clips, eISC remained elevated 
after a scene cut for a longer period (from 400 ms to 1,400 ms, p < 0.05). Fewer 
participants blinked during the first moments of a new scene compared to baseline 
(Exp. 1: 0 ms - 400ms after scene cut; Exp. 2: 200 ms - 400 ms after scene cut; Exp. 
3: 0 ms - 200 ms after scene cut, p < 0.05). In Experiment 1, with the unrelated movie 
clip stimulus, blink suppression was followed by a short period of increased blinking 
(from 600 ms to 1000ms, p < 0.05), which, however, did not replicate in the other 
Experiments.  

 
Figure 15. Temporal dynamics of the pupil size, eISC, and blinking behavior after a scene cut. The 

line plots show the average eye-tracking dynamics around scene transitions separately 
for each Experiment. The scene cut time is marked with a vertical line. The yellow period 
(for pupil) and yellow dots (for eISC and blinking) indicate statistically significant (p < 
0.05) deviations from baseline. Reprinted from the original publication (Santavirta, 
Paranko, et al., 2024). 
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6 Discussion 

This doctoral thesis investigated social perception in humans by studying the entire 
perceptual processing stream. The studies explored how people visually sample the 
social environment, how social perceptual information is processed in the brain, and 
how people make perceptual inferences from available social cues. To model life-
like social contexts, movies were selected as naturalistic stimuli due to their rich 
social content and dynamic nature. 

The results revealed that human social vision is predominantly guided by low-
level physical features (e.g., luminance, motion), and mid-level social features (e.g., 
eyes, mouths, faces), rather than high-level social information (e.g., perceived 
pleasantness). Furthermore, blinking was suppressed during intense moments 
(during scene changes, intense/rough sounds, and perceived body movement) 
indicating attentional engagement. Pupillary responses varied as a function of 
luminance, emotional arousal, and rapid visual change: constriction occurred due to 
increased luminance and scene transitions, whereas dilation occurred during 
emotional arousal. 

Functional brain imaging revealed that the network supporting social perception 
spans both hemispheres, localizing primarily in the occipitotemporal cortices. STS, 
LOTC, TPJ, and FG were established as the main hubs for social perception 
exhibiting neural responses to multiple social features with spatially unique 
activation patterns. 

Finally, this work established that individuals make rapid inferences about social 
situations by evaluating them across a limited number of orthogonal evaluative 
dimensions. Based on the findings, we propose eight basic dimensions of social 
perception as a model for the organization of human social perceptual processing. 
These dimensions suggest that humans assess the social environment initially by 
inferring emotional valence, the balance between empathy and dominance, and the 
cognitive versus physical characteristics of behavior along with five additional 
dimensions. 
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6.1 Modeling human social vision 
Figure 16 summarizes how the human visual system is modulated by external 
stimulus features during movie viewing. 

 
Figure 16. Bottom-up modulation of the human visual system during naturalistic movies. Human 

faces, especially the eyes, in parallel with low-level local information, drive the 
immediate visual sampling of the social environment. Intense scenes and scene 
transitions inhibit eye blinks, indicating attentional engagement with the stimuli. Pupillary 
responses are modulated by emotional arousal, scene cuts, and luminance changes. 
Reprinted from the original publication (Santavirta, Paranko, et al., 2024). 

6.1.1 Visual attention during dynamic social scenes 
Physical stimulus features are robust modulators of visual attention, as demonstrated 
by the high out-of-sample prediction accuracy for gaze synchronization (reISC = 0.43) 
and gaze probability distribution (rgaze = 0.47). The results consistently showed that 
human eyes and mouths are the best predictors of gaze behavior at any moment 
(Figure 14). Human faces receive attentional priority over other elements, indicated 
by participants looking at faces far more frequently than would be expected by 
chance (Figure 12). Specifically, participants gazed at faces from 38% to 50% of the 
total stimulus duration (depending on the Experiment) compared to the expected 
10% to 20% if they inspected the scenes randomly. This face priority led to fewer 
fixations on bodies and the background than would be expected by chance. 

Regression analysis further confirmed this face priority, revealing that gaze 
synchronization increased when fixating on faces and decreased when gazing at 
bodies or backgrounds (Figure 13). The high attention to human faces has been 
previously established in controlled studies with simple stimuli (Bindemann et al., 
2005; Morrisey et al., 2019; Theeuwes & Van der Stigchel, 2006). The current results 
expand the understanding of the face priority to the perception of dynamic social 
scenes by indicating the biological salience of faces and their ability to capture 
shared attention (Morrisey et al., 2019). Faces are a rich source of social cues whose 
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rapid identification is important for inferring more abstract social properties, such as 
affection or hostility (Freeman & Ambady, 2011). Previous controlled studies have 
emphasized that gaze behavior is simultaneously modulated by low-level visual 
features and social information so that social information is prioritized when it is 
available (End & Gamer, 2017). Social information prioritization is probably 
reflexive rather than voluntary (Rösler et al., 2017) and also task-independent (Smith 
& Mital, 2013) suggesting that orienting to social cues is highly automatic.  

Low-level cluster of features related to luminance and entropy also modulated 
the gaze direction in social scenes (Figure 14). This low-level information cluster 
reflects how clearly an area in the video stands out, by combining local luminosity, 
visual entropy (a measure of randomness) and spatial energy (detecting local forms) 
thus relating to the density of low-level visual information. High visual contrast and 
the pixel intensity randomness have been shown to capture attention in static images 
(Krieger et al., 2000; Reinagel & Zador, 1999), supporting our finding that visually 
dense areas that stand out from the background capture attention. 

Motion also modulated gaze direction. Global motion led to decreased gaze 
synchronization (Figure 13), likely due to increased need for fixation adjustments in 
highly dynamic scenes. However, the gaze prediction analysis indicated that local 
motion predicted where people look in social scenes (Figure 14), consistent with 
previous findings in humans (Abrams & Christ, 2003; Bruckert et al., 2023) and 
macaques (Mahapatra et al., 2008). Moreover, motion captures attention 
automatically, supporting its prioritization in visual processing (Smith & Mital, 2013). 

