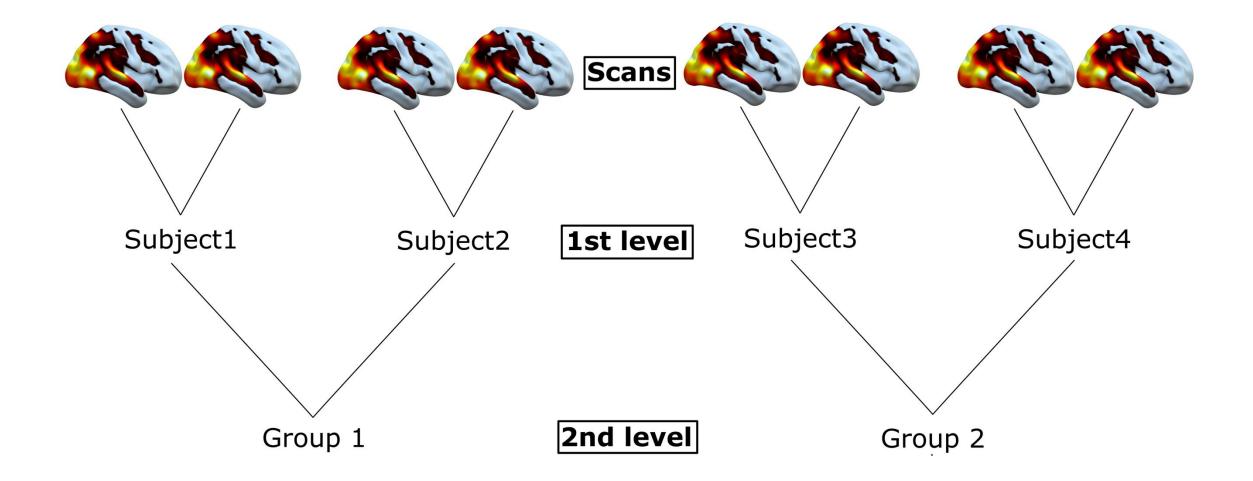


SECOND LEVEL ANALYSIS OF FMRI

Turku PET Centre Brain Imaging Course 2024

Severi Santavirta, Turku PET Centre

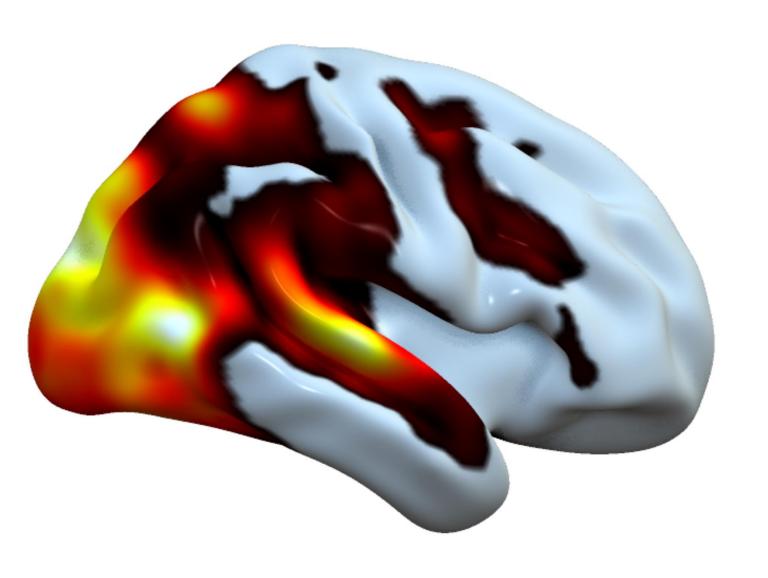
Topics

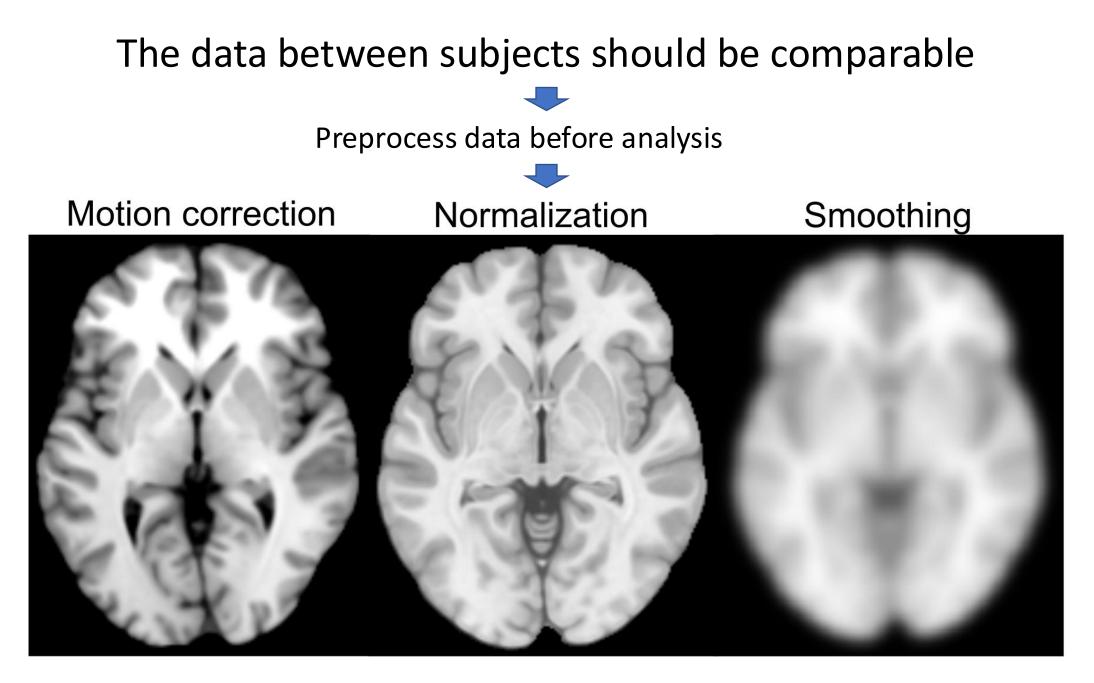

Introduction to the second level analysis

Theoretical framework of the group analysis

Second level models

Multiple comparisons problem


Hierarchical data

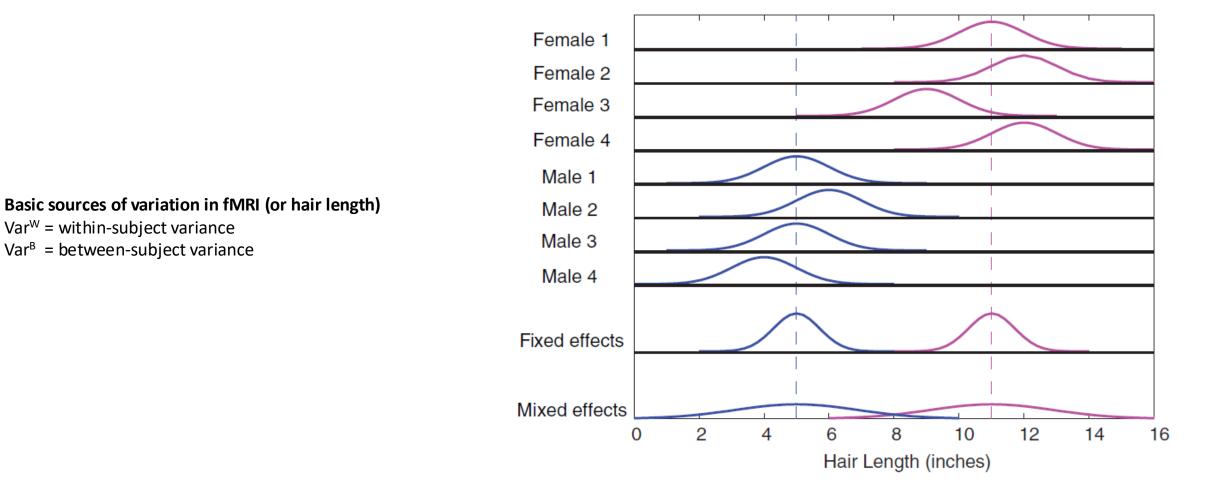

Whole brain analysis Voxel-level analysis Massive univariate analysis

Region-of-interest (ROI) analysis

	Temporal Pole Superior	
T		
Temporal lobe	Temporal Superior	
-	Temporal Middle	
	Occipital Inferior	*
	Occipital Middle	
	Occipital Superior	
• • • • • • •	Lingual	
Occipital lobe		
·	Calcarine	
	Cuneus	
	Fusiform	
	Parietal Superior	
	Parietal Inferior	
