

## First level fMRI data analysis

Turku PET Centre Brain Imaging Course 2024

Lihua Sun, Turku PET Centre



### Outline

- What is 1<sup>st</sup> level analysis?
- Statistical models
- Contrasts
- Examples for illustration
  - -Operation in SPM12
  - -Reading the results, e.g., the contrasts

### What is 1st level analysis?

• fMRI data analysis has two levels: 1st (withinsubject) and 2nd (group-level).





One subject's raw T2\* data

The subject's statistical map

### Within-subject: comparison between PET and fMRI data

**1. Traditional PET** 







#### Density e.g., glucose uptake

#### 2. fMRI

Time





Statistical map

### Why is 1st level analysis?

• BOLD signals are dominated by noise:

physiological factors (breathing, heart rate), head movement, scanner instabilities, magnetic susceptibility artifacts, and neuronal variability, leading to low signal-to-noise ratio

#### >> preprocessing NOT enough!

- Multiple repeated exposure to stimuli to increase signal-to-noise ratio.
- Statistical analysis to extract the signal-associated brain responses >> statistical map

### The general linear model (GLM) family



### Voxel-level data modelling



Stimuli

Image available via license: <u>CC BY-NC 4.0</u>

- BOLD responses are delayed: peak at 4-6 s and baseline 20-30 s.
- Convolved with the hemodynamic response function (HRF)
- The linear time-invariant (LTI) system



#### Block design

# Event-related design: two continuous regressors (laughter vs. scrambled laughter regressors)



### Four example studies

- 1. Social laughter experiment
- 2. Naturlistic movie stimuli
- 3. Repeated measure food-reward responses
- 4. Resting states

### The laughter experiment

Laughter is a contagious behavioural stimulus that is commonly used to study social brain functions. We have studied the social brain functions of participants with high psychopathy or autism traits. >> Sun L., et al., Cerebral Cortex, Volume 33, Issue 2, 15 January 2023

#### Four stimuli types:

Laughter / Crying vocalization / Scrambled laughter / Scrambled Crying

#### Block (also event-related) design



The 16.5 s block contains 5 Laughter, crying, or scrambled sound clips.

### SPM12

- SPM theoretical concepts of Statistical Parametric Mapping in a complete analysis package.
- Run in matlab
- <u>See more information:</u> <u>https://www.fil.ion.ucl.ac.uk/spm/s</u> <u>oftware/spm12/</u>





### **Operation in SPM12**

| Batch Editor File Edit View SPM BasicIO                                                                        |                                                                                                                                                                                                                                                                                                     |                                                                                                |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                |
| Module List                                                                                                    | Current Module: fMRI model specification                                                                                                                                                                                                                                                            |                                                                                                |
| fMRI model specification <-X                                                                                   | Help on: fMRI model specification<br>Directory<br>Timing parameters<br>. Units for design<br>. Interscan interval<br>. Microtime resolution<br>. Microtime onset<br>Data & Design<br>Factorial design<br>Basis Functions<br>. Canonical HRF<br>. Model derivatives<br>Model Interactions (Volterra) | <-X<br><-X<br><-X<br><-X<br>16<br>8<br><-X<br>E<br>No derivatives<br>Do not model Interactions |
|                                                                                                                | Masking threshold<br>Explicit mask                                                                                                                                                                                                                                                                  | None<br>0.8                                                                                    |
| Statistical analysis of fMRI data<br>the following steps (1) specification<br>using classical or Bayesian appr | uses a mass-univariate approach based on Ge<br>of the GLM design matrix, fMRI data files and f<br>paches and (3) interrogation of results using                                                                                                                                                     | neral Linear Models (GLMs). It comprises                                                       |

The design matrix defines the experimental design and the nature of hypothesis testing to be implemented. The design

Parametric Maps (SPMs) or Posterior Probability Maps (PPMs).