The scene transitions cause abrupt discontinuities in cinema, which motivated 
further analysis of vision dynamics post-cut (Figure 15). Results showed that gaze 
synchronization increased temporarily (up to 800 ms in continuous movies and up 
to 1400 ms in uncorrelated clips) before returning to baseline, aligning with findings 
on scene transitions and gaze synchronization (Mital et al., 2011). This suggests that 
a consistent, time-locked orientation response takes place when new scene content 
is introduced. However, regression analysis did not find significant associations 
between gaze synchronization and scene transitions, likely because synchronization 
was better explained by other predictors, such as new face locations and changes in 
low-level features. 

6.1.2 Dynamic modulation of the pupillary responses 
Cross-validated regression models successfully predicted (up to r = 0.5) out-of-
sample pupillary responses during movie viewing, indicating that the pupil size is 
influenced by bottom-up stimulus features. An expected negative association was 
found between scene luminosity and pupil size, as shown by the significant 
relationship between the “luminance/entropy” predictor and pupil size (Figure 13). 
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In turn, pupil dilated in response to perceived unpleasantness in the scenes. This 
cluster of unpleasant characteristics included perceived unpleasantness, arousal, 
aggression, and pain, indicating that the unpleasant scenes were also highly arousing. 
This implies that pupil dilation was driven by the emotional arousal or negative 
valence (or both) evoked by the scenes. 

No association was found between perceived pleasantness and pupillary 
response, suggesting that the pupillary responses are more likely linked to emotional 
arousal than emotional valence. Moreover, the current findings indicated a positive 
relationship between sound intensity/roughness and pupil size. Intense sounds are 
arousing and alerting (Dean et al., 2011; Di Stefano & Spence, 2022; Ilie & 
Thompson, 2006; Trevor et al., 2020), which was also supported by a moderate 
correlation between perceived arousal and audio intensity (r = 0.39) in the present 
data. Some controlled studies have reported that both unpleasant and pleasant stimuli 
can induce pupil dilation across different stimulus modalities (Bradley et al., 2008; 
R. R. Henderson et al., 2018; Partala & Surakka, 2003), while others have found that 
unpleasant stimuli have a stronger effect (Babiker et al., 2013; Kawai et al., 2013), 
aligning with the present results. 

The regression analysis (Figure 13) and scene transition dynamics (Figure 15) 
demonstrated a negative association between pupil size and scene transitions. 
Specifically, the pupil begins to constrict rapidly following a scene transition, with 
peak constriction occurring approximately 500 - 800 ms after the cut. The pupil then 
dilates back to baseline between 1,150 – 1,500 ms after transition. This response 
occurred on the same temporal scale as the ISC response to scene transitions. Pupil 
constriction after scene transition is likely a general response to sudden changes in 
visual input, consistent with findings from studies using controlled, simple stimuli 
under isoluminous conditions (Kimura et al., 2014).  

Altogether, these results suggest that pupil size changes during naturalistic movie 
viewing are a combination of luminance-driven dilation, constriction during scene 
changes, and constriction during emotional arousal. This shows how low-level 
sensory processing and higher-order emotional arousal together dynamically shape 
the pupillary dynamics. 

6.1.3 Blinking indicates attentional disengagement 
Blinks occurred approximately once in every five seconds (0.2 Hz) in the present data, 
accounting for only a fraction of the total viewing time (~ 2%). Despite this, important 
information can be missed if blinks happen at critical moments. Analyses of blinking 
revealed that blinking is briefly suppressed after scene transitions (Figure 15) and that 
blink rate is negatively associated with sound intensity/roughness and perceived body 
movement (Figure 13). Additionally, blink rate increased when participants gazed at 
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the background. However, this finding should be interpreted with caution, as the 
initiation of a blink can confound the last recorded fixation location shifting it 
downwards from the center to areas that are more likely background.  

These findings suggest that attentional engagement inhibits blinking during 
moments of high behavioral intensity. Previous research supports this interpretation 
(Ranti et al., 2020; Shin et al., 2015), showing that blink frequency decreases as 
attentional demands rise, and that blinks often occur at attentional breakpoints 
(Nakano et al., 2009; Wyly et al., 2024). Shared movie stimuli synchronizes blinking 
across viewers and narrative movie clips lead to lower blink rates compared to nature 
documentaries lacking a clear storyline (Nakano et al., 2009; Shin et al., 2015).  
Blink synchronization is also higher among participants who are more engaged with 
the topic (Nakano & Miyazaki, 2019). These findings support the idea that blinking 
is indeed inhibited during attentional engagement and that increased interest results 
in stronger attentional engagement and fewer blinks.  

Functional neuroimaging findings show that brain activity shifts from the dorsal 
attention network to the default mode network after blink onset, adding evidence for 
attentional disengagement during blinking (Nakano et al., 2013). Thus, the present 
results indicate blinking as an indicator of attentional disengagement, and that 
higher-order social perceptual information has minimal impact on blinking. The 
regression models using external stimulus features were not able to predict much 
out-of-sample variation in the blink rates, which suggests that blink rates are more 
intrinsically regulated than pupil size and gaze direction. 

6.2 Functional organization of social perception 
networks in the human brain 

Figure 17 summarizes the results of Study II. 

6.2.1 Social perceptual model for fMRI analysis 
Data-driven hierarchical clustering indicated that the perceived social information 
from the movie stimuli can be modeled with 13 relatively independent social 
predictors. This dimensionality should be considered preliminary, as it depends on 
lesser data and simplified analytical tools compared to the dimensionality established 
in Study I. The neuroimaging experiment design also necessitated that we focus on 
the most consistently evaluated social features (ICC > 0.5), as the neuroimaging 
participants did not evaluate the social features themselves. This shifted the focus 
towards more observable social features compared to Study I. Despite these 
constraints, the identified perceptual clusters align well with the clusters defined in 
Study I, which indicates that pleasant versus unpleasant situations, playfulness, 
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sexuality, feeding, masculinity & femininity, and body movement, among others, are 
important social perceptual features.  

