

NEUROINFORMATICS AND LARGE-SCALE ANALYSIS

Lauri Nummenmaa, Turku PET Centre

Turku PET Centre Brain Imaging Course 2024

- sizes are compromised
- at minimum
- experimental design and measurements are otherwise sufficient
- replicability.

More is more

• Imaging is often financially prohibitive (>5000 \in / PET scan) thus sample

Potential harm to subject needs to be minimised —> sample sizes kept

Underpowered studies can result in experimental failure even when

Poor statistical power increases Type 1 & 2 error rates and lead to poor

Cremers et al (2017)

Basic problems

Data storage

- Where are my data?
- What if my lab members
 leave?
- How can i reaccess my data?

Data processing

- What are my postdocs
 doing all day long?
- Are you sure the files are good?

Data analysis

- Is everything done lege artis?
- How can we reproduce
 our results?

Data synthesis

- How can we combine
 data?
- What can we combine?

- Meta-analysis: Pooling standardised effect sizes to estimate population effect location and distribution
- For neuroscience, three main approaches
 - ROI level data and classic univariate meta-analysis
 - Coordinate-based data and volumetric meta-analysis
 - Combination of statistical maps from original studies

Solution 1: Meta-analysis

Classic mixed effects meta-analysis

The observed effect T₁ is sampled from a distribution with true effect θ_1 , and variance σ^2 . **This true effect** θ_1 , in turn, is sampled from a distribution with mean μ and variance τ^2 .

Classical meta-analysis

- Easy to perform even with limited statistical knowledge
- Most required functions available in R package metafor:
 - Effect size caluculation / conversion
 - Model estimation
 - Plotting ullet

Standardized Mean Difference

07.	-5.74]	
28.	-5.041	i
08	-4.95	i
24	-4.30	i i
48	-4 41	i i
10	-4 64	
42'	4.04	
92, 72	2 661	
13,	-3.00	
20,	-3.90	
41,	-3.92	
15,	-3.33	
42,	-3.29	
36,	-3.25	
28,	-3.30]	
29,	-3.25]	
83,	-3.56]	
97,	-3.40]	
68,	-3.64]	ĺ
80.	-2.46	İ.
12	-3.11	i i
15	-3.00	1
08	-2.85	
15	-2 72	ł
<u>60</u>	-2.72	
99, 24	2.00	
24,	-3.59	
03,	-2.57	
92,	-2.58	
66,	-2.35	
29,	-2.40]	
43,	-3.09]	
99,	-2.38]	
79,	-2.23]	
58.	-2.21]	ĺ
77.	-1.97	i
34.	-2.28	i i
79	-1.79	1
05	-1.44	
65	-1 70	1
60,	-2.36	ł
24	-1 70	
42 42	2 23	
42,	1 601	
40	-1.00	
49,	-1.87	
76,	-1.56	
90,	-1.43	
91,	-1.18]	
54,	-1.48]	
13,	-1.30]	
20,	-0.71]	
04,	-0.80]	
95,	-0.62	ĺ
08.	-0.19	ĺ

Approach 1: Regional analysis

Spies et al (2015)

Regional meta-analysis: Pros and cons

- Easy to analyse and interpret
- Data comparable in statistical terms
- No need to worry about normalization etc.
- Laborious
- Anatomical nomenclature not consistent
- Misses effects outside chosen ROIs

Approach 2: Peak-based analysis

Individual foci Permutations

Convergence of activation locations at given threshold

Activation Likelihood Estimation (Eickhoff et al 2015)

Thresholding

Right lateral

Positive emotions

Negative emotions

0.005

Nummenmaa, Putkinen & Sams (COiBS 2021)

ALE value

0.02

ALE Pros and cons

- Relatively easy to analyze and interpret
- Full-volume analysis
- No need to worry about normalization
- Effect direction can be accounted for •
- Effect sizes scaled only by sample size
- Requires coordinate-levels data
- Data modelled per peaks —> cluster size not taken into consideration

