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ABSTRACT 

Anorexia nervosa (AN) is a severe psychiatric disorder, characterized by restricted eating, fear to gain 

weight, and a distorted body image. Mu-opioid receptor (MOR) functions as a part of complex opioid 

system and supports both homeostatic and hedonic control of eating behavior. Thirteen patients with 

AN and thirteen healthy controls (HC) were included in this study. We measured 1) MOR availability 

with [11C]carfentanil positron emission tomography (PET), 2) brain glucose uptake (BGU) with 2-

deoxy-2[18F]fluoro-D-glucose ([18F]FDG) PET during hyperinsulinemic-euglycemic clamp and 3) 

blood-oxygen-level-dependent signal with functional magnetic resonance imaging. All subjects 

underwent a screening visit consisting of physical examination, anthropometric measurements, fasting 

blood samples, an oral glucose tolerance test, psychiatric assessment, and an inquiry regarding 

medical history. Body fat mass (%) was measured and M value was calculated. MOR availability 

from caudate and putamen was higher in patients with AN and those from nucleus accumbens (NAcc) 

and thalamus showed the higher trend in patients with AN. There was no area where MOR 

availability was lower in patients with AN. BGU was not different between AN and HC. MOR 

availability and BGU were negatively correlated in caudate, NAcc and thalamus and showed the trend 

of negative association in putamen. In conclusion, AN is associated with higher MOR availability in 

the brain regions implicated in reward processing, while BGU remains unaltered. Therefore, the 

endogenous opioid system might be one of the key components underlying AN. This better 

understanding of AN could support the development of new treatments for AN.  

 

 

 

 

 

 

 

 



INTRODUCTION 

 Anorexia nervosa (AN) is a severe psychiatric disorder, characterized by restricted eating, 

fear to gain the weight, and a distorted body image 1. The peak age of AN onset is during adolescence, 

and more than 90% of AN patients are females 1. The exact cause of AN is unknown, however, a 

combination of genetic, neurobiological, psychological and environmental factors might affect the 

development of AN 2. Comorbidities of mood disorders, anxiety disorders, obsessive-compulsive 

disorders, autism spectrum disorder, and attention-deficit hyperactivity disorder are common in AN 3. 

Also, patients with AN can have medical complications as a direct result of weight loss and 

malnutrition, such as hypoglycemia, osteoporosis, sarcopenia, cerebral atrophy, organ damage, and 

sudden death from arrhythmia 4.  

Treatment of AN aims to restore body weight, mend the body image, eliminate the 

problematic eating patterns and develop long-term behavioral changes 3. Current therapeutic 

approaches of AN include psychotherapy, medications as well as dietary advice 3. The prognosis of 

patients with AN remains however poor, with the highest mortality rate among all psychiatric 

disorders 1. Among the surviving patients, less than 50% recover, whereas one third improve, and 20% 

remain chronically ill 5. Therefore, understanding the pathophysiology of AN is crucial in the 

development of an effective treatment for AN.  

Alterations of multiple neurotransmitter systems are linked with AN. Positron emission 

tomography (PET) using receptor or transporter binding radiopharmaceuticals has been utilized to 

understand the role of neurotransmitter systems in AN. Increased serotonin 1A receptor of temporal, 

frontal lobes and amygdala 6, decreased serotonin 2A receptor of frontal, parietal and occipital lobes 7 

and increased cannabinoid 1 receptor of both cortical and subcortical areas 8 was reported with a 

regard to reward processing in eating behavior. However, there was no significant difference of 

dopamine receptor between patients with AN and healthy controls (HC) 9, although mesolimbic 

pathway in AN works differently during reward learning and responding 10. Also, fasting brain 

glucose uptake (BGU) was investigated with 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG) PET 



showing the inconsistent results of either global hypometabolism 11 or hypermetabolism of frontal 

lobe, hippocampus, amygdala and insula in AN 12.  

The opioid system modulates motivation and reward processing and consequently is 

intimately linked with appetite and weight regulation 13. Opioid agonists increase and opioid receptor 

antagonists decrease food intake and opioid receptor agonists stimulate food intake and the hedonic 

responses to palatable foods 14. Feeding also leads to the release of endogenous opioid in humans 15. 

