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Abstract  

Background: Autism is a neurodevelopmental disorder characterized by repetitive behaviors and 

difficulties in social communication and interaction. Previous research has shown that these 

symptoms are linked to idiosyncratic behavioral and brain activity patterns while viewing natural 

social events in movies. This study aimed to investigate the replicability of brain activity 

idiosyncrasy in autistic individuals by comparing their inter-subject functional connectivity (ISFC) 

with that of neurotypical individuals. 

Methods: We tested for ISFC differences between autism and neurotypical groups using 

functional magnetic resonance imaging (fMRI) data from two independent datasets from Germany 

(Nneurotypical = 25, 7 Males, 18 Females; Nautism = 22, 12 Males, 10 Females) and Finland (Nneurotypical 

= 19, Nautism = 18; All males). Participants watched short movie stimuli, and pairwise ISFCs were 

computed across 273 brain regions. Group differences were evaluated using subject-wise 

permutation tests for each dataset.  

 

Results: In both datasets, the autism group showed lower ISFCs compared to the neurotypical 

group, specifically between visual regions (e.g., occipital gyrus, cuneus) and parietal regions (e.g., 

superior and inferior parietal lobules), as well as between visual regions and frontal regions (e.g., 

inferior frontal gyrus, precentral gyrus). ISFC was higher in the Finnish autism group in temporal 

regions associated with sound and speech processing. 

 

Conclusions: The study confirmed the replicability of reduced ISFCs in autistic individuals during 

naturalistic movie-watching, especially between visual and parietal/frontal brain regions. These 

findings reinforce the utility of ISFC and naturalistic movie-watching paradigm in studying neural 

connectivity alterations in autism.  
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 1 Introduction  

 

 

Autism is a neurodevelopmental disorder characterized by difficulties in social communication, 

interaction, and repetitive behaviors with restricted interest. Altered sensory responses to external 

stimuli have been suggested as a potential underlying mechanism (1). Research has shown that 

autistic individuals exhibit significant variability in symptom severity, particularly in in social 

impairments and overall functioning (2-4). While many autistic individuals without intellectual 

impairment perform well in controlled tasks, such as recognizing emotional facial expressions (5-

7), they may struggle in more naturalistic or socially dynamic settings (8,9). These findings 

underscore the need to study individual differences in autism within more ecologically valid 

scenarios.  

 

Naturalistic functional magnetic resonance imaging (fMRI) provides an effective way to examine 

‘social brain’ activity in dynamic, real-world (10,11). In this paradigm, participants are presented 

with complex audiovisual stimuli, such as movies, without performing a specific task. Studies 

using naturalistic viewing paradigms have reported reduced neural similarity in autistic compared 

to neurotypical individuals (2, 12-15). Neural similarity has been associated with participants’ 

family relations (16), friendships (17), and psychological perspectives (18-20). A common 

measure of neural similarity in naturalistic fMRI is inter-subject correlation (ISC), which assesses 

regional brain activity synchronization across individuals during movie-watching (21). Expanding 

on this, inter-subject functional connectivity (ISFC) compares fMRI time courses between 

different brain regions across individuals (22). ISFC distinguishes stimulus-dependent 

interregional correlations from stimulus-independent correlations, i.e. intrinsic brain activity and 

noise, such as head motion and physiological artifacts. It therefore provides a more refined measure 

of neural similarity. ISFC has shown promise in detecting functional differences across groups, 

such as tracking symptom progression in psychiatric conditions like schizophrenia (23). 

 

Previous studies have reported lower ISC and increased occurrence of atypical brain network states 

in autism compared to neurotypical controls (2, 17-19). Specifically, one study using naturalistic 

movie fMRI found that young autistic individuals exhibited reduced ISFC, particularly in visual, 

sensorimotor, and subcortical networks (24). These findings suggest that ISFC patterns may differ 

between autistic and neurotypical individuals. Given the ongoing “replication crisis” in 

neuroimaging (25,26), it is crucial to assess the reproducibility of fMRI findings. Additionally, 

cross-cultural factors have been shown to contribute to the significant inter-subject variability in 

autistic individuals (27). In naturalistic fMRI research, this requires analyzing data from different 

research centers using identical or similar stimuli. Our study aimed to investigate the potential 

hypoconnectivity in autism by comparing ISFC between autistic and neurotypical individuals. We 

also sought to determine whether the results could be replicated across cross-national fMRI 

datasets, collected with similar naturalistic paradigm and analyzed using identical preprocessing 

and statistical pipelines. Based on previous research, we hypothesized that ISFC in autistic 

individuals would be lower than in neurotypical individuals, particularly in brain regions 

associated with social cognition, such as the temporoparietal junction, superior temporal sulcus, 

precuneus, medial prefrontal cortex, and fusiform gyrus, as suggested by the ‘social brain’ concept 