Approach 3: Automated data mining

Select highest pro

NeuroSynth (Yarkoni et al, 2011)

Meta-analysis

	Semantic	72																						
	Encoding	62	68																					
	Executive	70	61	68																				ĩ
The second second	Language	62	68	70	73																			
	Verbal	69	67	53	69	69														Cla	ssifi	ər		
	Phonological	68	72	79	64	62	76											(perc	enta	ige o	orre	ect)	
	Visual	73	67	63	73	70	67	71																
	Interference	65	62	52	66	57	74	55	66															
pain activation)	Working memory	72	68	54	71	60	75	68	56	70														
200	Conflict	77	67	64	74	67	77	75	61	63	73													
nce	Spatial	77	68	63	76	67	76	67	62	64	71	69												
rking memory?	Attention	74	65	64	74	69	73	69	56	65	67	54	69											
Emotion?	Imagery	69	65	61	68	64	77	61	62	56	72	53	54	67										
	Action	75	70	71	77	69	73	65	64	68	72	63	57	54	71									
Pain?	Sensory	74	73	73	74	71	81	76	69	72	73	65	63	56	60	72								
?	Perception	73	69	74	70	72	75	70	68	73	79	69	67	67	65	59	72							
	Auditory	74	78	73	72	72	74	84	70	76	77	75	77	68	72	76	71	76						
	Pain	85	81	86	84	83	89	83	78	84	78	80	81	80	83	76	77	80	82					
	Reward	79	74	76	84	75	88	78	76	79	80	76	74	76	83	76	74	82	80	77				
	Arousal	75	67	76	79	74	82	74	68	79	76	75	74	74	76	73	74	77	74	65	73			
Daint	Emotion	75	70	81	81	78	83	78	76	80	83	78	80	78	80	76	77	83	83	70	54	76		
Pain	Social	74	68	72	75	73	78	75	74	77	78	75	72	72	74	71	72	77	80	72	58	64	72	
	Episodic	65	61	76	76	75	84	71	75	76	75	72	74	77	75	78	75	79	88	75	73	70	62	72
	Retrieval	71	71	66	75	69	76	75	70	72	75	71	73	71	77	79	76	79	85	75	75	76	72	48
	Recognition	69	60	66	75	68	74	71	65	70	73	70	69	71	75	75	71	80	84	76	70	71	65	57
obability	4	inc i	no .	Nº .	S	60	(a)	Jal.	, co	100	int	ila .	lor .	d is	05	or is	or.	of o	air	big .	sal il	30	101	Sil
	Serra	CUCOC	tecu	angu	Je	noloc	2. 1.	allele.	mon	Cor	ંદર્શ	Atter	mag	PC	Ser	stcop	AUDI	X	Ren	PION	fuo.	So	EPIS'	20th
					8%	Э,	10	orkin	2						8	2								9
							2	-																

neurosynth.org

Neurosynth is a platform for large-scale, automated synthesis of functional magnetic resonance imaging (fMRI) data.

It takes thousands of published articles reporting the results of fMRI studies, chews on them for a bit, and then spits out images that look like this:

An automated meta-analysis of 516 studies of pain

Database Status

507891 activations reported in 14371 studies

Interactive, downloadable meta-analyses of 1334 terms

Functional connectivity and coactivation maps for over 150,000 brain locations

Keyword-based search

 Precompiled meta-analytic maps based on automatically parsed data

Result maps can be downloaded as 3D nifti files for further analysis

Custom analyses and queries possible

Memory

Attention

Face

Motor

A) Distribution of µ-opioid receptors in the brain as measured with [11C]carfentanil PET

B) Overlap between human emotion circuit and the µ-opioid receptor system

*r*_{all} = 0.38 $r_{\text{pleasure}} = 0.44$

Nummenmaa & Tuominen (2018 Br J Pharmac); Kantonen et al (2020 Neurolmage)

