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Abstract: Accurate positron emission tomography (PET) data quantification relies on high-quality
input plasma curves, but venous blood sampling may yield poor-quality data, jeopardizing modeling
outcomes. In this study, we aimed to recover sub-optimal input functions by using information from
the tail (5th–100th min) of curves obtained through the frequent sampling protocol and an input
recovery (IR) model trained with reference curves of optimal shape. Initially, we included 170 plasma
input curves from eight published studies with clamp [18F]-fluorodeoxyglucose PET exams. Model
validation involved 78 brain PET studies for which compartmental model (CM) analysis was feasible
(reference (ref) + training sets). Recovered curves were compared with original curves using area
under curve (AUC), max peak standardized uptake value (maxSUV). CM parameters (ref + training
sets) and fractional uptake rate (FUR) (all sets) were computed. Original and recovered curves
from the ref set had comparable AUC (d = 0.02, not significant (NS)), maxSUV (d = 0.05, NS) and
comparable brain CM results (NS). Recovered curves from the training set were different from the
original according to maxSUV (d = 3) and biologically plausible according to the max theoretical
K1 (53//56). Brain CM results were different in the training set (p < 0.05 for all CM parameters and
brain regions) but not in the ref set. FUR showed reductions similarly in the recovered curves of the
training and test sets compared to the original curves (p < 0.05 for all regions for both sets). The IR
method successfully recovered the plasma inputs of poor quality, rescuing cases otherwise excluded
from the kinetic modeling results. The validation approach proved useful and can be applied to
different tracers and metabolic conditions.

Keywords: input function; Feng input; Bayesian estimation; positron emission tomography; kinetic
modeling; hyper-insulinemic euglycemic clamp; fluorodeoxyglucose; brain

1. Introduction

Positron emission tomography (PET) with the glucose analogue tracer 18F-fluorodeoxy
glucose ([18F]FDG) is the current gold standard technique for non-invasive in vivo measure-
ment of brain glucose metabolic rate [1,2]. There are several ways of analyzing [18F]FDG
data, and these vary depending on the research question. In metabolic research imaging,
our group [3–8] and others [9–13] have typically used quantified measurements of the PET
data to estimate the brain glucose metabolic rate via graphical approaches (such as the
Gjedde–Patlak plot [14,15] and its approximate fractional uptake rate (FUR) [16–18]) or via
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compartmental kinetic modeling [2,19]. The quantification of the PET data requires the
measurements of the tracer quantity in the plasma from the time of injection of the tracer
until the end of the study, and thus, either arterial or arterialized (i.e., heated venous blood)
samples are drawn throughout the study. Alternatively, the input function must be derived
from the PET images, for instance, from the left ventricle of the heart [20–24] or from the
carotids, often aided by magnetic resonance images [25–30] and some with the employment
of simultaneous estimation (SIME) approach [31–35] (for reviews, please refer to [34,36]).

Unfortunately, during a PET study, sampling from an arterialized vein (which is very
often preferred over an arterial cannulation to avoid extra discomfort for the volunteer) can
fail due to several reasons. The volunteer may experience discomfort, mild claustrophobia
and stress. Fear can induce vasoconstriction, and even in well-warmed veins, sampling can
prove to be very challenging. On the other hand, the kinetics of the tracer in the blood are
fast, as, immediately after the tracer injection, the tracer distributes into the whole vascular
volume, and it is actively taken up from the tissues. It follows that inappropriate sampling,
even for just few minutes following the tracer injection, can jeopardize the quality of the
whole PET study and of its quantification, especially with compartmental modeling (CM)
analysis—because it is so sensitive to the initial peak shape. A potential solution to this
problem is to scan the chest area first, since the placement of a small region of interest
(ROI) in the left ventricle of the heart, can adequately give the input function, and the
frequent sampling, necessary to properly resolve the peak of the input function, can be
avoided [20–23]. However, the PET study must often start directly from the targeted tissue
to obtain the time activity curve of the tissue from the injection, necessary for quantitative
methods (such as, compartmental modeling). Thus, the reliance on the plasma input curves
is the only alternative, despite the probable problems of sampling of the peak at the very
beginning of the curve.

The input curve consists of a peak (with steep ascending and descending phases
between 0 and approximately 2 min after the tracer administration) and a tail portion.
It has been pointed out how difficult it is to find a single analytical formulation able
to produce a good model for fitting both the peak and tail of the input function [36,37].
Both groups of Guo et al. [37] and Sanabria-Bohorquez et al. [31] used a hybrid approach
employing the use of image-derived input data for the peak and tail, respectively, and the
other part was estimated from blood samples.