| SDM12: parameter setting                      |
|-----------------------------------------------|
|                                               |
|                                               |
|                                               |
| urrent Module: fMRI model specification       |
| elp on: fMRI model specification              |
| Pirectory Result to store                     |
| iming parameters                              |
| Units for design seconds Basic settings       |
| Interscan interval 2.6                        |
| Microtime resolution                          |
| Microtime onset                               |
| lata & Design                                 |
|                                               |
| asis Functions                                |
| Canonical HRF Regressor building              |
| . Model derivatives                           |
| Iodel Interactions (Volterra)                 |
| Iobal normalisation - or specify it necessary |
| lasking threshold                             |
| xplicit mask                                  |
|                                               |







# SPM12: setting contrasts



### Contrasts

Experimental conditions: stimuli or interest vs. control stimuli

- Your interest is often the difference between the two conditions, which is "contrast"
- You can calculate the difference, sum or separately each conditions, which are calculated by different linear contrasts.
- We only introduce T contrast in this lecture !!



Difference between conditions

$$[1 -1] = "Con1 > Con2"$$
  
 $[-1 1] = "Con1 < Con2"$ 

Separately [ 1 0] or [ -1 0] = "main effect Con1" [ 0 1] or [ 0 -1] = "main effect Con2"

#### More regressors



- [11-1-1]: (A+B) > (C+D)
- [1-11-1]: (A+C) > (B+D)
- o [ 1 0 0 0 ] : main effect of A
- [1100]: Sum of (A+B) vs the mean of the signal

#### SPM12: result



Design matrix

### Example 2: Naturalistic stimuli

# Naturalistic fMRI offers ecological validity, engages complex brain functions, richer data, better participant engagement, etc.

>> Santavirta S. et al., NeuroImage, Volume 272, 15 May 2023, 120025 >> Nummenmaa L., et al., Cerebral Cortex, Volume 31, Issue 9, September 2021, Pages 4104–4114

#### **Movie-based fMRI**

- ✓ Ratings of different dimensions (social, emotional, neutral, objective...)
- Each regressor should contain certain number of stimuli. CAN NOT be too small number!







|                           | SPM12: parameter setting                 |    |
|---------------------------|------------------------------------------|----|
|                           |                                          |    |
| o                         |                                          |    |
| Current Module: fMRI mode | a specification                          |    |
| Help on: fMRI model s     | pecification                             |    |
| Directory                 | Result to store                          |    |
| Timing parameters         |                                          |    |
| . Units for design        | scan 1 Dependent variables               |    |
| . Interscan interval      | Dependent variables                      |    |
| . Microtime resolution    |                                          |    |
| . Microtime onset         |                                          |    |
| Data & Design             | Current Module: fMRI model specification | _  |
| Factorial design          | Data & Design                            | 1  |
| Basis Functions           | . Subject/Session                        |    |
| . Canonical HRF           | Scans All scan volumes <-X               | L  |
| Model derivatives         | Conditions                               |    |
| Model Interactions (      |                                          | 33 |
| Global normalisation      | e.g. Self control numans                 | 8  |
| Evolicit mask             |                                          |    |
| LAPICITIASK               | Time Modulation                          |    |
|                           | Parametric Modulations                   |    |
|                           | Orthogonalise modulations Yes            |    |

#### **Controlling for low-level regressors**



#### positive



| set-le | evel |                    | cluster-                | level             |                     |                     | р                    | eak-le | vel               |                     | -    |      |     |
|--------|------|--------------------|-------------------------|-------------------|---------------------|---------------------|----------------------|--------|-------------------|---------------------|------|------|-----|
| р      | с    | P <sub>FWE-c</sub> | orr <sup>q</sup> FDR-co | rr <sup>k</sup> E | P <sub>uncorr</sub> | P <sub>FWE-co</sub> | mq <sub>FDR-co</sub> | nr T   | (Z <sub>=</sub> ) | P <sub>uncorr</sub> | mm   |      |     |
| 1.000  | 100  | 0.009              | 0.002                   | 1576              | 0.000               | 0.026               | 0.025                | 5.21   | 5.07              | 0.000               | 46   | -72  | - 6 |
|        |      |                    |                         |                   |                     | 0.211               | 0.055                | 4.67   | 4.57              | 0.000               | 48   | - 56 | 8   |
|        |      |                    |                         |                   |                     | 0.701               | 0.100                | 4.23   | 4.15              | 0.000               | 54   | -66  | 6   |
|        |      | 0.034              | 0.005                   | 1272              | 0.000               | 0.070               | 0.034                | 4.97   | 4.85              | 0.000               | - 52 | -76  | 6   |
|        |      |                    |                         |                   |                     | 0 700               | 0 100                | 4 3 5  | 4 00              | 0 000               | EO   | 66   | 0   |