(28,29).  
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2 Methods and Materials  

 

 

2.1   Participants  

 

Here, we evaluated independent German and Finnish datasets. The German dataset contained 22 

autistic adults (Mean age 35.72 ± 10.58 years, range 20-53 years, 12 males) and 25 neurotypical 

participants (Mean age 32.76 ± 12.20 years, range 18-60 years, 7 males). Data was collected at 

Max Planck Institute of Psychiatry, Munich, Germany, and protocols were approved by the ethics 

committee of the Ludwig-Maximilians-University (LMU) Munich. All procedures were 

performed in accordance with the declaration of Helsinki. All subjects gave a written informed 

consent prior to their participation.  

 

The Finnish dataset contained 20 autistic adults (Mean age 27.25 ± 5.72 years, range 20-40, only 

males) and 19 neurotypical participants (Mean age 28.52 ± 7.69 years, range 20-47, only males). 

Data were collected at Turku University Hospital, Turku, Finland. The anatomical findings and 

results of emotional face perception task from this dataset have been published in recent studies 

(30,31). The study was approved by the ethics committee of the Hospital District of Southwest 

Finland and was conducted in accordance with the declaration of Helsinki. All subjects provided 

informed consent prior to the study. 

 

2.2   Stimuli and Procedure  

 

In the German dataset, fMRI data were collected while participants watched 52 short (9-22s) clips 

of Hollywood movies depicting socio-emotional scenes across five categories (i.e., emotion, 

neutral, social interaction, non-interaction, pain) that were selected from a database of 137 videos 

described in more detail in a previous study (32). The clips were played without sound to avoid 

confounds due to different proficiency in English among German participants. In the Finnish 

dataset, fMRI data were collected using a similar naturalistic movie-watching paradigm, with 54 

short (9-22s) clips depicting the same categories as in the German sample. Finnish people generally 

demonstrate a strong proficiency in English, attributed to a minimum of  seven years of compulsory 

education in the language. Thus, the soundtracks of videos were retained during the Finnish 

experiment since the participants were assumed to understand dialogues in the movies sufficiently. 

The total duration of movie clips in both datasets is approximately 11 minutes. The clinical 

characteristics of all individuals are described and listed in Supplementary Tables 1-4.  

 

2.3   Image acquisition and Preprocessing 

 

The German whole-brain structural and fMRI data were acquired on a GE Discovery MR750 3T 

scanner. Anatomical brain images were collected using a T1-weighted (T1w) sequence (TR = 6.2 

ms, TE = 2.3 ms) with 1 mm3 isotropic voxel size. The fMRI data were collected with an echo-

planar imaging sequence (TR = 2000 ms, TE = 20 ms, flip angle = 90◦, 400 mm FOV, 128 × 128 

reconstruction matrix, 3.5 mm slice thickness).  
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The Finnish whole-brain structural and fMRI data were collected using a Phillips Ingenuity TF 

PET/MR 3T scanner. Structural brain images were acquired using a T1w sequence (TR = 9.8 ms, 

TE = 4.6 ms, flip angle = 7◦, 250 mm FOV, 256 × 256 reconstruction matrix) with 1 mm3 isotropic 

voxel size. Functional data were collected with a T2*-weighted echo-planar imaging sequence (TR 

= 2600 ms, TE = 30 ms, flip angle = 75◦, 240 mm FOV, 80 × 80 reconstruction matrix, 3.0 mm 

slice thickness).  