	Supramarginal	
Deviated to be	Rolandic Operculum	
Parietal lobe	Precuneus	
	Angular	
	Paracentral Lobule	
	Postcentral	
	Precentral	
	Supplementary Motor Area	
	Cingulate Posterior	
	Cingulate Middle	
	Cingulate Anterior	•
	Frontal Superior	
Frontal lobe	Frontal Superior Medial	
i i ontai iobe	Frontal Middle	
	Frontal Inferior Triangular	
	Frontal Inferior Operculum	
	Frontal Inferior Orbital	
	Orbitofrontal Posterior	
	Orbitofrontal Lateral	
	Olfactory	
	Parahippocampal	•
	Hippocampus	
	Insula	•
Subcortex	Amygdala	
Subcortex	Thalamus	
	Pallidum	
	Caudate	
	Putamen	

What if I am only interested in doing ROI analysis?

Introduction to the second level analysis


Theoretical framework of the group analysis

Topics

Second level models

Multiple comparisons problem

1st level analysis, 2nd level analysis, fixed effects, mixed effects... HELP!

(Poldrack, Nichols, & Mumford, 2011)

Fixed effects model

Mixed effects model

Var^w

Variance used in the analysis

Var^w + Var^B

Describe study sample only

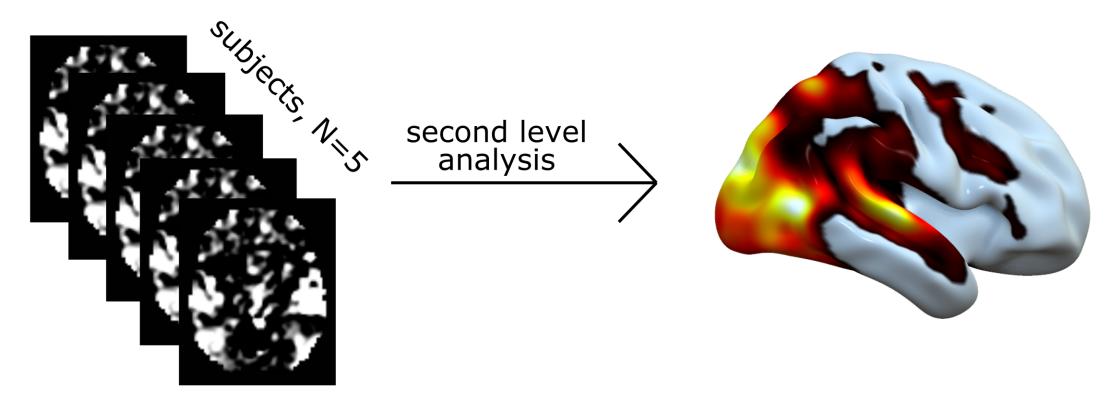
Generalize to population

Combine repeated measures within subjects

Group analysis of fMRI

Mixed effects model in fMRI mathematically

• Within subject variance estimation (1st level model)


$$Y_s = \beta_s X + \varepsilon_s, \varepsilon_s \sim N(0, \sigma_{subject}^2)$$
(1)

• Between subject variance estimation (2nd level model)

$$\beta_s = \beta_b X_b + \varepsilon_b, \varepsilon_b \sim N(0, \sigma_{between}^2)$$
 (2)

 Full mixed effects model would estimate within & between subject variances simultaniously => Computationally demanding to estimate!