The aim of this study was to propose a new solution in “recovering” the peaks of
input function in cases where blood sampling during the beginning of an [18F]FDG-PET
study has failed. To this end, plasma input curves considered to be of poor quality were
“recovered” utilizing the tail portion to recover the peak.

In the proposed method, reference curves are used to initially validate the recovery
function. Many studies have already taken advantage of population-based input functions
which are appropriately scaled standard input functions based on the population pool of
representative curves and often used in combination with the blood samples of the tail [36].

The process of input recovery aims to correct (“recover”) the peak of poor-quality
curves. The tails of the poor-quality curves (from 5th to 100th min after tracer injection)
are fitted with an algorithm that employs a previously published equation to describe
[18F]FDG input functions by Feng et al. [38], included in a pre-validated input estimation
model powered by a Bayesian penalized-likelihood term and an additional set of equations
trained with reference data. The Bayesian penalized-likelihood used in our fitting algorithm
has been implemented in the past and gradually integrated in the newest reconstruction
algorithms for PET/CT scanners [39–41]. Based on such improved reconstructions, input
functions have been derived from images [42]. But only the new PET/CT scanners provide
a resolution and new algorithms that allow the extraction of input from images. Old
scanners must be coupled with blood sampling to a certain extent.

Finally, to ensure the biological plausibility of the newly obtained recovered curves,
we calculate the theoretical maximal K1 parameter from compartmental modeling. This
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was obtained based on the cerebral blood flow measured in the reference set images of
[18H]H2O (gold standard technique) [43].

Our method is hereby summarized. First, we validate it on a reference set of input
curves. Second, we select poor-quality curves from the training set via criteria validated
against the reference set and recover the inputs. Thirdly, based on the reference set (good-
quality, n = 13) and “recovered” input functions (poor-quality, n = 56), we apply com-
partmental modeling to the brain tissue curves for the subjects for which dynamic data
allowed the kinetic modeling, while FUR can be computed for the subjects whose brains
were scanned about one hour after the injection (late scans). We sought to show that the
method presented using almost the entirety of the curves (from 5th to 100th min), produces
recovered curves comparable to the reference ones (with an optimal shape according to the
predefined constraints and almost solely from arterial sampling) and yields comparable
and biologically plausible compartmental modeling results.

2. Materials and Methods
2.1. Subjects

We pooled and re-analyzed all applicable [18F]FDG brain studies carried out under
euglycemic hyperinsulinemic clamp (n = 170) at the Turku PET Centre performed between
2004 and 2016, which were also included in a recent publication [44]. The anthropometric
and metabolic characteristics of all study participants are listed in Table 1 (and Table S1),
Tables S2 and S3 (grouped by dataset, input quality (from criteria validated in step 5 of the
validation process) and input source, respectively). Each study protocol included in this
study was approved by the Ethics Committee of the Hospital District of Southwest Finland
and conducted in accordance with the Declaration of Helsinki, and each participant gave
written consent prior to inclusion in each study.

Table 1. General table by set.

Reference
Set (N = 13)

Training Set
(N = 65)

Test Set
(N = 92)

Total
(N = 170)

Sex
Female 11 (84.6%) 54 (83.1%) 61 (66.3%) 126 (74.1%)
Male 2 (15.4%) 11 (16.9%) 31 (33.7%) 44 (25.9%)

Age
Mean (SD) 48.4 (12.0) 46.2 (9.4) 61.2 (13.2) 54.5 (13.8)
Range 31.6–66.0 23.2–62.0 20.5–79.8 20.5–79.8

BMI
Mean (SD) 25.7 (5.2) 33.2 (8.0) 27.7 (4.5) 29.7 (6.7)
Range 20.1–39.9 20.3–50.9 19.0–41.0 19.0–50.9

Dose
Mean (SD) 250.8 (33.2) 188.7 (17.2) 176.9 (22.1) 187.1 (28.7)
Range 187.0–289.0 147.0–278.0 133.0–237.0 133.0–289.0

Original input (type)
Arterial 11 (84.6%) 2 (3.1%) 0 (0.0%) 13 (7.6%)
Arterialized 2 (15.4%) 63 (96.9%) 7 (7.6%) 72 (42.4%)
Peak from image—aortic arch 0 (0.0%) 0 (0.0%) 24 (26.1%) 24 (14.1%)
Peak from image—left ventricle 0 (0.0%) 0 (0.0%) 61 (66.3%) 61 (35.9%)