 

A whole-brain atlas with 273 regions of interests (ROIs) from Brainnetome (33) combined with a 

probabilistic atlas of the human cerebellum (34,35) were used to extract regional BOLD time series 

from the voxel-wise whole brain fMRI. Structural T1w images and fMRI data were preprocessed 

using fMRIPrep 1.3.0.2 (36). Additional preprocessing steps were performed with Nilearn 0.10.1 

(https://github.com/nilearn/nilearn, 37) to control for nuisance variables and low-frequency signal 

components estimated by fMRIPrep. High-pass filtering was conducted via adding discrete cosine 

transformation basis regressors from fMRIPrep confound outputs. Additionally, linear trends of 

signals were removed. Signal artifacts were handled through linear confound removal, using eight 

parameters: the average signals from white matter and cerebrospinal fluid, along with six basic 

motion parameters (translation/rotation). In the end, time series were shifted to zero mean and 

scaled to unit variance, using the sample standard deviation. After checking framewise 

displacement (FD) and standardized DVARS (38), two subjects in the Finnish autism group were 

excluded from further analysis due to high average FD values (threshold = 0.5).A total of 47 

subjects were analyzed in the German dataset (Nautism = 22, Nneurotypical = 25) and 37 subjects in the 

Finnish dataset (Nautism = 18, Nneurotypical = 19). 

 

2.4   Inter-subject functional connectivity 

  

ISFCs were calculated separately for each group (German/Finnish, Autism/Neurotypical) using 

the Python package BrainIAK (Brain Imaging Analysis Kit, http://brainiak.org). Based on the 

similar concepts of ISC (correlation between same region across brains) and ISFC (correlation 

between different regions across brains), customized Python scripts were adapted from the ISC 

analysis part of the BrainIAK package. Pairwise ISFC calculations were conducted between all 

pairs of the 273 ROIs. Since we did not analyze the directionality of the connections, we calculated 

symmetrical connectivity matrices by averaging each matrix with its transpose. After this, a total 

of 37,128 pairs of unique median ISFC values were calculated from the time series of each group. 

Subsequently, an ISFC matrix with group differences was created. 

 

2.5   Statistical analysis   

  

Non-parametric methods were used for statistical testing of ISFC to account for the non-normal 

value distribution and ensure robust hypothesis testing without parametric assumptions (39). 

Median values were computed as summary statistic as suggested for group comparison (40). To 

estimate the significance of median ISFC in each group, bootstrap statistics were calculated by 

comparing resampled pairwise ISFC values (with replacement) to the observed median ISFC over 

5000 iterations (40). To compare the difference between autism and neurotypical individuals 

within each dataset, subject-wise permutation was used for the Finnish and German datasets 

(neurotypical-autism). During permutations, pairwise median ISFCs were used as the summary 

statistics and 5000 iterations with randomized group labels were implemented for the analysis of 
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each dataset with BrainIAK. Further discussion on the validation of the subject-wise permutation 

method is provided in the Discussion section. Due to the systematic difference in the sex 

distribution of participants between the two datasets, we evaluated the replicability of the ISFC 

group differences between the male and female groups in the German data. Additionally, we 

compared German males and females to the Finnish dataset, which contained only males.  

 

To calculate the replication rate of ISFC group differences (neurotypical-autism) across two 

datasets, the percentage of replicated significant pairwise ISFCs from German and Finnish datasets 

was counted. Specifically, only pairwise ISFCs with identical pairs of ROI indices were considered 

as “replicated” results. The replication rate was determined by computing the proportion of 

significant pairwise ISFC differences in the German dataset that also occurred in the Finnish 

dataset, relative to the total number of significant ISFC pairs in the German dataset. The German 

dataset was used as the discovery data and the Finnish dataset as the replication data because the 

German dataset lacked auditory stimulation. Thus, we did not expect all effects observed in the 

Finnish data to replicate in the German sample. Given the strict criteria for defining “replicated” 

results, the statistical significance of ISFC results was evaluated using more lenient thresholds at 

p < .05 and p < .01 (two-sided). The significance of the replication rate was evaluated by randomly 

shuffling the ROI order (both rows and columns shuffled in the same order) 5000 times to produce 

a null distribution. The analysis steps are illustrated in Figure 1. 
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Figure 1. Methods. (A) ISFC matrices were calculated for four participant groups. Median 

pairwise ISFC values were obtained for each participant group. (B) Subject-wise permutation were 

conducted 5000 times for the group difference of ISFC in the German and Finnish dataset. (C) The 

significant ISFC group differences in the two datasets were calculated based on the permutation 

distributions. (D) The overlapping ISFC difference across two datasets were computed as the 

intersection of the two matrices from step C. (E) Null distribution of replication rate ISFC across 

two datasets. The significance of the actual replication rate was compared against repeated 

analyses of replication rates with permuted ROI orders.  