#### Statistics: p-values adjusted for search volume

### Example 3: Repeated measure food-reward

Food reward experiment has been used in decoding the brain conceptualizeion of satiation as induced by secretin hormone.

>> Lauri S., Sun L., et al., Nature Metabolism, volume 3, pages 798–809 (2021)

#### Twelve 16.2s blocks for each food category Blocks in pseudo-randomized order 6 food stimuli intermixed with 3 fixations in one block



- Control condition vs. condition with infusion of secretin.
- Each subject **scanned twice** with fMRI: one in control condition, the other under intervention (secretin infusion).

|        | Current Module: fMRI model specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                           |    |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           | _  |  |  |  |  |
| Step 1 | Current Module: fMRI model sport<br>Data & Design<br>. Subject/Session<br>. Scans<br>. Conditions<br>. Conditions<br>. Condition<br>. Name<br>. Onsets<br>. Durations<br>. Durations<br>. Time Modulation<br>. Parametric Modulations<br>. Orthogonalise modulatic<br>. Multiple conditions<br>. Regressors<br>. Multiple regressors<br>. High-pass filter<br>. Subject/Session<br>. Scans<br>. Conditions<br><b>Current Item: Data &amp; Design</b><br>New: Subject/Session<br>Replicate: Subject/Session (1)<br>Replicate: Subject/Session (2)<br>Delete: Subject/Session (1) | accification     Current Module: fMRI model specification     Scans     Conditions     Conditions     Conditions     Onsets     Durations     Durations     Time Modulation     Parametric Modulations     Orthogonalise modulations     Onsets     Onsets     Onsets     Onsets     Onsets     Durations |    |  |  |  |  |
|        | Delete: Subject/Session (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Replicate: Condition (2)<br>Delete: Condition (1)<br>Delete: Condition (2)                                                                                                                                                                                                                                |    |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           | 30 |  |  |  |  |









### Example 4: resting state fMRI

- ReHo = regional homogeneity: larger value indicates a higher regional synchronization.
- ALFF = amplitude of low-frequency fluctuation: indicate the magnitude of neural activity
- FC = functional connectivity (between ROIs): interregional correlations

frontiers in SYSTEMS NEUROSCIENCE



DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI

Yan Chao-Gan\* and Zang Yu-Feng\*

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China

### Toolbox for rs-fMRI analysis

- Matlab based
- Download DPARSF from: <u>http://rfmri.org/DPARSF</u>

| The R-fMRI Network<br>a network for supporting resting-state fMRI related studies. |            |          |       |      |                | Q Log in / Register |       |  |  |  |
|------------------------------------------------------------------------------------|------------|----------|-------|------|----------------|---------------------|-------|--|--|--|
| Home                                                                               | Networking | Learning | Tools | Data | PubMed Studies | The R-fMRI Lab      | About |  |  |  |