In morbid obesity, mu-opioid receptor (MOR) availability was decreased 13 and weight loss after 

bariatric surgery normalizes MOR availability, suggesting weight-dependent regulation of MORs 16. 

Also, lower MOR availability is associated with the increased familial obesity risk such as parental 

obesity or diabetes 17. Therefore, MOR functions as a part of complex opioid system and supports 

both homeostatic and hedonic control of eating behavior 18. 

Here, we investigated whether MOR and BGU are altered in patients with AN with 

comparison to HC. We used PET scans with MOR-specific ligand [11C]carfentanil to quantify MOR 

availability and with [18F]FDG during hyperinsulinemic, euglycemic clamp, to study brain glucose 

metabolism. We hypothesized that AN would be associated with the alteration of MOR with a regard 

to reward processing and BGU with a regard to insulin sensitivity. 

 

MATERIALS AND METHODS  

The study was conducted in accordance with the Declaration of Helsinki and approved by 

the Ethics Committee of the Hospital District of Southwest Finland. This study is a part of AVAIN 

project registered at ClinicalTrials.gov (Anorexia Nervosa and Its Effects on Brain Function, Body 

Metabolism and Their Interaction, NCT05101538). All participants signed ethics committee-approved 

informed consent forms prior to inclusion.  

Subjects and study design 

 We recruited 13 patients with AN for the study. All patients with AN were required to meet 

the following criteria: 1) female, 2) age 18-32 years, 3) body mass index (BMI) < 17.5kg/m2, 4) 

currently fulfilling modified DSM-IV diagnosis of AN with or without amenorrhea, 5) AN onset 



before the age of 25 years, 6) no lifetime history of binge eating and 7) diagnosed less than 2 years 

ago. Patients with AN were compared with 13 HC who met the following criteria: 1) female, 2) age 

18-32 years, 3) BMI 20-25 kg/m2 and 4) no lifetime history of obesity (BMI  30kg/m2) or eating 

disorders. Exclusion criteria were any chronic disease or medication that would affect glucose 

metabolism or neurotransmission, history of psychiatric disorders (apart from AN), and abusive use of 

alcohol. Subjects underwent a screening consisting of physical examination, anthropometric 

measurements, fasting blood samples, a 75 g oral glucose tolerance test (OGTT), psychiatric 

assessment, and an inquiry regarding medical history. Body fat mass (%) was measured with an air 

displacement plethysmograph (the Bod Pod system, software version 5.4.0, COSMED, Inc., Concord, 

CA, USA) after at least 4 h of fasting. M value was calculated as a measure of insulin sensitivity as 

previously described 19 and expressed as per kilogram of fat-free mass, because this normalization 

minimizes differences due to sex, age, and body weight 20.  

Brain PET acquisition  

We measured MOR availability with high-affinity agonist radioligand [11C]carfentanil with 

high sensitivity, and specificity for MORs. BGU was quantified with radioligand [18F]FDG during 

hyperinsulinemic-euglycemic clamp. Scans were done on two separate visits. The subjects were 

advised to abstain from physical exercise in the PET scan days and the day before. PET studies were 

done after a 12-h overnight fast. Computed tomography scans were acquired before PET scans for 

attenuation correction. For [11C]carfentanil PET scan, a catheter was placed in the subject’s left 

antecubital vein for tracer administration. After injection of [11C]carfentanil, PET scan was acquired 

for 51 min (13 frames). For [18F]FDG PET scan, hyperinsulinemic-euglycemic clamp was applied as 

previously described 21, 22 to measure whole-body insulin sensitivity. After reaching steady glycemia, 

[18F]FDG was injected intravenously and a peripheral scan for heart (5 min) and abdomen (25 min) 

was done before brain dynamic PET scan for 15 mins (3 frames*5 min). Arterialized venous blood 

samples were taken to measure plasma activity, glucose, and insulin. The plasma radioactivity was 

measured by automatic gamma-counter (Wizard 1480 3”, Wallac, Turku, Finland). Anatomical T1-

weighted magnetic resonance (MR) images (TR, 8.1 ms; TE, 3.7 ms; flip angle, 7°; scan time, 263 s; 



1 mm3 isotropic voxels) were obtained for anatomical normalization and reference; T2-weighted and 

fluid-attenuated inversion recovery (FLAIR) images were obtained to exclude significant brain 

pathology. 