 

 

3 Results   

 

 

3.1   ISFC distribution across different groups and datasets  

 

The median pairwise ISFCs among the 273 ROIs for the two groups and two datasets are presented 

in Figure 2A. Overall, the Finnish dataset showed higher maximum ISFCs for both groups 

compared to the German dataset. In the German data, the maximum ISFC for the neurotypical 

group (max=0.359) was higher than for the autism group (max=0.329), whereas the opposite was 

observed in the Finnish data (max=0.462 and 0.474, respectively). The ISFC differences between 

neurotypical and autism groups were significantly correlated between the two datasets (Pearson 

r=0.156, ppermuted < .001), although the group difference was overall larger in the Finnish dataset 

than in the German dataset. The highest ISFC difference reached 0.162 in the Finnish dataset, 

while the maximal difference in the German dataset was 0.084 (Figure 2B). Significant ISFCs 

were observed within and between occipital and parietal/frontal regions in both groups across both 

datasets. Additionally, in the Finnish data, significant ISFCs extended to temporal regions (Figure 

2C). 
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Figure 2. ISFC distribution. (A) Violin plots of pairwise median ISFC values over pairs of regions 

across each group (neurotypical, autism) and each dataset (German, Finnish). The white dot in 

each box plot within the violin plot represents the group’s median ISFC value. (B) Scatterplot of 

ISFC difference (neurotypical-autism) in the German and Finnish dataset. ISFC values are 

pairwise median values across neurotypical and autism participants in each dataset. The 

distributions of the ISFC differences are shown at the top for the German dataset and on the right 

for the Finnish dataset. (C) Count maps of ROI regions with significant pairwise ISFC across four 

subgroups, p < .001. The color of each dot represents the normalized count as a ratio to the 

maximum count within its specific group. Only ROI regions with a normalized count of at least 

0.1 were visualized.  
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Overall, the regions with lower ISFC in autism vs. neurotypical group were similar across German 

and Finnish datasets, focusing on temporo-occipital visual regions, parietal cortex, precentral and 

dorsomedial prefrontal cortex. By contrast, temporal regions showed the reverse ISFC group 

differences (autism>neurotypical) in the Finnish dataset, whereas no such differences were 

observed in the German dataset. To show the differences between groups across brain regions, we 

mapped the number of significant pairwise connections for each ROI onto bilateral brain surfaces 

(Figure 3A, B). Subcortical results are mapped in Figure S1. The detailed counts of all significant 

ROIs are listed in Supplementary Table 5. 

 

 

3.2   Replicable ISFC differences across datasets 

 

We observed 3500 significant pairwise ISFC differences between the groups in the German dataset 

and 3058 pairwise differences in the Finnish dataset (two-sample subject-wise permutation test, 

two-tailed p < .05, uncorrected). 16% of the pairwise effects observed in the German dataset were 

replicated in the Finnish dataset (p < .001). The pairwise links in each dataset and the replicated 

connections are visualized in Figure 3C-E. 

 

As shown in Figure 3F, the largest number of ISFC pairwise group differences were observed 

between the left Occipital Gyrus (OcG) and the left Inferior Parietal Lobule (IPL). The Superior 

Parietal Lobule (SPL) also correlated with ROIs in the visual regions including OcG and Cuneus. 

Besides, the Inferior Frontal Gyrus (IFG) and precentral gyrus showed many correlations with 

visual and parietal regions. Subcortically, ISFC differences were observed between Thalamus 

(Tha), Cerebellum and visual regions. Supplementary Table 6 contains the full list of overlapping 

pairwise ISFC differences across two datasets. 
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Figure 3. ISFC group difference. (A) Count maps of ROIs where neurotypical > autism, p < .01. 

The maximum positive count is 69 for the German dataset and 48 for the Finnish dataset.  (B) 

Count maps of ROIs where neurotypical < autism, p < .01. The maximum negative count is 8 for 

the German dataset and 49 for the Finnish dataset. Only ROIs with at least 5 significant ISFC 

counts were visualized. (C) German ISFC group difference. (D) Finnish ISFC group difference. 

