WELCONETO THE PET NEUROIMAGINGCOURSE

Turku PET Centre Brain Imaging Course 2024

Lauri Nummenmaa, Turku PET Centre

EPISODE IV Η COMPOSED BY JOHN WILLIAMS

Objectives

- Understand basic principles of human neuroimaging
- Know basics of PET and structural and functional MR imaging
- Grasp the basic pharmacokinetic models behind PET imaging
- Understand the nuts and bolts of (F)MRI and PET data preprocessing and modelling
- Learn the principles of statistical analysis of brain imaging data
- Total 5 ECTS credits

Practical stuff

- Materials available at <u>emotion.utu.fi/neurocourse</u>
- throughout the course (see webpage)
- **Day 1**: Principles of neuroimaging •
- **Day 2:** Practical issues in brain imaging and data analysis •
- **Day 3:** Advanced topics in brain signal analysis ullet

Lectures streamed and stored on Echo360, Q/A session on Discord

Computer labs

- **Day 4**: Data preprocessing •
- **Day 5**: Statistical inference •

 Note – we have limited seats at the computer labs, please bring your own laptop if possible so we don't have to share the lab computers!

Examination

MICHAEL E. PHELPS

CAMBRIDGE FUNDAMENTALS OF NEUROSCIENCE IN PSYCHOLOGY

Introduction to Human Neuroimaging

HANS OP DE BEECK AND CHIE NAKATANI

- Electronic examination on the Uni Turku Exam system
- Multiple choice questions • from books and lectures
- Open from Oct 1st to Dec 31st
- **NOTE:** only available Uni Turku students, external attendants can get certificate for participation upon request

BASIC PRINCIPLES OF HUMAN NEUROIMAGING

Lauri Nummenmaa, Turku PET Centre

Turku PET Centre Brain Imaging Course 2024

The human brain

- Weight 1.3 1.5 kg; volume ~ 1.3 l
- A total of **86 billion** neurons
- Main function: to coordinate the human bodily functions via spinal cord and its innervation
- Brains receive, process and store information gathered by the senses to predict the future
- Most important manifestation of brain function: **behaviour**
- Protected by skull, meninges and brainblood barrier

Newborn

1 month

6 months

2 years

What do we want to know about brain?

- LOCATION: Where different processes (consciousness, emotions, memory...) happen?
- SPEED: When and at which time scales different processes occur in the brain?
- **MECHANISMS:** How different processes occur in the brain?
- INDIVIDUAL DIFFERENCES: Do different groups (patients / controls; men / women...) differ in the above?
- CAUSALITY: How we can influence brain function with external manipulations (learning, experience, drugs...)

Mental arithmetic Rest: Alpha waves return

EMI central laboratories & MNI

Portnow (Neurology 2013)

Eldow et al (2019)

Adapted from Hari (2018)

Fast reactions with slow brains

Β

Α

С

Buszaki et al (2013 Neuron)

Richn

Level of awareness

Healthy awake subject

Locked in syndrome

Vegetative state

MCS

Maturation / atrophy

	Personality
lental hea	lth
vation	
usness	

Hours Days Years Months

Gross anatomical changes occur in the absence of changes in behaviour and mental processes

Young epilepsy patient

...and vice versa!

Old school cognitive neuroscience

Video courtesy of prof. Pirjo Nuutila

Tracing

Histology

Sturcture

Diffusion imaging

A.G. Martinos Center

Youngsun et al (2013 J Neurosci)

Brain states

Single cells

Cellular resolution

Temporal resolution

MEG

fMRI

Control baseline Cocaine baseline

Spatial resolution

Molecular resolution

Whole-body biological circuits CT PET-CT PET

Image courtesy of Mueez U-Din 7 Turku PET Centre

Imaging: seeing the invisible

Tomographic imaging

Same target - multiple contrasts

Transmitters

Structure

Transporters

Connections

Function

Lesion mapping

Morphometric analysis

Voxel-based morphometry (VBM)

Surface analysis (FreeSurfer)

Positron emission tomography

Mu-opioid receptors

Type 2 dopamine receptors

[¹¹C]carfentanil

[¹¹C]raclopride

Serotonin transporters

Glucose metabolism

[¹¹C]MADAM

Brain activity and attention during natural vision

Mean brain activity (n=104)

Individual () and mean (heatmap) gaze position

Brain activity

Activation Deactivation

Lahnakoski et al (2017 Hum Brain Mapp)

Sensory stimulus (Star Wars Episode IV)

Movie features