Brain PET analysis 

An in-house automated processing tool (Magia 23; https://github.com/tkkarjal/magia) was 

used to process the PET data. Processing began with motion-correction of the PET data followed by 

coregistration of the PET and MRI images. Magia uses FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) 

to define the regions of interest (ROIs) as well as the reference regions. The regional (ROI-wise) 

kinetic modeling was based on extracting ROI-wise time-activity curves. Voxel-wise parametric 

images were also generated, spatially normalized to MNI-space and finally smoothed using a 

Gaussian kernel. BGU-estimates ( mol/min/100g) obtained from FDG PET data are based on 

fractional uptake rate multiplied by the average plasma glucose concentration from the injection until 

the end of the brain scan, divided by the lumped constant for the brain (set at 0.65) 24. MOR 

availability was quantified by binding potential (BPND), which is the ratio of specific binding to non-

displaceable binding in the tissue with simplified reference tissue model. Occipital cortex was used as 

the reference region 25. For a full-volume comparison between AN and HC, the statistical threshold in 

statistical parametric mapping analysis was set at a cluster level and corrected with false discovery 

rate with p < 0.05.  

fMRI acquisition 

fMRI scans were acquired after overnight fasting. We used a previously established task 

protocol 26 for inducing anticipatory reward, by showing the participants pictures of palatable (for 

example, chocolate, pizza, cakes) and bland (for example, lentils, cereal, eggs) food pictures. This 

task simulates situations where appetite is triggered by anticipating the actual feeding via visual 

food cues, such as those in advertisements. The pictures were rated in a previous study by 

independent participants; the ratings showed that the appetizing foods were evaluated more pleasant 

than the bland foods, t(31) = 4.67, p < 0.001 27. During the tasks, functional data were acquired with 

gradient echo-planar imaging (EPI) sequence, sensitive to the blood-oxygen level-dependent imaging 



(BOLD) signal. Participants viewed alternating 16.2-s epochs with pictures of palatable or non-

palatable foods. Each epoch contained nine stimuli from one category intermixed with fixation 

crosses. Each food stimulus was presented on either the right or the left side of the screen, and 

participants were instructed to indicate its location by pressing corresponding buttons. This task was 

used simply to ensure that participants had to pay attention to the stimuli. Stimulus delivery was 

controlled by the Presentation software (Neurobehavioral System, Inc.). Functional data were 

acquired using 3-Tesla Philips Ingenuity PET/MR scanner and using EPI sequence with the following 

parameters: TR, 2,600 ms; TE, 30 ms; flip angle 75°, 240*240*135 mm3 FOV, 3*3*3 mm3 voxel size. 

Each volume consisted of 45 interleaved axial slices acquired in ascending order. A total of 165 

functional volumes were acquired, with additional five dummy volumes acquired and discarded at the 

beginning of each run. Anatomical reference images were acquired using a T1-weighted sequence 

with following parameters: TR 8.1 ms, TE 3.7 ms, flip angle 7°, 256*56*176 mm3 FOV, 1*1*1 mm3 

voxel size. 

fMRI analysis 

Preprocessing of MRI images was performed using FMRIPREP (v.1.3.0.2) 28, a Nipype 

(v.1.1.9) 29 based tool. Each T1-weighted image was corrected for intensity non-uniformity with 