(E) The overlap of ISFC group differences, mapped with the average ISFC difference between 

neurotypical and autism groups across both datasets. The connectome maps were created using 

NiChord (41) (F) The counts of replicated ISFC group differences mapped in combined 

Brainnetome and Cerebellum atlas with a total of 273 ROIs, p < .05. Each annotated value indicates 

the number of significant pairwise ISFCs between the ROI regions listed on the x-axis and y-axis. 

SFG, Superior Frontal Gyrus; MFG, Middle Frontal Gyrus; IFG, Inferior Frontal Gyrus; PrG, 

Precentral Gyrus; PCL, Paracentral Lobule; STG, Superior Temporal Gyrus; MTG, Middle 

Temporal Gyrus; ITG, Inferior Temporal Gyrus; FuG, Fusiform Gyrus; pSTS, Posterior Superior 

Temporal Sulcus; SPL, Superior Parietal Lobule; IPL, Inferior Parietal Lobule; PCun, Precuneus; 

PoG, Postcentral Gyrus; CG, Cingulate Gyrus; Cun, Cuneus; OcG, Occipital Gyrus; Amyg, 

Amygdala; Hipp, Hippocampus; Str, Striatum; Tha, Thalamus; CER, Cerebellum. L, left 

hemisphere; R, right hemisphere; V, vermis.  

 

 

3.3   Effects of sex on the ISFC group differences 

 

We observed higher correlation and replication rates of pairwise ISFC group differences across 

sexes than across countries (Figure 4). The replication rate between German males and females 

was 19% at an ISFC significance level of p < .05. ISFC differences showed significant correlations 

between German males and females (Pearson r = 0.201, ppermuted < .001) and between German 

males and Finnish males (Pearson r = 0.146, ppermuted < .001). However, German females showed 

a weak correlation with Finnish males (Pearson r = 0.022, ppermuted = .130). Overall, males exhibited 

higher ISFCs than females in both diagnostic groups. Notably, ISFC differences between 

neurotypical and autistic individuals in Finnish males more closely resembled those of German 

males those of German females. 

 

 
Figure 4. Scatterplots of ISFC difference (neurotypical-autism) across sexes in German and 

Finnish participants. (A) German males vs. German females. (B) German males vs. Finnish males. 

(C) German females vs. Finnish males. The ROI orders were randomly permuted 5000 times to 

generate the null distribution for the Pearson correlations between different groups.  
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4 Discussion  

 

 

In this cross-national fMRI study, we observed replicable reductions in functional connectivity in 

autistic individuals while they viewed dynamic scenes with social and non-social content. 

Compared to the neurotypical controls, autistic individuals showed replicable inter-subject 

hypoconnectivity between the visual network and dorsal attention network in the occipital and 

parietal cortices during both visual-only and audiovisual conditions. However, hyperconnectivity 

in the superior temporal regions was observed in autism only for audiovisual stimuli. These 

findings align with prior research on reduced neural similarity in autism (17-18, 23). Notably, the 

current results extend previous work by demonstrating replicable, stimulus-driven connectivity 

differences across multiple fMRI datasets and between visual and audiovisual modalities. 

 

 

4.1   Replicable decrease in occipitoparietal/frontal functional connectivity in autism 

 

Compared to neurotypical controls, autistic individuals showed reduced inter-brain functional 

connectivity between occipital and parietal/frontal cortices during visual-only and audiovisual 

stimulation. The most robust replicable differences were observed between the visual network 

(e.g., Cuneus, OcG) and the attention network (e.g., IPL, SPL), as defined by the Yeo network  

(42). 

  

Regions in the IPL, which belong to the dorsal and ventral attention networks, showed reduced 

ISFC in autistic individuals. These regions are critical for action observation and understanding 

the intentions of others (43,44). Decreased activity in the left IPL has been linked to impairments 

in attributing intentions to actions (45). Additionally, atypical IPL connectivity has been associated 

with deficits in social-communicative skills in autism (46). A previous study on prepubertal boys 

with autism reportedreduced left IPL activity starting at an early age, potentially contributing to 

their social difficulties (47). Therefore, the reduced connectivity between the IPL and visual 

regions observed in this study may reflect impaired action understanding in autism, which could 

affect social cognition over time. 