Input quality (good/poor)
Poor quality 0 (0.0%) 56 (86.2%) 20 (21.7%) 76 (44.7%)
Good quality 13 (100.0%) 9 (13.8%) 72 (78.3%) 94 (55.3%)

Scan type (early/late)
Early 13 (100.0%) 65 (100.0%) 0 (0.0%) 78 (45.9%)
Late 0 (0.0%) 0 (0.0%) 92 (100.0%) 92 (54.1%)

Dataset from:
Bucci M et al., JCM 2023 [3] 0 (0.0%) 0 (0.0%) 39 (42.4%) 39 (22.9%)
Hirvonen J et al., Diabetes 2011 [8] 0 (0.0%) 16 (24.6%) 0 (0.0%) 16 (9.4%)
Honkala SM et al., JCBFM 2018 [7] 0 (0.0%) 0 (0.0%) 13 (14.1%) 13 (7.6%)
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Table 1. Cont.

Reference
Set (N = 13)

Training Set
(N = 65)

Test Set
(N = 92)

Total
(N = 170)

Latva-Rasku A et al., Diabetes
2018 [6] 0 (0.0%) 0 (0.0%) 22 (23.9%) 22 (12.9%)

Lindroos MM et al., Brain 2009 [5] 11 (84.6%) 2 (3.1%) 0 (0.0%) 13 (7.6%)
Tuulari JJ et al., Diabetes 2013 [4] 2 (15.4%) 47 (72.3%) 0 (0.0%) 49 (28.8%)
Brain data unpublished courtesy

of Viljanen AP 0 (0.0%) 0 (0.0%) 7 (7.6%) 7 (4.1%)

Brain data unpublished courtesy
of Virtanen KA 0 (0.0%) 0 (0.0%) 11 (12.0%) 11 (6.5%)

2.2. PET Study during Clamp

The euglycemic hyperinsulinemic clamp was performed as previously described [45].
Subjects, which had fasted for 10–12 h, were admitted to our facilities, and cannulated for
easy access for blood sampling and liquid infusions. A primed-continuous infusion of in-
sulin (Actrapid; Novo Nordisk, Copenhagen, Denmark) was given (40 mU.m−2.min−1) and
a variable rate of a 20% glucose solution was infused to maintain euglycemia (5 mmol/L).
Plasma glucose levels were measured every 5–10 min throughout the clamp. At approxi-
mately 100 ± 10 min into the clamp, [18F]FDG (187 ± 30 MBq, mean ± SD) was injected
intravenously over 15 s and the brain radioactivity started either immediately after (n = 78,
“early” studies), or approximately 1 h after [18F]FDG injection (n = 92, “late” studies). The
PET study protocols are described in more detail in previous reports [3–8,46,47]. The reason
for which some studies performed the brain scans early or late is due to the design of
usually multi-organ PET studies, which might a have different focus on which is the main
organ of interest to study at the beginning of the PET acquisitions with better quantification
options. Among the standard procedures of PET acquisition, both the PET image and
sample input function have been corrected for radioactive decay.

2.3. Study Design

Our “early” studies (n = 78) were originally selected as the population to train and
validate the model since compartmental model analysis requires the whole tissue–time–
activity curves from time 0 from the injection, and these studies provide them.

The “late” studies (n = 92) were used as a test dataset and only the fractional uptake
rate analysis was possible.

Input functions were obtained from three types of sources: arterial samples (whole
curve), arterialized samples (whole curve) and peak from image (aortic arch or left ventri-
cle) + tail from arterialized samples (Table S3). The validation process of the input recovery
model is illustrated in Figure 1. All the steps are described in the following paragraph. In
brief, selected reference input curves were used to train an input recovery model that is
applied to poor-quality inputs. The quality of the input is mainly defined by the height
and shape of the activity peak. The model, using the averaged fitting parameters of the
input function equation and a few constraints, recovers the input peak using just the tail
(5 min–100 min). The model trained on the reference inputs was additionally tuned in
its weightings based on the poor-quality curves (selected based on a visual assessment
validation criteria) to ensure that all fits were acceptable. The model has been subsequently
tested on the late poor-quality input functions.
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2.4. Input Recovery (IR) model—Validation Steps

(1) Peak alignment and saving of the delay to generate peak–aligned curves (preprocessed).
(1a) Excluding very low (or negative) activity values at the beginning of the curve. In the

whole dataset of 78 input curves, we first obtained the median of the 1st non-zero activity
data points, which was 0.074 kBq/mL. All curves that had 1st non-zero activity data
points <0.074 kBq/mL were rounded to 0. Then, for each curve, the time of the maximum
peak was determined. In cases where two peaks were nearly equal (less than 10% of
variation between the two peaks), the mid-time between them was used.