N4BiasFieldCorrection (v.2.1.0) 30 and skull-stripped on the basis of the OASIS template with 

antsBrainExtraction. sh workflow (ANTs v.2.2.0). Brain surfaces were reconstructed using recon-all 

from FreeSurfer (v.6.0.0) 31, and the brain mask estimated previously was refined with a custom 

variation of the method to reconcile ANTs- and FreeSurfer-derived segmentations of the cortical grey 

matter using Mindboggle 32. Spatial normalization to the ICBM 152 non-linear asymmetrical template 

v.2009c 33 was done with non-linear registration using the antsRegistration tool 34. Tissue 

segmentation of cerebrospinal fluid, white matter and grey matter was performed on the brain-

extracted T1w using fast 35 from FSL (v.5.0.9). fMRI images were slice time corrected with 3dTshift 

from AFNI (v.16.2.07) 36 and motion corrected with mcflirt 37 from FSL. This was followed by 

coregistration to the corresponding T1w via boundary-based registration 38 with nine degrees of 

freedom, using bbregister from FreeSurfer. These steps were concatenated and applied in a single step 



via antsApplyTransforms with the Lanczos interpolation. Physiological noise regressors were 

obtained using CompCor 39, where principal components were estimated for temporal and 

anatomical variants. A mask to exclude signal with cortical origin was created via eroding the brain 

mask, ensuring it merely originating from subcortical structures. Six temporal CompCor components 

were then calculated including the top 5% variable voxels within that subcortical mask. For 

anatomical CompCor components, six components were calculated within the intersection of the 

subcortical mask and the union of cerebral spinal fluid and white matter masks, after projection to the 

native space of each functional run. Frame-wise displacement 40 was calculated for each functional 

run using the implementation of Nipype. Finally, ICA-based automatic removal of motion artefacts 

was used to generate aggressive noise regressors and also to create a variant of data that is non-

aggressively denoised 41. The quality of images was assessed using FMRIPREP’s visual reports, 

where data were manually inspected for whole-brain field of view coverage, alignment to the 

anatomical images and artefacts. 

Statistical analysis 

Data are presented as mean±SD. Normality of data distribution was tested with Shapiro-Wilk 

test. Two-sample t-test was used to compare MOR availability, BGU, and subjects’ characteristics 

across groups. Pearson correlation analysis was used to determine the association between MOR 

availability, BGU and BMI, M value. Statistical analysis was carried out in R Statistical Software 

(The R Foundation for Statistical Computing).  

 

RESULTS 

Subject characteristics 

Thirteen patients with AN (20.5±1.7 years) and thirteen HC (23.8±3.3 years) were enrolled 

in this study. The key characteristics of the study groups are shown in Table. As expected, patients in 

the AN group had significantly lower BMI (16.7±1.2 kg/m2 vs 22.8±1.9 kg/m2; p<0.0001), body fat 

mass (20.2±7.5 % vs 33.6±5.4 %; p<0.0001), systolic blood pressure (102.6±6.9 mmHg vs 

113.5±10.7 mmHg; p=0.0066) and diastolic blood pressure (64.8±4.7 mmHg vs 76.8±9.1 mmHg; 



p=0.0005) as compared to the controls .Whole body insulin sensitivity M-value measured with 

hyperinsulinemic-euglycemic clamp per body weight and minute was significantly higher in AN than 

HC (40.1±13.4 µmol/(kg*min) vs 28.4±10.0 µmol/(kg*min); p=0.0197). All subjects underwent both 

[11C]carfentanil and [18F]FDG brain PET scans except for one AN who did not participate in the 

[18F]FDG PET scan.  

MOR availability, BGU, and BOLD signal 

MOR availability from caudate (p=0.0192) and putamen (p=0.0264) was higher in AN than 

HC, and those from nucleus accumbens (NAcc) (p=0.0504) and thalamus (p=0.0850) showed the 

higher trend in patients with AN (Figure 1). Full-volume analysis revealed a consistent finding that 

shows higher MOR availability of caudate, putamen, NAcc, thalamus, and orbitofrontal cortex in AN 

(Figure 2). However, in [18F]FDG PET scans, BGU was not significantly different between AN and 

HC in both ROI analysis and voxel-wise analysis. MOR availability and BGU were negatively 

correlated in caudate (r=-0.4680; p=0.0183), NAcc (r=-0.4310; p=0.0315) and thalamus (r=-0.4094; 

p=0.0421) and showed the trend of negative association in putamen (r=-0.3880; p=0.0553) (Figure 3). 