  

The autism group also exhibited reduced ISFCs between the bilateral SPL and visual regions. 

Large area of the SPL that align with the dorsal attention network were involved.  This area plays 

a role in visual attention (48), action observation, and visuomotor integration (49). Prior research 

has shown decreased SPL  activation during motor learning in autistic versus neurotypical 

individuals, with this reduction linked to repetitive behaviors (50). One potential explanation for 

the current findings is that autistic indviduals display idiosyncratic visual attention during movie-

watching and struggle to integrate socially relevant sensorimotor cues (e.g., faces, body 

movements) compared to neurotypical individuals  (see e.g., 17, 51-52). 

  

In the frontal cortex, hypoconnectivity was observed between the IFG and precentral gyrus with 

occipitoparietal regions. The IFG is involved in language processing (53), attention reorientation 

(54,55), inhibitory control (56,57), and social cognition (58). The precentral gyrus is essential for 
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motor planning and execution (59). Reduced ISFC between the right IFG and occipitoparietal 

regions in autism may indicate less-regulated attention to visual stimuli in movie clips. Along with 

the SPL, decreased ISFC between the precentral gyrus and visual regions suggests altered 

coordination between visual input and motor output in autism. As parts of the putative mirror 

neuron system, the precentral gyrus, IFG and IPL participate in observing and imitating actions 

(60,61). Reduced connectivity between these regions and visual areas may underlie the difficulties 

autistic individuals face in understanding and mimicking others’ actions, particularly during tasks 

requiring social attention, such as movie-watching. 

  

In temporal regions, the fusiform gyrus (FFG) exhibited widespread hypoconnectivity with 

occipitoparietal regions. The FFG is known for face recognition (e.g.,, the fusiform face area, 62) 

and object color recognition (63). Its role in social functioning among autistic individuals has been 

extensively studied (64-66). As a key hub in social processing, reduced ISFC between the FFG 

and occipitoparietal regions observed here may underlie the social cognition impairments seen in 

autism. 

  

In subcortical regions, our results demonstrated lower ISFCs between the thalamus/cerebellum and 

visual regions in autistic individuals compared to the neurotypical group. The thalamus is crucial 

for modulating sensorimotor signals and integrating sensory information with motor outputs (67). 

Dysconnectivity between the thalamus and various cortical regions, including prefrontal, temporal, 

and sensorimotor cortices, has been reported in autism (68,69). Similarly, the cerebellum is well-

established in motor control (70,71) and sensorimotor functions (72,73). Recent research has 

expanded its role to social cognition, such as processing social interactions (74,75). The 

cerebellum may mediate links between sensorimotor processes and higher-level social-cognitive 

functions, although this role appears weaker in autistic individuals compared to neurotypical 

controls (75). However, the ISFC differences in the thalamus and cerebellum were smaller than 

those observed in cortical regions (e.g., parietal and frontal areas) connected to visual regions. 

Future research should explore whether such cortical-subcortical ISFC differences are valid in 

autistic individuals compared to neurotypical individuals.  

 

 

4.2   Inter-subject functional hyperconnectivity of temporal regions in autism  

 

In the audiovisual condition, autistic individuals showed stronger ISFCs between temporal (e.g., 

pSTS, STG) and visual regions compared to neurotypical controls. This effect was not observed 

in the visual-only condition. Hyperconnectivity in the left pSTS contrasts with prior findings of 

weaker activity in parts of the pSTS in autism, which are more commonly reported for the right 

hemisphere (76,77). The pSTS plays a key role in receiving polymodal input and integrating 

convergent sensory processes (78), which may explain the aberrant connectivity between temporal 

and visual regions in autism. In the original study using the current stimuli, the bilateral pSTS 

showed widespread activation in response to the videos’ social content (32). Additionally, the 

social context of the movie stimuli can be classified from brain activity patterns in the social 

perceptual network, including the STS and STG (79). These findings suggest that autistic 

individuals may require more neural resources than neurotypical individuals to integrate sensory 

information in social contexts, potentially explaining the observed hyperconnectivity in autism. 
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In the visual-only condition, ISFCs from superior temporal regions were weaker. The absence of 

a soundtrack during the moving-watching task in the German dataset may have reduced ISFC in 