Summary statistics approach (mixed effect model)

First-level statistical parametric maps

Population level results

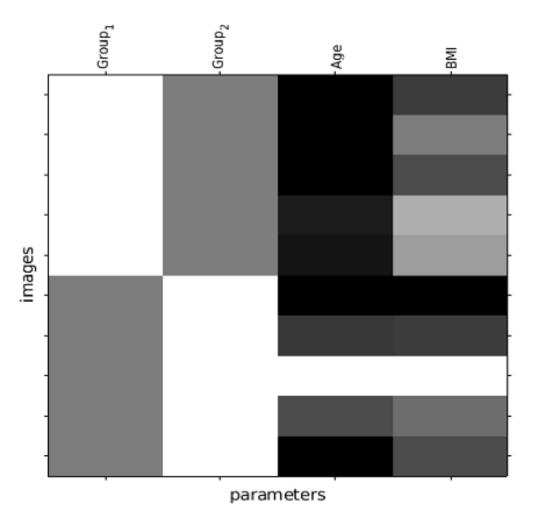
Topics

Introduction to the second level analysis

Theoretical framework of the group analysis

Second level models

Multiple comparisons problem


Second level design matrix in SPM

• Rows

• Subjects

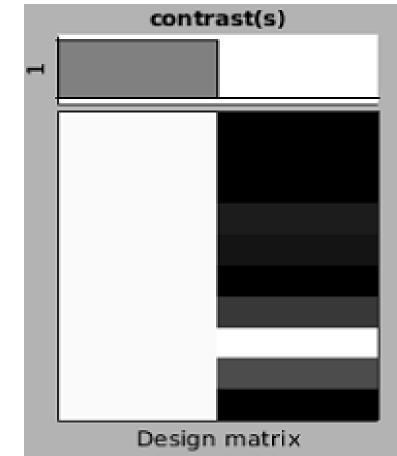
Columns

- Variables describing between subject variatio
- Effect of each column will be estimated

One sample T-test

• β_{1st level}

- Subjectwise association between the stimulus condition and BOLD signal
- These are estimated in the 1st level analysis

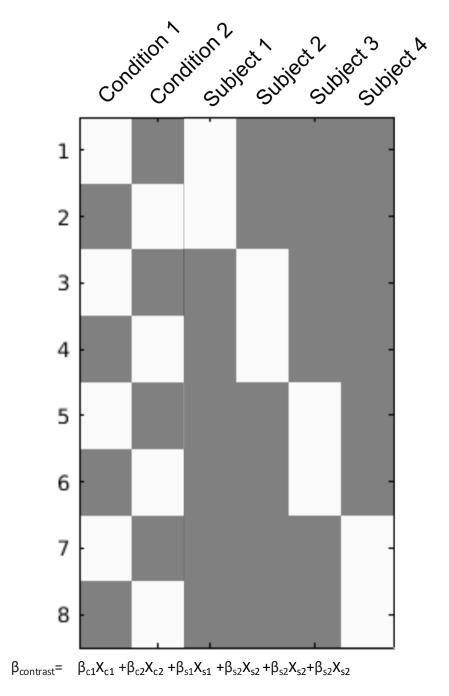

• β_{main}

- Is BOLD signal associated with the stimulus condition on the population level?
- [1 0] in SPM contrast manager

• $\beta_{2nd \ level}$

- Does a subjective factor (e.g age) explain the subjectwise differences in the association?
- [0 1] in SPM contrast manager for positive effect
- [0 -1] for negative effect