In a subgroup analysis, MOR availability and BGU were negatively correlated in caudate (r=-0.6153; 

p=0.0332), NAcc (r=-0.6801; p=0.0149) and thalamus (r=-0.6173; p=0.0325) of AN, not in those of 

HC (Supplementary figure). In addition, there was no difference of hemodynamic brain activity of 

viewing palatable versus non-palatable foods between patients with AN and HC.  

 

DISCUSSION 

Our main finding is that MOR availability in patients with AN was higher in brain regions 

implicated in reward processing, while BGU was not different between patients with AN and HC. 

Negative correlation between MOR availability and BGU was observed in caudate, NAcc, and 

thalamus. The effect of upregulated MOR availability is a mirror image of the downregulated MOR 

system in obesity 13, 42, 43. Studies have also found that upregulation of MORs occurs following weight 

loss 42, 43. Altogether these data show how cerebral glucose metabolism is maintained in typical levels 



even under severe undernutrition, whereas central MOR systems adapt to the peripheral dysregulation, 

potentially contributing to the mood changes in patients with AN.  

Upregulated Mu-Opioid Receptor Availability in AN 

AN is a severe psychiatric disorder characterized by an extremely low body weight, fear to 

gain weight and a distorted body image with comorbid mood disorders, major depressive disorders, 

anxiety disorders, obsessive-compulsive disorders, autism and attention-deficit hyperactivity disorder 

3. The etiology of AN is complicated and involves genetic, neurobiological, psychological and 

environmental factors 2. Some patients with AN start losing the weight voluntarily and after several 

months, they have a positive experience with losing the weight, however, facing a difficultly to eat 

normally, causing discomfort and anxiety 2. As they have amplified negative experiences when trying 

to eat normally, the vicious cycle of AN is established 2. The treatment of AN includes medical care 

such as monitoring of vital signs and hydration, diet and psychotherapy to restore a healthy weight 2. 

However, the prognosis of AN is still poor with the highest mortality rate among all psychiatric 

disorders 1. In addition, post-treatment relapse rates exceed 30% 44. Thus, central molecular pathways 

contributing to feeding, mood, and reward would be linked with AN.  

 In line with this hypothesis, we found that central MOR upregulation was observed in 

patients with AN. The endogenous opioid system and particularly MORs are associated with both 

homeostatic and hedonic control of eating behavior 18 as well as mood regulation 45. Opioid 

antagonists decrease food intake and opioid receptor agonists stimulate food intake and the hedonic 

responses to palatable foods 14. Also, the consumption of both palatable and nonpalatable meals 

triggers the release of endogenous opioid 15. Individual variation in MOR is also associated with 

anticipatory reward responses, and lowered MOR availability is linked with stronger BOLD fMRI 

responses to appetizing foods in frontal and cingulate cortices, striatum and amygdala of the reward 

and emotion circuit 26. In the present study, upregulated MOR availability in patients with AN was 

observed in brain regions implicated in reward processing, which might be associated with reduced 

pleasure in eating behavior, a refusal to eat and this would lead to a vicious cycle of AN. This result is 

also in line with previous studies in obesity. Our group has previously shown that MOR availability is 



higher in nonobese subjects than morbidly obese subjects (22.7±2.9 kg/m2 vs 41.9±3.9 kg/m2) 13, and 

that was higher in patients with AN than HC (16.7±1.2 kg/m2 vs 22.8±1.9 kg/m2) in this study. Thus, 

it is possible that the MOR availability scales with BMI with highest availability in patients with AN 

and lowest in morbidly obese subjects, with HC in between. However, explanations based on reward-

based versus metabolically driven alterations are not mutually exclusive, and cannot be dissociated in 

the present cross-sectional study.  

Prior studies have found no difference of striatal dopamine receptor availability between 

patients with AN and HC 9, however, there is a possibility of MOR-induced disruption of the reward 

pathway through dopamine system in AN, which was reported in morbid obesity 46. One previous 

study with [11C]diprenorphine, a non-selective opioid receptor radiopharmaceutical, compared MOR 

availability between patients with AN and HC 47. Interestingly, opioid receptor availability was lower 

(rather than higher as in our study) in anterior cingulate cortex, insula, frontal, temporal and parietal 

lobes, suggesting the potential involvement of reward circuit modulation and anxiety in AN 47.    