| Data Processing Assistant for Resting-State fMRI |                                     |                             |                          |  |  |  |  |  |
|--------------------------------------------------|-------------------------------------|-----------------------------|--------------------------|--|--|--|--|--|
| Advance                                          | d Edition DPA                       | <b>RSF</b> A                |                          |  |  |  |  |  |
| Working Directory:                               | 1/Dropbox/ITraAllOnline/ITraAll/ITr | aData/DPARSF_Updating       | •••                      |  |  |  |  |  |
| Participants                                     |                                     | Time Points: 0<br>TR (s): 0 |                          |  |  |  |  |  |
| Template P ᅌ 🗸 EPI DIC                           | COM to NIFTI V T1 DICOM to N        | NIFTI BIDS to DPARS         | F                        |  |  |  |  |  |
| Apply Mats 🗸 Remove First                        | 10 Time Points 🗹 Slice Timing       | Slice Number: 0 Sliv        | ce Order: [1 3 5 7 9 11  |  |  |  |  |  |
| Reference Slice: 0                               | FieldMap Correction                 | 🗸 Realign 🗌 Voxel-          | Specific Head Motion     |  |  |  |  |  |
| 🗹 Reorient Fun* 🗹 AutoMask                       | Crop                                | T1 🗹 Reorient T1* 🗹 Be      | t 🔽 T1 Coreg to Fun      |  |  |  |  |  |
| Segment V New Segment + DAR                      | TEL Affine Regularisation           | in Segmentation: 🔵 East     | Asian 🧿 European         |  |  |  |  |  |
| Vuisance Covariates Regression                   | Polynomial trend: 1 Head I          | Notion model: 🔵 Rigid-bo    | dy 6 Derivative 12       |  |  |  |  |  |
| • Friston 24 Voxel-specific                      | c 12 Head motion scrubbin           | g regressors                |                          |  |  |  |  |  |
| Nuisance regressors (WM, CSF, Glo                | bal) Other covariates               | Add mean back Filte         | r (Hz): 0.01 ~ 0.1       |  |  |  |  |  |
| ✓ Normalize Bounding Box: [-90 -                 | 126 -72;90 90 Voxel Size: [3 3      | 3]                          |                          |  |  |  |  |  |
| Normalize by using EPI templates                 | Normalize by using T1 image         | unified segmentation        | Normalize by DARTEL      |  |  |  |  |  |
| Smooth Smooth by DARTEL                          | FWHM: [4 4 4]                       |                             |                          |  |  |  |  |  |
| O Default mask O No mask O U                     | Iser-defined mask Use Default Ma    | sk 📃 🗌 Warp Mas             | ks into Individual Space |  |  |  |  |  |
| Detrend Nuisance Covar                           | iates Regression 🗸 ALFF-            | +fALFF Band (Hz): 0.01      | ~ 0.1 V Filter           |  |  |  |  |  |
| Scrubbing V ReHo Cluster:                        | 7 19 • 27 voxels                    | Smooth ReHo 🗹               | Degree Centrality        |  |  |  |  |  |
| Functional Connectivity 🗸 Extra                  | act ROI time courses Define ROI     | Define ROI Inte             | eractively* CWAS         |  |  |  |  |  |
| Normalize to Symmetric Template                  | e 🗸 Smooth 🗸 VMHC 🗌                 | Normalize Derivatives       | Smooth Derivatives       |  |  |  |  |  |
| Parallel Workers #: 0                            | Functional Sessions #: 1            | Starting Directory Name:    | FunRaw                   |  |  |  |  |  |
| Help Save                                        | Load Utilities Quit                 | Run                         |                          |  |  |  |  |  |

### Summary

- The first level analysis is a within-subject analysis, necessary due to the low signal-noise ratios.
- Experimental design decides the statistical model.
- We have showed 4 example studies on how to conduct the first level analysis.
- Using **Contrasts** to view the results
- Contrast images are ready for second level analysis.

### References

- Sun, Lihua, et al. "Aberrant motor contagion of emotions in psychopathy and high-functioning autism." Cerebral Cortex 33.2 (2023): 374-384.
- Santavirta, Severi, et al. "Functional organization of social perception networks in the human brain." NeuroImage 272 (2023): 120025.
- Nummenmaa, Lauri, et al. "Brain basis of psychopathy in criminal offenders and general population." Cerebral cortex 31.9 (2021): 4104-4114.
- Laurila, Sanna, et al. "Secretin activates brown fat and induces satiation." Nature metabolism 3.6 (2021): 798-809.
- Yan, Chaogan, and Yufeng Zang. "DPARSF: a MATLAB toolbox for" pipeline" data analysis of resting-state fMRI." Frontiers in systems neuroscience 4 (2010): 1377.











### Thanks!

### Correspondence:

lihua.sun@utu.fi; sunlihua@fudan.edu.cn