6.2.2 Cerebral gradient in social perception 
Multiple regression analysis with 13 social predictors and low-level covariates 
indicated that a distributed cortical network encodes the social content of the video 
stimuli (Figures 8 and 9). Most social features were associated with an increased 
BOLD response in STS, LOTC, TPJ, and FG, as well as other occipitotemporal and 
parietal areas. While these regions responded to a broad range of social features, 
more selective responses emerged in the frontal and subcortical areas, where only a 
few social features were significantly linked to neural activity. This finding suggests 
that social perceptual information is primarily processed in the caudal and lateral 
brain regions adjacent to primary auditory and visual areas. 

Anatomically, the most consistent activations for social features were observed 
across all occipital regions and in temporal regions FG, STG, MTG, (STS is located 
between STG and MTG) and the Heschl’s gyrus. In the parietal cortex, the most 
consistent responses were found in supramarginal gyrus (part of TPJ), SPG, and 
precuneus. Responses in the frontal cortex and subcortical areas were more selective 
and mostly limited to social features of high emotional impact (antisocial behavior, 
sexual & affective behavior, and feeding). 

The analysis carefully controlled for low-level audiovisual confounds, but 
without the possibility of cross-validating the results across different stimuli, 
complete separation of social perception from the low-level perceptual processes is 
impossible. However, model comparisons between separate low-level and social 
models indicated that the social model predicted the BOLD responses more 
accurately than the low-level model in voxels within STS, LOTC, TPJ, FG, and IFG, 
while the low-level model was more accurate for predicting the BOLD responses in 
the visual and auditory cortex (Figure 11). This social perceptual network closely 
resembles the cortical areas where a social-affective model has been previously 
shown to explain unique variance not explainable by low-level features (Lee Masson 
& Isik, 2021). Based on these findings it is unlikely that the results outside primary 
auditory and visual cortex would be confounded by low-level processing. 

These results align with prior univariate studies that attribute social functions to 
specific brain regions. STS has been repeatedly identified as a central hub for social 
perception (Deen et al., 2015; Lahnakoski et al., 2012; Nummenmaa & Calder, 2009; 
Pelphrey et al., 2005; Puce et al., 1996) especially in dynamic contexts (Isik et al., 
2017; Lahnakoski et al., 2012; Lee Masson & Isik, 2021; Pitcher, Dilks, et al., 2011). 
LOTC is known to be involved in the perception of features relevant to social 
cognition, such as body representation, visual motion, and action processing 
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(Downing et al., 2001; Lingnau & Downing, 2015). FG plays a critical role in face 
and body perception (Haxby et al., 2000; Peelen & Downing, 2005). Neural activity 
in the TPJ has been associated with language processing, the judgment of others' 
mental states and subsequent decision-making, processing social context, perceived 
actions, and attention (Bitsch et al., 2018; Carter et al., 2012; Carter & Huettel, 2013; 
Price, 2012; Saxe & Kanwisher, 2003; Wurm & Schubotz, 2018). 

6.2.3 Spatial specificity of the neural representations for 
social perception 

Univariate regression analysis revealed the general topography of cortical areas 
involved in processing social signals. However, the analysis cannot differentiate 
whether a brain area whose activity is associated with most social features, such as 
STS, reflects a general process that is shared across all social perceptual features, 
(e.g., working memory or object recognition), or specific, context-dependent social 
processing. Results from the multivariate pattern analysis supported the latter 
explanation. Unique spatial activation patterns were observed for different social 
features, as evidenced by high whole-brain classification accuracy (52%, well above 
the 13% chance level). The whole-brain classification relied on a network of regions 
including the STS, LOTC, TPJ, FG, and visual areas in the occipital cortex, 
identified through ANOVA feature selection. This network outperformed any single 
anatomical region in classification accuracy, emphasizing the distributed nature of 
social information processing. 

Region-specific classification analyses showed that temporal, parietal, and 
occipital regions exhibited moderate to high classification accuracies, whereas 
accuracies in frontal and subcortical regions approached the chance level (Figure 
10). When classification was restricted to the voxels where the social model 
outperformed the low-level model in the regression analysis (the warm-colored areas 
of Figure 11), the accuracy was 35%, which was higher than the accuracy in any 
single anatomical region but lower compared to the whole-brain classification 
accuracy. Notably, this analysis excluded most of the occipital cortex, which was the 
main difference compared to the whole-brain classification. These results suggest 
that including occipital areas enhances classification accuracy. Although the 
classification was performed with confound-controlled data, it remains unclear 
whether this improvement reflects true social context-dependent processing in the 
visual cortex or residual confounds arising from low-level perceptual differences 
between social contexts. Higher-level information, such as body parts and actions, 
are shown to be more strongly associated with BOLD signals than low-level visual 
features in the occipital cortex outside of V1 (Tarhan & Konkle, 2020) supporting 
social perceptual processing in the occipital cortex. 
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The classification results indicate that while regional univariate responses to 
social features overlap, the spatial activation patterns exhibit feature specificity. 
Interestingly, voxels selected by ANOVA for discriminating social features in the 
whole-brain classification closely resemble the network proposed for processing 
social aspects of human actions (Tarhan & Konkle, 2020), although our findings 
demonstrated a more bilateral representation. Previous pattern recognition studies 
have established spatial specificity for individual social features in regions within 
the proposed social perceptual network. Early work revealed that representations of 
faces and objects in FG are distributed and overlapping yet feature-specific (Haxby 
et al., 2001). Subsequent studies have decoded facial expressions from spatial 
activation patterns in FG and STS (Said et al., 2010; Wegrzyn et al., 2015). STS and 
TPJ have been shown to represent multiple distinct social perceptual features, such 
as social versus non-social interaction, cooperation versus competition, mentalizing, 
and action judgments (Lee Masson et al., 2024; Dmitry Smirnov et al., 2017; Walbrin 
et al., 2018). LOTC has been shown to represent unique activation patterns for 
different actions (Tucciarelli et al., 2015; Wurm & Lingnau, 2015) and to distinguish 
between social and non-social actions (Wurm et al., 2017). However, LOTC 
representations may primarily reflect perceptual components necessary for 
interpreting social actions rather than more abstract representations of sociality 
(Wurm & Caramazza, 2019). 