(1b) Identification of the start of the ascending phase of the input curve. When only two
points were present between the 1st non-zero activity data points (A) and the peak, then
the “0” point was extrapolated by applying a linear regression. On the contrary, if >2 points
were between the 1st non-zero activity data points (A) and the peak, then a polynomial fit
was applied.

(1c) Identification of population delay time. The max peak time of all input curves were
plotted, and the upper adjacent value (UAV) was identified. UAV is the largest observation
that is less than or equal to the upper inner fence (UIF), which is the third quartile plus
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1.5*Interquartile range [48]. All peak times that are less than the UAV time (UAVt) were
delayed to UAVt, obtaining the peak-aligned (PA) inputs and the delay time (dt) were
stored. These delay times were used again later (steps 6 and 7) to bring back the input
curve to the original times.

(2) Selection of the reference peak–aligned Inputs.
The max activity at the peak of the PA inputs was divided by the activity at time point

UAVt + 2.5 min (RT), and the value between the 3rd and 4th quartiles was identified and
used as ratio threshold (RT1). Then, whole inputs that had a RT ≥ RT1 and time of max
activity ≤ UAVt + 1 and max peak ≥ 50 kBq/mL were selected as reference inputs (n = 14).

(3a) Fit with Feng function of reference PA inputs (whole curve).
The reference PA inputs were fitted according to a previously published function from

Feng et al. [38], for t ≥ τ.

[A1(t − τ)− A2 − A3] ∗ eλ1∗(t−τ) + [A2] ∗ eλ2∗(t−τ) + [A3] ∗ eλ3∗(t−τ) (1)

The Feng input function fits the shape of the [18F]FDG input curve using three ex-
ponentials and seven parameters (A1–3, λ1–3 and τ) (code of the equation is reported
in Supplemental Material and Methods) via Matlab, using an optimization procedure
(lsqcurvefit and Levenberg–Marquardt algorithm) that minimized the difference between
the original and fitted activity time points. The fits were visualized as superimposed to
the original curves and the area under the curve (AUC) and mean residence time (MRT)
were computed to evaluate the differences between the curves [49]. MRT is a parameter
imported from the pharmacology studies that is useful for time–activity comparison, and
calculated via the area under the first moment curve (AUMC), as described below:

MRT = AUMC/AUC (2)

AUMC =
∫ ∞

0
c ∗ tδt (3)

The fitted parameters were also analyzed, and one outlier was identified (having one
fitted parameter > 2 SD than the reference set). Since the AUC % and MRT % absolute
differences were on average ≤ 3% between the reference PA inputs and the fitted inputs,
we proceeded the analysis with the selected reference curves (n = 13) (Figure 2). AUC and
MRT are reported in Supplementary Tables S1–S3.

(3b) Fit with Feng–Bayes model of reference PA inputs (only tail).
In this step, we trained the model with the tail (5 min–100 min) of the reference input

curves to estimate the initial peak (known for the reference curves) based on three defined
constraints and the average fit parameters of the Feng input from step 3.

(4a) Finding constraints from linear regressions. First, we correlated the Feng fit parame-
ters and ratios between the parameters to other study characteristics (dose, anthropometric
characteristics) and the curve parameters (e.g., max peak, AUCs). The best regression
selected were:

(4a1) Linear regression 1:

maxPA = 149.05 + 10943 ∗ (Ratio52), (4)

where maxPA is the maximum peak activity of the reference inputs and Ratio52 is the ratio
between the parameter 5 and 2 of the fit with Feng input function (7 parameters in total, p5
corresponds to λ1 and p2 to A1 of the original publication nomenclature). The correlation
is expected since both parameters are a characteristic of the first exponential that describes
the inputs. The R2 of the linear model was 0.65.

(4a2) Linear regression 2:

p2 = 6357.91 − 520 ∗ (VSS), (5)
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where p2 is the parameter 2 of the fit with Feng input function (which correspond to A1 of
the original publication) and the volume of distribution at steady state (VSS) [50]:

VSS = (Dose ∗ MRT)/AUC, (6)

The R2 of this linear model was 0.46.
(4a3) Linear regression 3:

AUC(2-4 min) = 33.47 + 0.23 ∗ (Dose), (7)

where AUC (2–4 min) is the AUC between 2 and 4 min (keeping in mind that the ascending
phase of the reference PA inputs start at about 2 min). The R2 of this linear model was 0.35.