 $\beta_{1st \, level} = \beta_{main} + \beta_{2nd \, level} X_{covariate}$

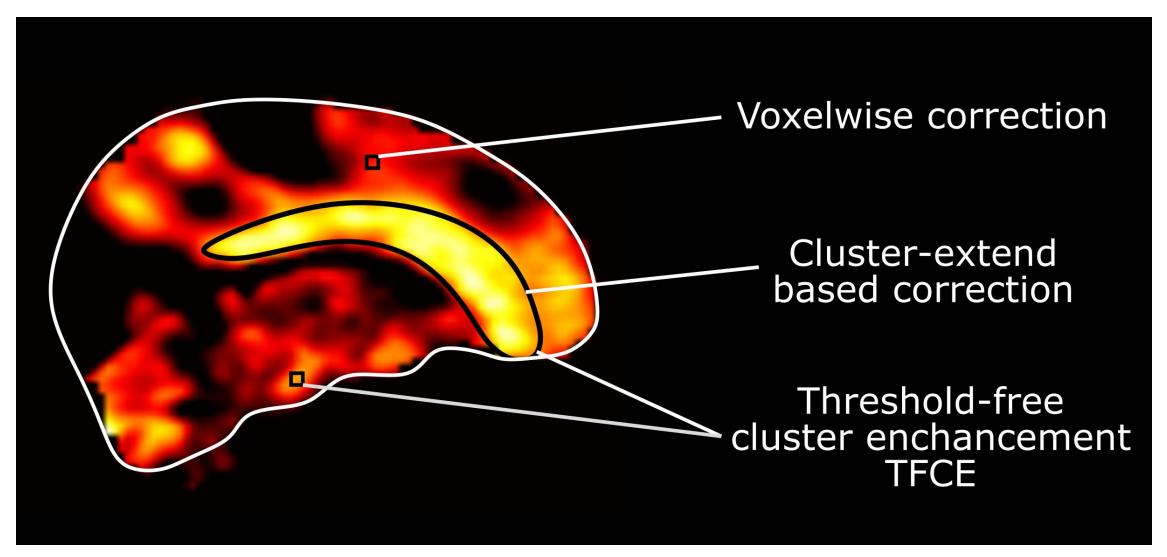

Two sample T-test

- H: Brain activity is different between two groups of subjects
- Group1 > Group2 with two additional covariates
 - SPM contrast $[1 1 0 0] = \beta_{gr1} \beta_{gr2}$
 - "Whether females have increased brain response for the 1st level condition than males when age and BMI are controlled for"

Paired T-test

- H: There is a difference between conditions in the brain response (two scans per subject)
- 4 subjects, 2 scans per subject
- Condition
 - Cross-sectional
 - Baseline vs. Stimulus
 - Longitudinal
 - Before treatment vs. After treatment
- Condition 2 > Condition 1
 - SPM contrast [-1 1 0 0 0 0] = $-\beta_{c1} + \beta_{c2}$
 - "Brain response associated with happy faces is higher after treatment"

Topics

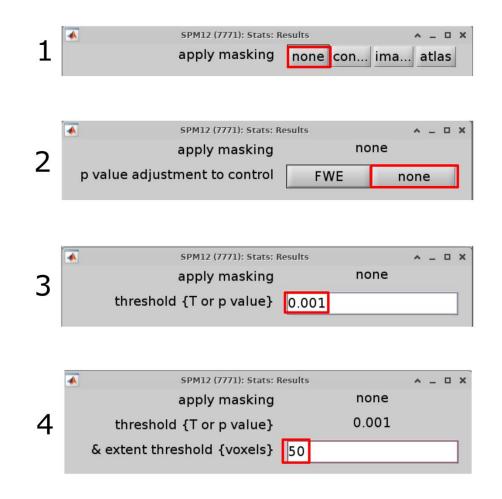

Introduction to the second level analysis

Theoretical framework of the group analysis

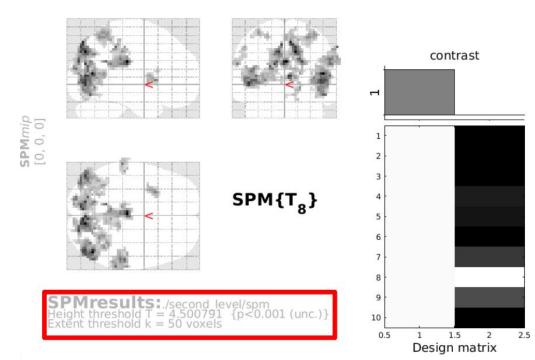
Second level models

Multiple comparisons problem

Multiple comparisons correction methods

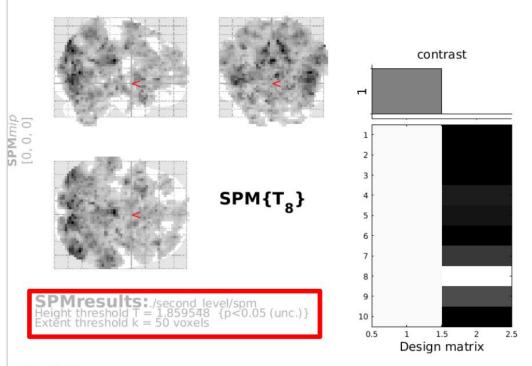

(Review: Lindquist & Mejia, 2015)