Our pattern recognition results integrate the hubs (STS, LOTC, FG, and TPJ) 
shown to decode individual aspects of social perception into a common network, 
suggesting that the abstract social context of uncontrolled dynamic scenes is 
processes within this distributed network.  The findings also advance the field by 
moving beyond classifying pre-defined social categories from balanced stimuli to 
decoding data-driven, complex social information from spatial brain activation 
patterns elicited during dynamic movie viewing.  

6.2.4 Neural synchronization during social perception 
Intersubject correlation analysis revealed synchronized brain responses across 
participants in temporal and occipital regions during movie viewing (Figure 9b).  
Importantly, regional ISC was correlated with the number of social features 
associated with brain activity in the univariate regression analysis (r = 0.86) and 
classification accuracy in the multivariate pattern analysis (r = 0.85). These findings 
suggest that regions responding to multiple social signals also exhibit time-locked 
neural activity across participants. 

Movies effectively synchronize neural responses across viewers (Hasson et al., 
2004), and this effect is stronger for movies with a coherent plot compared to 
unstructured videos lacking rich socioemotional content and scene transitions 
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(Hasson et al., 2010). Neural synchronization is also influenced by emotional 
content. Both valence and arousal dynamically modulate the degree of 
synchronization while viewing movies (Nummenmaa et al., 2012) and listening to  
narratives (Nummenmaa, Saarimaki, et al., 2014; D. Smirnov et al., 2019). 
Consequently, recent work has focused on quantifying the principles of neural 
synchronization during social interaction (Levy et al., 2021; Nummenmaa et al., 
2018). For example, conversation promotes speaker-listener neural coupling, where 
the degree of coupling predicts communication success (Stephens et al., 2010). Eye 
contact also synchronizes brain activity between participants, with stronger effects 
between friends than strangers (Luft et al., 2022). In turn, reduced neural 
synchronization has been associated with social difficulties in autism spectrum 
disorders (Quiñones-Camacho et al., 2021; Salmi et al., 2013; Suda et al., 2011).  

The present results suggest that social perception synchronizes brain activity 
across participants within the social perceptual network in temporal and occipital 
regions. A similar interpretation of synchronization in STS was proposed in a recent 
study investigating social perception (Lee Masson et al., 2024). Neural 
synchronization during social perception could indicate "mental resonance", which 
is critical for the mutual understanding of social environments, also highlighting the 
centrality of social interaction in human brain function (Hari et al., 2015). 

 
Figure 17. Social perception network in the human brain. The main findings from the three analyses 

are shown as additive RGB colors. Multiple regression results are shown in blue (regions 
activated by at least three social features, FDR-corrected, q = 0.05). The voxels included 
in the whole-brain classification are shown in green (the 3,000 highest F-scores from 
ANOVA feature selection). Significant ISC (FDR-corrected, q = 0.05) is shown in red. 
Overlapping colors highlight the most sensitive and specific areas for social perception 
that also synchronize across participants during movie viewing. Modified from the 
original publication (Santavirta et al., 2023). 
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6.2.5 The functional network for social perception 
A lateral visual pathway specialized for social perception has been proposed, 
projecting from early visual cortex via LOTC to STS, with a particular emphasis on 
processing social information conveyed by moving faces and bodies (Pitcher, Dilks, 
et al., 2011; Pitcher & Ungerleider, 2021). Previously, the LOTC and STS regions 
were considered part of the ventral visual pathway, which was first defined for 
macaques (Kravitz et al., 2013). The ventral visual pathway also includes the 
occipital face area (OFA) and fusiform face area (FFA) (Pitcher & Ungerleider, 
2021; Pitcher, Walsh, et al., 2011). It is argued that the lateral pathway is distinct 
from the ventral visual pathway because FFA and OFA show a visual field bias for 
faces, while the face area in pSTS does not (Pitcher & Ungerleider, 2021).  

The current findings indicated that areas from both pathways are essential for 
social perception (Figure 17). LOTC and STS were identified as core regions of the 
social perceptual network, which aligns with prior studies linking these areas to 
various aspects of social perception (McMahon & Isik, 2023). The lateral visual 
pathway appears to follow a hierarchical organization: early visual areas process 
low-level features, LOTC handles mid-level social primitives and object detection, 
and STS processes increasingly abstract and communicative social information 
(McMahon et al., 2023). Although addressing the hierarchical organization of social 
processing was not the aim of the current research, our results generally support this 
hierarchy, as activity in the early visual areas was more accurately explained by the 
low-level model than the social model. On the contrary, neural activity in LOTC and 
especially in the STS was more accurately predicted by the social perceptual model 
(Figure 11).  

Areas in the ventral pathway also contributed to social perception. Both (right) 
OFA and FFA in the ventral pathway were part of the most spatially specific whole-
brain network for social context classification. This suggests that social perception 
relies on both pathways, but further research is needed to clarify how these pathways 
coordinate the social perceptual process together. Additionally, the results indicated 
that TPJ is involved in social perception. As part of the mentalizing network, TPJ 
has been consistently found to activate during mental state inference (McMahon & 
Isik, 2023; Saxe & Kanwisher, 2003). Social perception is tightly linked to inferring 
how others feel and think, and TPJ may thus have a role in this primary social 
inference. 

Parietal regions, especially precuneus, supramarginal gyrus, and superior 
parietal gyrus, exhibited consistent responses to multiple social dimensions, though 
ISC and classification accuracies were only moderate. Previous research has linked 
precuneus to attention and memory retrieval (Cavanna & Trimble, 2006), and its 
neural activity also synchronizes across participants during the recollection of shared 
memories (J. Chen et al., 2017). Neural activity in supramarginal gyrus has been 



Discussion 

 69 

associated with phonological (Hartwigsen et al., 2010) and visual processing of 
words (Stoeckel et al., 2009), and activity in superior parietal gyrus has been linked 
to visuospatial processing and working memory (Koenigs et al., 2009). These 
findings suggest that parietal regions are involved in general cognitive functions, 
such as recollection, visuospatial integration, or linguistic processing during social 
perception. 