the temporal lobes and could also globally influence ISFC magnitudes. Maximal ISFCs were lower 

in the German dataset compared to the Finnish dataset, which may increase overall ISFC in three 

ways. First, local ISFCs connected to early auditory regions may increasedue to the tight coupling 

of auditory cortical activity with acoustic features of the stimulus (e.g., 80). Second, 

temporofrontal language regions may follow the occurrence of speech during naturalistic 

stimulation (32,80). Third, in a naturalistic fMRI paradigm, the soundtrack likely enhances the 

movie-watching experience by facilitating sensory integration. This enhanced engagement may, 

elevate ISFC levels across different brain regions in audiovisual conditions. 

 

 

4.3   Sex and cross-cultural asymmetry in autism 

 

We observed smaller ISFC differences in autistic females compared to both Finnish and German 

males. However, these between-sex differences were smaller than the between-country 

differences, indicating that sex distribution had only a subtle influence on ISFC variations across 

countries. Sex differences have received increasing attention in autism research (81-83). Autism 

is more commonly diagnosed in males, with an estimated male-to-female ratio of 4:1 (84). Females 

are thought to camouflage their autistic traits better, potentially leading to underdiagnosis (85,86). 

Additionally, autism in females is often associated with fewer social impairments, such as 

communication difficulties, compared to males (87). In this study, all participants in the Finnish 

dataset were male, while the German dataset included both sexes. This difference may have 

contributed to the overall bigger ISFC differences observed in the Finnish dataset.  

 

The replication rate between sexes was 3% higher than that of the between-country comparison, 

suggesting that cross-national factors influenced the observed replication results. The diagnosis 

criteria for autism vary across cultural contexts (88,89), which can introduce additional variability 

when studying inter-subject neural similarity. Culture shapes individuals’ social communication 

and cognition (90), potentially affecting inter-subject variability in neural responses across 

different populations. Future studies should account for both sex-based and cultural variability 

when investigating autism.  

 

 

4.4   Limitations 

 

First, the current study used subject-wise permutation (SWP) without additional statistical control 

for multiple comparisons. Chen et al. (40) showed SWP to be the most effective approach for two-

sample tests in whole-brain voxel-wise analyses of ISC, outperforming other non-parametric 

methods like element-wise permutation and subject-wise bootstrapping in controlling false 

positive rates (see their Figure 2). The BrainIAK toolbox used in the current study was rigorously 

developed based on Chen’s work, giving us confidence in its ability to limit false positives. 

However, future validation with simulated and real datasets, using similar sample sizes and ROI 

configurations, is needed to assess SWP’s robustness.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2025. ; https://doi.org/10.1101/2025.02.04.636405doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.04.636405
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

Additionally, replication challenges in autism research remain significant due to the wide 

variability in clinical symptoms across individuals (4) and cultures (89), which likely reflect their 

diverse neural correlates such as ISFC. Previous research has shown a lack of replication in 

functional connectivity differences between autism and neurotypical groups across multi-site 

datasets (91). Factors such as differences in imaging sites, methodological approaches (e.g., voxel-

wise vs. region-specific analyses), and data analysis flexibility may contribute to the replication 

challenges (25). Furthermore, large sample sizes are critical for replicable results in task-based 

fMRI studies (92). Due to the limited sample size in this study, associations between symptoms 

and brain activity were not examined. Future research should leverage larger samples to explore 

the relationships between clinical symptoms, behavioral characteristics, and the neural effects of 

autism (93). 

 

 

4.5   Conclusion 

  

Our study highlights the idiosyncrasies of brain activity in autistic individuals compared to 

neurotypical group by examining their inter-subject functional connectivity during naturalistic 

movie-watching. The results demonstrated replicable inter-subject hypoconnectivity between 

visual, posterior temporal, and parietal regions in autism across two countries and two stimulation 

conditions. Similar effects were also observed when male and female participants were analyzed 

separately. Additionally, hyperconnectivity in superior temporal regions was observed during the 

audiovisual condition in autism. These findings underscore atypical sensory and attentional 

processing of naturalistic stimuli in autism, emphasizing the potential of ISFC and naturalistic 

fMRI for detecting stimulus-driven neural connectivity changes associated with neurological and 

psychiatric conditions.    
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