Voxelwise multiple comparisons correction


- Family-wise error rate (FWER) (Lindquist & Mejia, 2015)
 - Probability of making one or more false positives
 - Bonferroni correction
 - "5% probability that there is **at least one** false positive finding"
 - 0.05 / number of tests = corrected p-value threshold
- False discovery rate (Benjamini & Hochberg, 1995)
 - "On average no more than 5% of our findings are false positives"

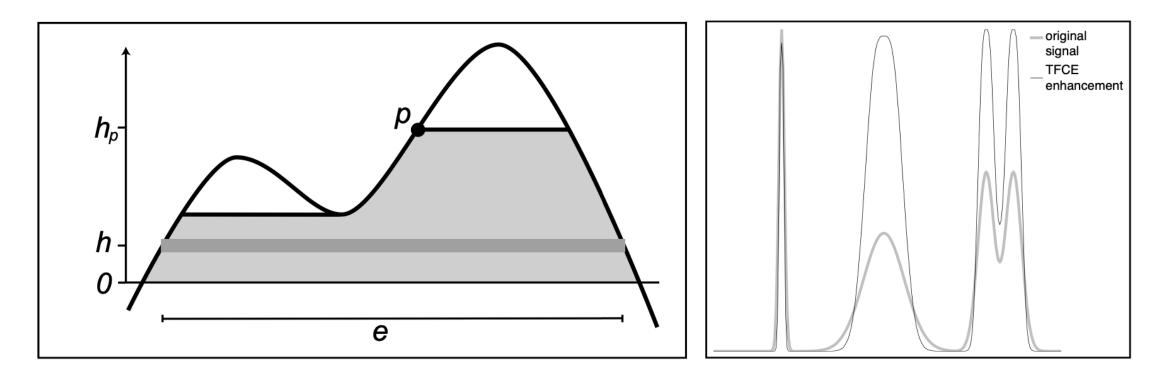
Cluster-extend based correction (Lindquist & Mejia, 2015)

- Accounts for the spatial dependency between voxels
- "What is the probability to observe an activating cluster of this size under the null hypothesis of no activation"
- Twp-step procedure
 - 1. Choose primary voxel-level threshold
 - 1. e.g. p < 0.001
 - 2. Choose minimum size of a cluster
 - 1. As number of voxels, e.g. 50
 - 2. Usually selected based on the desired cluster level FWER level
- Be cautious, may yield more false positives than expected


Main effect

Statistics:	p-values	adjusted	for search	volume
Statistics:	p-values	aajustea	for search	voiume