Frontal and subcortical regions exhibited limited associations with social 
features, weak spatial specificity, and low neural synchronization. These regions 
were mainly associated with emotionally charged social features (Antisocial 
behavior, Sexual & affective behavior, and Feeding), suggesting that they are 
involved in emotional processing. Limbic regions, including the amygdala and 
thalamus, have well-documented roles in emotional processing (Hudson et al., 2020; 
Karjalainen et al., 2018). Medial frontal cortex (MFC) activity is known for its 
interindividual variability, and MFC likely contributes to attributing affective 
meaning to ongoing experiences (Chang et al., 2021). Recent findings also indicate 
that neural activations related to felt but not perceived emotions generalize across 
stimuli in the MFC and thalamus, underlining their roles in processing felt emotions 
(Saarimäki et al., 2023).  

The frontal cortex is also extensively studied in the context of mentalizing, 
decision-making, and social cognition (Amodio & Frith, 2006; de la Vega et al., 
2016). Recent work has shown that TPJ, STS, and orbitofrontal cortex (OFC) 
represent others’ traits, but only OFC predicts subsequent social decision-making 
(Kobayashi et al., 2022). Furthermore, previous classification studies have not 
identified spatially specific responses for social perception in the frontal cortex 
(Haxby et al., 2001; Oosterhof et al., 2012; Wegrzyn et al., 2015; Wurm & Lingnau, 
2015). This suggests that frontal areas may mediate higher-order social processes, 
such as integrating social perception with abstract cognitive tasks like predicting 
others’ actions, making social decisions, or linking perception to the affective 
system. 

6.3 A taxonomy for social perception 
Study I of this thesis examined the low-dimensional organization underlying social 
perception. Using dimension reduction techniques and generalizability testing on a 
high-dimensional dataset of social perceptual ratings, we identified a low-
dimensional model for social perception. 

According to the dynamic interactive theory of person construal individuals form 
rapid judgments about their social environment by detecting simple social cues (e.g., 
shared eye contact or mutual smiling) and projecting these rapidly processed cues 
onto broader situational inferences (e.g., cooperation or attachment) (Freeman & 
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Ambady, 2011). The theory suggests that social perception emerges as a 
bidirectional interaction between external sensory inputs and internal higher-order 
processes, such as emotional states, prior experiences, goals, and motives. 

However, the time constraints inherent in social interactions and the 
computational limitations of the human brain do not allow for the perception of all 
available social information. We hypothesized that some social information is 
prioritized, and that this prioritization is captured by a limited set of basic evaluative 
dimensions. 

Based on the findings of Study I, we propose a model in which social 
environments are evaluated along eight fundamental evaluative dimensions 
identified through the primary principal coordinate analysis (Figure 18: Social 
perceptual dimensions). Linear and nonlinear combinations of these basic 
dimensions can be used to construct a more fine-grained representation of the social 
environment, as shown by the hierarchical clustering analysis (Figure 18: social 
semantic categories). This evaluative process is dynamically influenced by external 
sensory input and individual higher-order processes, which continuously update the 
perception with new information to guide subsequent inference and action. 
Importantly, the proposed dimensions represent the population-level average 
perceptual framework rather than the specific ways in which individuals perceive 
social situations, acknowledging variability in personal and contextual factors that 
shape social perception. 

 
Figure 18. Framework for social perception. The eight basic dimensions of social perception are 

encoded from low-level information in the social scene. These dimensions are 
subsequently integrated to establish fine-tuned social semantic categories that may 
guide action and subsequent perception of the evolving social scene. Reprinted from 
the original publication. Copyright © 2024 by American Psychological Association. 
Reproduced with permission (Santavirta, Malén, et al., 2024). 
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6.3.1 Eight basic dimensions of social perception 
The principal coordinate analysis found statistical evidence for eight orthogonal 
dimensions as a reduced model capable of capturing most of the variation in social 
perceptual rating data. The first three dimensions, valence, dominance, and cognitive 
vs. physical functions, explained 55% of the variation, and all eight dimensions 
explained 78% of the total variation in the perceptual ratings of 136 social features. 

The first dimension, Pleasant-Unpleasant, explained 32% of the total variation 
and describes the overall valence of social environments. Valence is a critical 
evaluative dimension, since pleasant social situations are associated with 
cooperation and affective behaviors, while unpleasant features typically signal threat 
or harm, prompting defensive behaviors or avoidance. Valence has been previously 
identified as a major organizing principle across cognition (Oosterhof & Todorov, 
2008; Russell et al., 1989; Zajonc, 1980), which supports its relevance in social 
perception. 

The second dimension, Empathetic-Dominant, explained 13% of the total 
variation and describes social hierarchy and competition. Dominant characteristics 
include power, agency, ambition, and abuse, while empathetic characteristics 
encompass intimate and compassionate behaviors towards others. Dominance is an 
evolutionary strategy to maintain social rank (Maner, 2017) and is characterized as 
a basic human motivation (Schwartz et al., 2012). Identifying dominant individuals 
is important because it helps individuals navigate social hierarchies by avoiding 
conflicts with higher-ranking members or forming coalitions against them. 

The third dimension, Physical–Cognitive, characterizes human behavior from 
physical actions to cognitive reasoning. This distinction contrasts fast, impulsive, 
and reflexive actions with slower, more cognitive, and controlled behaviors. The 
dimension closely parallels the “Type 1” and “Type 2” processes, or automated 
versus deliberate reasoning, described in dual-process theories of cognition (Evans 
& Stanovich, 2013). Both systems are necessary and engaged depending on the 
situation. Impulsive actions are crucial in situations requiring immediate responses 
(e.g., whether to fight of flight in a hostile situation), while a slower analytical 
approach is advantageous in complex situations where rapid actions are unnecessary 
(e.g., when making a major financial decision). The present findings show that 
perceiving others’ cognitive approaches in social situations is important for 
understanding and predicting their actions, subsequently allowing individuals to 
adapt their own behavior. 

In addition to the three primary dimensions explaining > 50% of total variation, 
five additional dimensions were identified. The Disengaged–Loyal dimension 
describes whether individuals are perceived as actively engaging and contributing to 
social situations (e.g., conscientious, loyal, brave) or as disengaged and self-focused 
(e.g., lazy, superficial, selfish) paralleling the conscientiousness trait in personality 
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theories (Goldberg, 1990; Lee & Ashton, 2004; McCrae & Costa, 1987). The 
Introvert–Extravert dimension captures different social interaction styles, also well-
established in personality theories (Goldberg, 1990; Lee & Ashton, 2004; McCrae 
& Costa, 1987). Prior research has demonstrated that the core valence-dominance 
model for face perception does not adequately explain judgments of 
conscientiousness and extraversion (Walker & Vetter, 2016). Additionally, 
conscientiousness and extraversion are often inferred from the body or require 
whole-person perception (Hu & O’Toole, 2023). These findings suggest that 
Disengaged–Loyal and Introvert–Extravert represent independent dimensions of 
whole-person perception that may not be accurately captured by static face images, 
while dynamic video stimuli capture them more accurately.  