Neurosynth: Pros and cons

- Very easy to analyze and interpret
- Data readily available, allows custom analyses
- Full-volume analysis
- If large n, correrlates well with ALE on manual extracted peaks
- Quality contingent on the parser & reporting in studies
- Currently distinguishing activation / condition direction difficult

Solution 2: Large-scale synthesis of old datasets

- than raw data) lower the power of meta-analysis
- can be reanalysed (in Finland with "Rekisteritutkimus")
- needs to be extracted

Between-study variability and reliance on statistical estimates (rather

Existing data are often available and cheap to use given permissions

Data however have to be extracted, reprocessed and the metadata

Integrated approach at PET Centre

Preprocessed BRAIN data

Hospital **PACS**

Automated and supervised quality control

AIVO database

EXTERNAL register sources

SOMATIC WELL BEING

- 1. ICD codes for diagnoses
- 2. Laboratory results
- 3. Frequency of hospitalisation & sickness leaves

PSYCHOLOGICAL FUCNTIONING

- 1. Psychopathology (ICD codes)
- 2. Personality structure
- 3. Disorders of cognition (ICD codes)
- 4. Fluid intelligence and school achievement

SOCIOECONOMIC WELL BEING

- 1. Earning and income transfers
- 2. Education and social status
- 3. Labour market attachment
- 4. Developmental socioeconomic stressors

SOCIAL ATTACHMENT BEHAVIOUR

- 1. Marriage and cohabitation
- 2. Family establishment
- 3. Reproduction and family size

Karjalainen et al (2020)

Malen et al (2022 Neuroimage)

A public repository of unthresholded statistical maps, parcellations, and atlases of the brain.

What is it?

A place where researchers can publicly store and share unthresholded statistical maps, parcellations, and atlases produced by MRI and PET studies.

Why use it?

- A permanent URL
- Publicly shareable

Recently added collections of images from published papers

Name

Genetic, cellular, and connectomic characterization of the brai Principal component analysis reveals multiple consistent respo Attention- versus significance-driven memory formation: Taxo A dynamic gradient architecture generates brain activity state **Towards the Interpretability of Deep Learning Models for Multi Ageing Brain** Whole-brain functional correlates of memory formation in mes HIV infection is linked with reduced error-related default mode management abilities What Executive Function Network is that? An Image-Based Me Reinforcement learning with associative or discriminative gene Residential green space and air pollution are associated with b Log in Search

Search

Interactive visualization

Improves meta-analyses

Get started and upload an image!

	Number of images
in regions commonly plagued by glioma	1
onses to naturalistic stimuli in children and adults	22
onomy, neural substrates, and meta-analyses	3
es a la companya de l	12
i-modal Neuroimaging: Finding Structural Changes of the	27
sial temporal lobe epilepsy	48
e network suppression and poorer medication	6
eta-Analysis of Network Labels	8
eralization across states and actions:	49
prain activation in a social-stress paradigm	17

Kantonen et al (2020 Neurolmage)

Lowered mu-opioid receptor availability in subclinical depression and anxiety

y = -2

Nummenmaa et al (2020 Neuropsychopharmacology)

Z - 1 Right Left

Sun et al (2021 J Neurosci)

Sun et al (2021 J Neurosci)

Common problems with data integration

- Variable imaging equipment
- Standarization of data ulletacquisition
- Metadata description

- Processing pipelines
- Comparability of conditions ullet
- Specificity of effects

- GE Advance
- HR+
- HRRT
- GE Discovery VCT PET/CT 0
- GE Discovery 690 PET/CT 0

Malen et al (submitted)

Solution 3: More is more in the first place

а

Human Connectome Project

UK Biobank

Physical and size Physical cardiac genera /le alcoho tobaccc assav and 3000 /sical ifesty. ensi fest É bone de

Cognitive

Comparison of the approaches

	Specificity	Price	Computational demands
Meta-analysis	Low-medium	Low	Low
Retrospective reuse	Medium	Medium-high	Moderate
Dedicated large- scale study	High	High-stratospheric	High