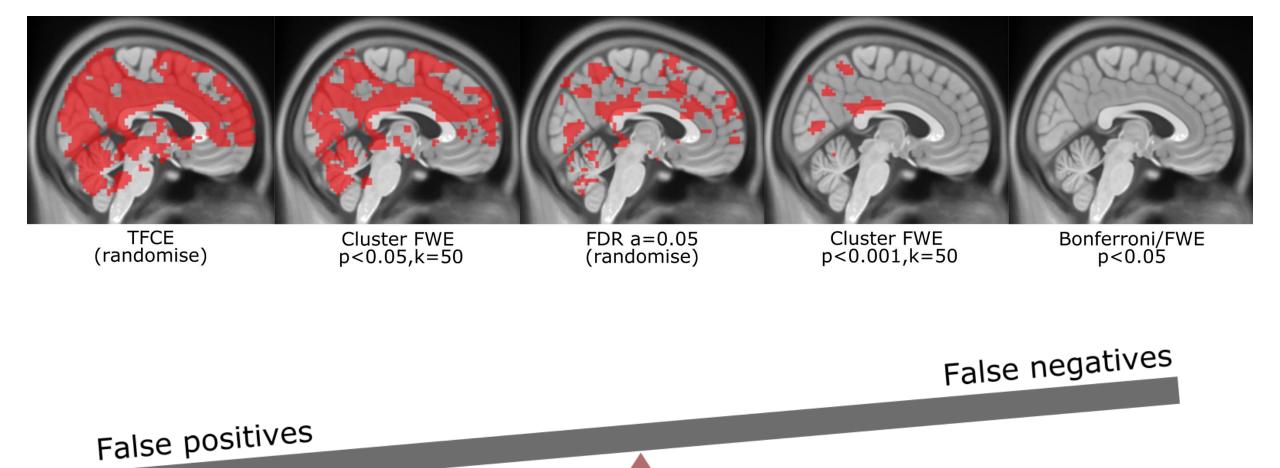
set-level p c		cluster-level				peak-level					mm	mm	
		P _{FWE-con}	r q _{FDR-corr}	k _E	p _{uncorr}	P _{FWE-cor}	P _{FWE-corr} q _{FDR-corr} T		$(Z_{\rm E})$	p _{uncorr}	mm mn		1 11111
0.000	10	0.000	0.000	453	0.000	0.014	0.507	14.69	5.04	0.000	48	-69	12
		Tool Constant in the			Sola ber Salit	0.099	0.507	11.33	4.65	0.000	45	-78	3
						0.188	0.581	10.40	4.52	0.000	48	-72	-15
		0.000	0.000	166	0.000	0.016	0.507	14.39	5.01	0.000	0	-24	27
						0.242	0.581	10.06	4.46	0.000	-12	-51	27
						0.593	0.581	8.91	4.27	0.000	0	- 33	24
		0.000	0.000	1011	0.000	0.019	0.507	14.10	4.98	0.000	12	-78	39
						0.040	0.507	12.77	4.83	0.000	6	-81	51
						0.061	0.507	12.06	4.75	0.000	3	- 78	9
		0.000	0.000	202	0.000	0.296	0.581	9.79	4.42	0.000	66	- 39	45
						0.296	0.581	9.79	4.42	0.000	57		24
						0.425	0.581	9.32	4.34	0.000	57	- 33	30
		0.000	0.000	57	0.000	0.536	0.581	9.03	4.29	0.000	-63		24
						0.999	0.606	7.34	3.94	0.000	-54		45
						1.000	0.824	5.45	3.43	0.000	- 57	- 33	33
		0.000	0.000	68	0.000	0.764	0.581	8.61	4.21	0.000	-27	12	3
						1.000	0.641	6.70	3.79	0.000	-30	3	3
						1.000	0.719	6.05	3.61	0.000	-21	15	15
		0.000	0.000	55	0.000	0.831	0.591	8.51	4.19	0.000		-66	-6
						1.000	0.694	6.24	3.66	0.000	23733	-60	0
		course spectra			00.09850.83	1.000	0.705	6.20	3.65	0.000	12		- 9
		0.000	0.000	130	0.000	0.991	0.606	8.17	4.12	0.000	30	-60	57


Main effect

Statistics: p-values adjusted for search volume

set-level cluster-level			vel	peak-level						mm	mm	mm	
p	С	P _{FWE-corr}	q _{FDR-corr}	k _E	p _{uncon}	P _{FWE-corr}	q _{FDR-co}	orr T	(Z _E)	p _{uncorr}			
1.000	3	0.000	0.000	18190	0.000	0.014	0.309	14.69	5.04	0.000	48	-69	12
						0.016	0.309	14.39	5.01	0.000	Θ	-24	27
						0.019	0.309	14.10	4.98	0.000	12	-78	39
		0.003	0.000	668	0.000	0.536	0.355	9.03	4.29	0.000	-63	-30	24
						0.999	0.370	7.34	3.94	0.000	-54	-27	45
						1.000	0.503	5.45	3.43	0.000	- 57	-33	33
		0.893	0.253	163	0.013	1.000	0.490	5.60	3.48	0.000	-36	39	24
						1.000	0.503	5.34	3.39	0.000	- 39	45	33
						1.000	0.658	4.22	2.98	0.001	-24	42	33