The Playful–Sexual dimension distinguished the perception of playful and 
friendly characteristics from sexual interactions. Recognizing playfulness and 
friendly behavior may help people to identify possibilities for friendships. Social 
laughter, which is often induced by humor, enhances relationships and non-
reproductive alliances (Dunbar, 2012; Manninen et al., 2017; Scott et al., 2014). In 
contrast, perceiving sexual features allows individuals to automatically and rapidly  
evaluate potential mating partners (Hietanen & Nummenmaa, 2011; Putkinen et al., 
2023). Integrating playfulness and sexuality into a single dimension suggests that 
people may automatically categorize affective interactions as either sexual or non-
sexual. However, stereotypical movie content may also lack a more nuanced 
relationship between sexuality and playfulness.  

The Alone–Together dimension, in turn, captured whether individuals were alone 
or interacting with others. This fundamental distinction highlights the social versus 
solitary nature of human behavior, which is central to understanding social 
dynamics.  

Finally, Feminine–Masculine aligned with the perceived (fe)maleness of the 
individuals. Femininity and masculinity represent a well-defined perceptual axis (Hu 
et al., 2018; Little & Hancock, 2002), traditionally conceptualized as a single bipolar 
dimension linked to reproductive traits used to evaluate potential mates (Little et al., 
2011; Mitteroecker et al., 2015). Identifying the sex of an interaction partner is 
crucial for various purposes, ranging from sexual preference and mate competition 
to the establishment of sex-specific social alliances. Femininity–Masculinity aligned 
well with the youthful/attractive dimension of face perception models (Sutherland et 
al., 2020). It distinguishes masculinity from dominance (Oosterhof & Todorov, 
2008; Sutherland et al., 2013) but suggests that sex characteristics may not be 
perceived independent of youthfulness and attractiveness (Lin et al., 2021). 

The developed permutation testing indicated that the rest of the identified 
dimensions did not explain more variation than would be expected by chance, 
suggesting that the unexplained variation primarily consists of irrelevant noise. 
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Generalizability tests further demonstrated that the identified eight basic dimensions 
of social perception generalize across dynamic movie stimuli and across different 
data types, including the perception of both videos and images. 

6.3.2 How our model relates to existing models for social 
signals 

The first three dimensions, Pleasant–Unpleasant, Empathetic–Dominant and 
Physical–Cognitive are supported by multiple models. Osgood’s semantic 
differential, a pioneering model from the 1950s, stated that English words in general 
can be summarized in three dimensions, valence, potency, and activity (Osgood & 
Suci, 1955), that resemble, to some extent, the first three social perceptual 
dimensions. Additionally, the stereotype content model and the parallel dual 
perspective model of agency and communion are extensively used models for 
studying group stereotypes, first impressions and social perception (Abele & 
Wojciszke, 2014; Fiske, 2018). The warmth/communion dimension resembles the 
Pleasant–Unpleasant dimension and competence/agency closely relates to the 
Empathetic–Dominant dimension. Although the first two dimensions align with the 
previously established warmth and competence dimensions, the currently proposed 
naming of these two dimensions captures the fine-grained semantics in the context 
of social perception. Similarly, the first two dimensions valence and dominance have 
been identified as basic evaluative dimensions of faces (Jones et al., 2021; Morrison 
et al., 2017; Oosterhof & Todorov, 2008; Sutherland et al., 2013), extending to the 
perception of bodies (Hu et al., 2018; Morrison et al., 2017; Tzschaschel et al., 2022) 
and people’s voices (McAleer et al., 2014). The present taxonomy is the first to show 
that these dimensions are elementary evaluative dimensions in dynamic audio–visual 
social perception, and they likely play a major role in real-life social perception as 
well. 

The linguistic taxonomies of psychological situations provide a useful 
comparison to the present taxonomy, although they are based on semantic 
similarities between words rather than actual perceptual ratings. The DIAMONDS 
taxonomy organizes social situations into eight dimensions: positivity, negativity, 
adversity, intellect, duty, mating, sociality, and deception (Rauthmann et al., 2014). 
Similarly, the CAPTION taxonomy identifies seven dimensions: positive valence, 
negative valence, adversity, complexity, importance, humor, and typicality (Parrigon 
et al., 2017). Several dimensions from these taxonomies align with the current model 
of social perception. Valence is a common dimension in both DIAMONDS and 
CAPTION and corresponds to the present Pleasant–Unpleasant dimension. The 
intellect dimension (DIAMONDS) closely parallels the cognitive side of the current 
Physical–Cognitive dimension, while duty (DIAMONDS) and importance 
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(CAPTION) dimensions reflect the socially proactive qualities captured in the 
current Disengaged–Loyal dimension. The Playful–Sexual dimension relates to 
mating (DIAMONDS) and humor (CAPTION) dimensions, while sociality 
(DIAMONDS) aligns with the distinction between social and non-social contexts 
reflected in the Alone–Together dimension. Both taxonomies also describe adversity, 
albeit with slightly different interpretations. DIAMONDS frames adversity as 
situations involving conflict, competition, and victimization, whereas CAPTION 
characterizes it more broadly as depleting situations. Despite these differences, the 
adversity dimension corresponds to the dominant traits in the Empathetic–Dominant 
dimension of the present taxonomy. To summarize, many of the main components 
in these lexically derived taxonomies of situations can also explain the perception of 
dynamic social environments, but they cannot completely cover the complex 
perceptual and inferential space of rapid social scenes. 