In addition to MORs, alteration of other neurotransmitter systems have been linked with AN. 

Increased serotonin 1A receptor of temporal, frontal lobes and amygdala 6 and decreased serotonin 2A 

receptor of frontal, parietal and occipital lobes 7 in patients with AN were reported after comparison 

with HC. Also, cannabinoid 1 receptor was increased in both cortical and subcortical areas of AN 8. 

Involvement of serotonin and cannabinoid systems in AN is not surprising as both have an important 

role in eating behavior regarding reward pathway. Also, histamine 1 receptor of limbic system, 

particularly amygdala was significantly higher in AN with a possibility of the involvement of 

histamine system in psychological symptoms such as emotional changes to food and body image as 

well as eating behavior 48. However, there was no significant difference of dopamine receptor between 

patients with AN and HC 9, although mesolimbic pathway in AN works differently during reward 

learning and responding 10.  

Brain glucose uptake  

In addition to MOR availability, we contrasted BGU between patients with AN and HC. 

Although there was no difference in BGU between patients with AN and HC, a negative correlation of 



M value, a measure of insulin sensitivity, with BGU was observed, consistent with previous findings 

49. Global cerebral hypometabolism was observed in patients with AN using dynamic acquisition of 

[18F]FDG PET without hyperinsulinemic-euglycemic clamp 11. This altered brain glucose 

metabolism may be a consequence of low body weight and prolonged starvation state induced acido-

ketosis 50 or a morphologic factor such as enlargement of cortical sulci and ventricles 51 or changes in 

the permeability of blood vessels 11. However, another study with static acquisition of [18F]FDG PET, 

hypermetabolism of frontal lobe, hippocampus, amygdala, insula and hypometabolism of parietal lobe 

was reported 12. The method of [18F]FDG PET acquisition might affect the result of BGU in AN and 

HC and, currently, [18F]FDG PET during hyperinsulinemic euglycemic clamp is the gold standard 

for measuring regional tissue glucose uptake rates 52. A negative correlation between MOR 

availability and BGU was observed in the same brain regions that showed the higher MOR 

availability in AN. These data show that BGU is maintained despite the overall poor metabolic states 

of patients with AN, could indicate that the brains have to be kept up and running at all costs. In 

addition, there is a possibility of altered MOR leading to the constant BGU state by the interaction 

between MOR and BGU in patients with AN.  

Strengths and Limitations 

Our study has provided deep phenotypical evaluation of patients with AN and matched HC. 

The combination for the first time of two PET tracers is also a considerable strength. Our study also 

has limitations. First, as AN is more predominant in females, we included only females with AN in 

this study. Therefore, the results may not be applicable in males. Second, as patients with AN may be 

particularly sensitive to questions regarding their eating behavior, we did not perform a questionnaire 

of eating behavior on participants so we could not link the changes in MOR availability and BGU 

with their eating behaviors. Third, the study was relatively small, yet despite this we observed robust 

differences in MOR availability. Finally, higher MOR availability from [11C]carfentanil PET BPND 

may reflect either an increased number of receptor proteins or an increased affinity to bind this 

radioligand agonists and it remains unclear whether this change in opioid system is the cause or the 

result of AN.  



AN is associated with higher MOR availability in the brain regions implicated in reward 

processing, while BGU remains unaltered. Therefore, the endogenous opioid system might be one of 

the key components underlying AN and concomitant alterations in food intake and mood. The better 

understanding of the pathophysiology of AN could eventually lead to the development of new 

treatments for AN.  
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FIGURE LEGENDS 

Figure 1. Comparison of MOR availability (BPND) between anorexia nervosa and healthy controls 

 

Figure 2. Brain regions showing higher MOR availability (BPND) in anorexia nervosa versus healthy 

controls (FDR corrected p<0.05) 

 

Figure 3. Correlation between MOR availability (BPND) and BGU ( mol/min/100g) in anorexia nervosa 

and healthy controls 

 

 

 