Threshold-free cluster enchancement (TFCE)



TFCE = h_p (voxelwise t-value) * e (amount of supporting voxels)

 \rightarrow The voxelwise significance is adjusted by the amount supporting voxels

 \rightarrow Significance of each voxel is assessed with permutations and then corrected for multiple comparisons

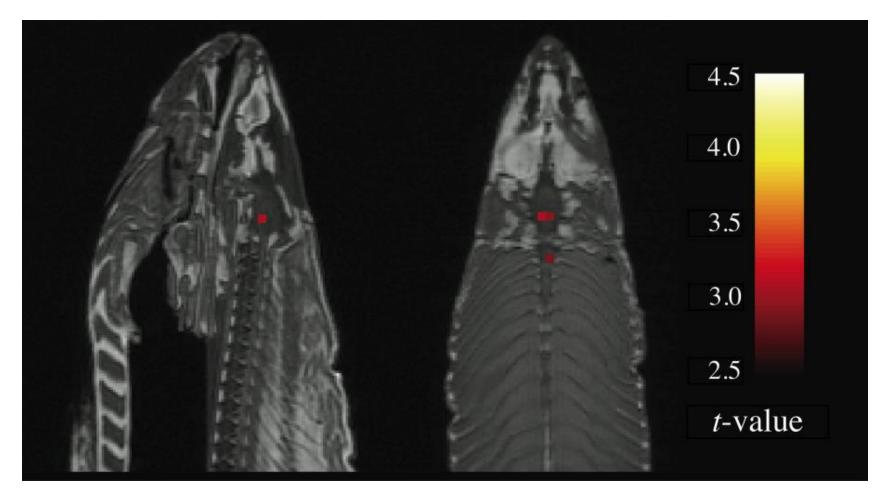
(Smith & Nichols, 2009)

Conservative correction inflates effect size estimates

Topics

Introduction to the second level analysis

Theoretical framework of the group analysis


Second level models

Multiple comparisons problem

- Motivation for non-parametric tests in group analyses (Eklund, Nichols, & Knutsson, 2016)
 - 1. Voxelwise multiple comparisons methods may produce too conservative findings and cluster-based methods more false positives than expected
 - 2. Non-parametric tests have been shown to correct better for multiple comparisons.
 - 3. Non-parametric tests do not make assumptions of the distribution of the statistic.
- Tools for non-parametric tests
 - SnPM (Doc: https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/software/snpm)
 - FSL Randomise (Winkler, Ridgway, Webster, Smith & Nichols, 2014)
 - One and two sample (unpaired/paired) T-tests, repeated measures anova
 - Easy to output statistical result maps with various different multiple comparisons methods
 - Including TFCE method
 - Doc: <u>https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise</u>

Do not end up finding activations in a dead salmon's brain.

Correct for multiple comparisons!

(Bennet, 2011)

References

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Statistical Methodology, 57(1), 289-300. doi:DOI 10.1111/j.2517-6161.1995.tb02031.x

Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. *Proc Natl Acad Sci U S A*, *113*(28), 7900-7905. doi:10.1073/pnas.1602413113

Lindquist, M. A., & Mejia, A. (2015). Zen and the art of multiple comparisons. *Psychosom Med*, 77(2), 114-125. doi:10.1097/PSY.0000000000000148

Poldrack, R. A., Nichols, T., & Mumford, J. (2011). Handbook of Functional MRI Data Analysis. *Cambridge: Cambridge University Press*. doi:10.1017/cbo9780511895029

Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. *Neuroimage*, 44(1), 83-98. doi:10.1016/j.neuroimage.2008.03.061

Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. *Neuroimage*, *92*, 381-397. doi:10.1016/j.neuroimage.2014.01.060

Bennett, B. Miller, & Wolford. (2011). Neural Correlates of Interspecies Perspective Taking in the Post-Mortem Atlantic Salmon: An Argument For Proper Multiple Comparisons Correction. Journal of Serendipitous and Unexpected Results, 1(1), 1-5.