The 3d mind model describes variations in mental state inferences in social 
settings along three dimensions: rationality, social impact and valence (Thornton & 
Tamir, 2020). The valence dimension is shared with the current taxonomy, while 
rationality aligns with cognitive behaviors represented in the Physical–Cognitive 
dimension. Social impact, characterized as highly arousing and social states (e.g., 
lust and dominance) versus low-arousal and non-social states (e.g., fatigue and 
drowsiness), partially overlaps with the current Empathetic–Dominant dimension. 
However, emotional arousal was more strongly associated with empathetic rather 
than dominant traits within the Empathetic–Dominant dimension suggesting that it 
is better understood as contrasting “cold” dominant characteristics with empathetic 
and intimate ones. Meanwhile, the Alone–Together dimension captures the 
distinction between social and non-social situations, diverging from the social 
impact dimension. Thus, while the 3d mind model offers insights into mental state 
inferences, it may not fully generalize to social perception, which encompasses 
broader aspects beyond mental states. The interdependence of mental state and trait 
inferences (Lin & Thornton, 2023) further emphasizes the need to study social 
perception as a unified construct. 

The current model also diverges from some existing data-driven taxonomies. The 
ACT-FAST taxonomy for action understanding categorizes complex human actions 
in six dimensions: abstraction, creation, tradition, food, animacy, and spiritualism 
(Thornton & Tamir, 2022). While feeding-related features were associated with self-
focused end of the current Disengaged–Loyal dimension, the ACT-FAST taxonomy 
focuses on detailed and often abstract actions that are not central to social perception. 
Similarly, taxonomies of human goals (Wilkowski et al., 2020) and basic values 
(Schwartz, 2012) are challenging to connect with the current taxonomy, suggesting 
that perceptions of others’ goals and values are likely integrated with other social 
information rather than perceived as distinct dimensions in social situations. 
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The eight basic dimensions of social perception affirm and refine dimensions of 
several established models while integrating them into a cohesive framework that is 
specific to the perception of dynamic social environments. The primary basic 
dimensions Pleasant–Unpleasant, Empathetic–Dominant and Physical–Cognitive 
align with multiple previous models, including circumplex emotion theory, 
Osgood’s semantic differential, warmth/communion, and competence/agency 
models, 3d mind model, psychological situation models, and face perception models. 
However, social perception is not limited to these three dimensions. The current 
model introduces five additional dimensions (Disengaged–Loyal, Introvert–
Extravert, Playful–Sexual, Alone–Together, and Feminine–Masculine), each 
supported by some related models. These additional dimensions highlight the 
complexity of social perception, providing a more comprehensive framework for 
understanding how humans navigate dynamic social environments. 

6.3.3 Fine-grained social information emerges from the 
basic dimensions 

Hierarchical clustering analysis revealed semantically distinct clusters of social 
features, some of which did not align strictly with any single basic dimension (Figure 
4 & 18). However, concordance analysis between the HC clusters and PCoA 
dimensions demonstrated their convergence (Figure 5). A detailed examination of 
the associations between clusters and dimensions highlighted how social perceptual 
clusters emerge as specific combinations of the basic dimensions.  

For example, the clusters labeled unpleasant feelings and antisocial behavior 
were explained as composites of Pleasant–Unpleasant, Empathetic–Dominant 
dimensions. Both clusters included unpleasant features, but unpleasant feelings were 
associated with empathetic, while antisocial behavior with dominant characteristics 
revealing their fine-grained distinction. Similarly, variations in dominance structures 
provided nuanced differentiation among pleasant feature clusters: pleasant feelings 
and prosociality (solely pleasant), emotional affection (pleasant + no competition), 
and extraversion and playfulness (pleasant + competition). These findings 
demonstrate how valence and dominance jointly shape the organization of social 
features, with both pleasant and unpleasant features forming distinct clusters based 
on dominance structures.  

Additionally, the HC analysis grouped some social features into clusters that 
integrated information from more than two basic dimensions. For example, distinct 
communication types were identified in specific clusters labelled as social 
engagement and emotional expression, gesturing, and physical affection. These 
clusters indicate how multiple basic dimensions can interact to form compound 
social categories. 



Severi Santavirta 

 76 

The HC analysis was conducted as an alternative dimension reduction method to 
validate the usefulness of the eight basic dimensions. It does not force the clusters to 
be strictly orthogonal, which enabled us to investigate how the clusters can be 
constructed based on the basic dimensions. The observed convergence with the 
PCoA dimensions supports the idea that specific perceptual semantic categories can 
be systematically derived from these basic dimensions. This indicates that basic 
eight dimensions of social perception is a capable model for organizing fine-grained 
and semantically meaningful social information. 

 
Figure 19. The social perceptual processing cascade. Visual prioritization in sub-second temporal 

resolution samples the sensory visual information, which is subsequently processed in 
the social perceptual network in the brain. As a result, humans evaluate social 
environments along eight basic perceptual dimensions to make inferences about the 
social situations within seconds. The temporal timeline of processing is abstract and 
reflects the temporal scales used in the original studies I-III.   

6.4 The social perceptual processing cascade 
Summary of the social perceptual processing cascade is shown in Figure 19. Social 
perception begins with extracting sensory information from the environment. The 
eye-tracking results indicated that the visual system is primarily guided by low-, 
(e.g., luminance, motion), and mid-level (especially, human eyes and faces) 
perceptual features. In turn, high-level information has little influence on the 
dynamic gaze orienting and blinking behavior, while pupillary responses are 
modulated by high-level emotional arousal. These findings suggest that the human 
visual system is predominantly controlled by cognitively simple processes, enabling 
sub-second temporal resolution of visual sampling, which is necessary for rapid 
perception of social information. 

Sensory information is subsequently processed in the human brain to transform 
pure physical information into complex social inferences. The neuroimaging results 
indicated that an occipitotemporal network covering both hemispheres is responsible 
for the processing of social perceptual information. The most important hubs for 
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social perception are the superior temporal sulcus (STS), lateral occipitotemporal 
cortex (LOTC), fusiform gyrus (FG), and temporoparietal junction (TPJ). This 
functional brain network is activated during social perception, and the spatial 
activation patterns of these regions are context-specific, suggesting that abstract 
concepts of complex social situations are processed within the network. 

Finally, social inferences about others and social interactions emerge as a result. 
The perceptual findings revealed that people rapidly evaluate social situations along 
eight basic dimensions. Evaluating social environments along this limited set of 
basic dimensions simplifies cognitive processing, which may explain why people 
can perceive complex social information fast enough to make useful predictions of 
others’ behavior. This entire social perceptual cascade unfolds within seconds, 
allowing swift reactions in the ever-changing social environments. 

6.5 Limitations and future directions 
This research has some notable limitations and opens directions for future research. 
The studies employed naturalistic movie stimuli as a proxy for real-life social 
situations providing a better approximation of real social situations than more often-
used static images. Movies may portray stereotypical or amplified versions of social 
contexts that do not fully align with everyday reality, which is both a limitation and 
a strength. Certain important aspects of social interactions, such as violence or sexual 
behavior, are not ethical to study in the wild, and fully natural stimuli may lack the 
needed variability for reliable investigation. Nevertheless, future research should 
strive for even more realistic stimulus models. For example, wearable cameras and 
eye-trackers could be employed to collect data during participants’ daily lives, 
capturing scenarios where participants actively engage in social interactions rather 
than passively observe them. 

The proposed model for social perception is based on ratings of 138 social 
features that were preselected based on prior relevant taxonomies (see 4.3. Social 
perceptual features within the Methods section). The identified dimensionality is 
influenced by the selection of these features, which also impacts the estimated 
importance (variance explained) of the PCoA dimensions. The current feature set 
was able to uncover a generalizable structure for social perception, but it cannot 
capture all imaginable social situations. Hence, some social perceptual dimensions 
may not have been established yet. 

An alternative approach to feature selection is letting participants define the 
features (Koch et al., 2016; Nicolas et al., 2022; Osgood & Suci, 1955), which would 
minimize researcher-dependent choices. However, this method has its own 
limitations. Social perception likely involves unconscious prioritization of 
information and participants without expertise may overlook important but 
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unconsciously perceived information. While this approach would provide new 
insights into the stability of social perceptual dimensions, it does not fully resolve 
the challenges of feature selection. 

Regardless of how the features are selected, there is an inherent trade-off 
between the quantity of data and the labor required, which is a significant bottleneck 
in collecting high-dimensional datasets. Expanding the feature or stimulus sets 
necessitates increased participant effort. For example, approximately 1,100 hours of 
participant labor was required for data collection in Study I. One intriguing way to 
reduce human labor would be to simulate or augment human responses using large 
language models (LLMs). This is currently under extensive investigation, and 
preliminary evidence is promising (Demszky et al., 2023). LLMs may even prove 
capable of perceiving complex social information from dynamic stimuli (Santavirta, 
Wu, et al., 2024). Future research should investigate the LLMs further in annotating 
social or emotional features and for aiding in stimulus and feature selection. 

The audio-visual features used to control the neural and eye-tracking analyses 
were also researcher-defined, raising the possibility that some critical low-level 
information may have been overlooked. Cognitive neuroscience increasingly relies 
on visual deep learning models to extract the low-level features (Kriegeskorte, 2015). 
This approach enables extracting low-level information without conscious feature 
selection, but it introduces new challenges. First, interpreting how specific low-level 
information influences the results is challenging, since it is difficult to know which 
information different layers of the visual models convey without comparison with 
manually extracted features. Second, identifying the border between low-level 
feature processing and social information representation within deep visual models 
is challenging. In deeper layers, models may already represent social semantic 
categories, such as faces, or even abstract social information. This could lead to false 
negative findings for social perception if such layers are erroneously interpreted as 
representing purely low-level information. Despite these challenges, one possibility 
would be to train a deep visual model to specifically classify abstract social 
dimensions from naturalistic stimuli. Then modeling neural activity with layers 
representing different information (low-level information, social primitives, more 
abstract social information) could potentially increase the understanding of 
hierarchical processing in the human brain.   

The present results focus on social perception occurring over short timescales of 
up to ten seconds. While social perception can occur in mere hundreds of 
milliseconds (Dima et al., 2022; Isik et al., 2020; Nummenmaa et al., 2010; Willis 
& Todorov, 2006), other types of social inference may require extended time periods 
for accurate evaluation, such as assessing another person’s trustworthiness. 
Investigating how social inferential evaluations evolve over varying timescales, from 
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milliseconds to minutes, hours, or even years, would provide a more comprehensive 
understanding of the temporal dynamics of social perception and inference. 

Finally, this thesis focuses on population-average social perception, providing a 
reference for future studies. However, social perceptual ratings show notable inter-
individual differences, calling for future research on the participant-specific 
attributes that drive these differences. For example, similar methodologies could be 
used for studying detailed alterations of social perception in neuropsychiatric 
conditions, such as autism spectrum disorders or depression. This information could 
provide novel insights into the characteristics of these disorders, potentially 
advancing the development of diagnostic tools and treatments. Ultimately, future 
studies should aim for modeling individual social perceptual evaluations with a rich 
array of participant-specific attributes. This would increase our understanding of 
individual-level social perception, paving the way for more accurate predictions of 
human behavior. 
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7 Conclusions 

This thesis aimed to investigate social perception in dynamic social environments. 
The whole cognitive processing stream, from the audio-visual input, through neural 
processing, to the perceptual inference, was investigated in three separate studies. 
The main findings of this thesis were as follows: 

 
I. Social perception follows a limited set of evaluative dimensions, which 

enables people to rapidly infer and react in dynamic social environments. 
Based on the findings, we propose eight basic dimensions of social perception 
as a detailed model for social perception. 

 
II. Social perceptual information is processed in a wide occipitotemporal network 

spanning both hemispheres of the human brain. The most important hubs for 
social perception include superior temporal sulcus (STS), lateral 
occipitotemporal cortex (LOTC), fusiform gyrus (FG), and temporoparietal 
junction (TPJ). This brain network is activated during social perception, and 
the spatial activation patterns of these regions are specific for the perceived 
social context. 

 
III.  The human visual system is primarily guided by simple stimulus features, 

including low-level audio-visual information (e.g., luminance and motion) 
and mid-level information (especially human eyes and faces). While 
emotional arousal modulates the pupillary response, high-level social 
information does not effectively predict dynamic gaze patterns or blinking 
behavior.  
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