The linear regression correlation coefficients and intercepts of Equations (4), (5) and (7)
were fix into the model, working as constraints.

(4b) Feng–Bayes model specifications.
The basic optimization function is “lsqnonlin” from Matlab’s optimization toolbox,

executed with the trust region reflective algorithm.
The calculation of the objective function includes the subfunction Feng equation in-

put with its seven parameters, to calculate the y data for every iteration (pseudo-code in
Supplemental Material and Methods) and four conditions with fixed weights (regulariza-
tion parameters) and two with fitted weights (p8, p9). The fitted parameters (p) were nine,
seven from Feng input function and two regularization parameters.

The first term is a Bayesian penalization based on noise, that is, the minimization
of the difference between the fitted and original tail activity points normalized for the
standard deviation of the sampled points of the population. The second term, like the first,
minimizes the final fitted parameters instead.

The third, fourth and fifth terms are the constraints according to the linear regressions
found in the steps 4a. The sixth term of the objective function minimizes the performance
parameter MRT, between the fit and original tail.
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Figure 2. Peak area of the reference input time–activity curves (TACs) (11 arterial and 2 arterialized
sampled plasma curves), selected according to step 2 of the model validation procedure, without the
outlier after fitting the Feng equation (step 3a). The visualization of the curves in the figure is a linear
interpolation, highlighting the raw data with the single time points. For clarity, each of the individual
curves is plotted with a different color.
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(4c) Visualization of fitted curves, computation of AUC and MRT percentual differences
The resulting inputs were assessed visually to avoid un-realistic fits (Figure 3) and the

performance statistics were computed (Supplementary Tables S1–S3). The goal was to keep
the percentual difference of the performance parameters (maxSUV, AUC SUV and MRT
SUV) between the recovered PA and original PA inputs below 5% on average. Achieving
this, it required multiple iterations in loop through step 4d.

Figure 3. Reference input TACs—original and recovered by the Feng–Bayes model. The small circles
are the data points of the median of the original TACs, the dashed line is the median of the recovered
inputs and the areas are the confidence intervals (CI) 95% below and above median. Only the first
portion of the inputs is visualized (0–15 min) in order to better visualize the overlap of the dashed
line (the recovered inputs median) and the median of the original data points (circles). The data
points marked with the diamonds (from 5 min) are the first portion of the input (5–100 min) fed into
the IR Feng–Bayes model.

(4d) Adjustment of the weighting parameters and model comparisons
The model weights of the different terms of the objective function were adjusted to

minimize the maxSUV, AUC SUV and MRT SUV percentual differences. The resulting
curves are visualized in Figure 3. The original and recovered input curves from the reference
set had comparable AUC (d = 0.02, p > 0.05), maxSUV (d = 0.05, p > 0.05).

(5) Developing a selection criterion of good- and poor-quality curves based on visualization.
The 78 training curves were visually assessed by the 1st author and categorized

as of “acceptable” (N = 28) or “unacceptable” (N = 50) quality. The criteria were the
height and shape (narrowness) of the peak compared to the population. Figure 4 shows
the two populations. Then, a set of selection criteria was developed to resemble the
visual categorization. Two variables resulted in the prediction of a good-quality curve:
the maximum activity of the standard uptake value (SUV) curve, and the ratio between
maximum activity value and the 5th min of the curve (peak/5th). The regression line used
to select the inputs is the following:

Selection variable = −0.36 + 0.038 ∗ max SUV + 0.052 ∗ peak/5th, (8)

A threshold of 0.47 resulted in the best separation between acceptable and unaccept-
able curves, with a misclassification of only 6 good curves (by visual assessment) as poor
quality, as shown in Figure 5.
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(6) Fit with Feng–Bayes model of the training set with poor-quality PA inputs (only tails).
The 56 inputs that resulted in poor quality according to step 5 were recovered by fitting

the model trained in step 4. The resulting inputs were visually assessed to avoid unrealistic
fits and the model parameters were slightly adjusted accordingly. The resulting curves are
visualized in Figure 6. The time correction to align the peak (step 1c) of all input curves
was removed after the recovery procedure before the kinetic modeling. The performance
statistics were computed (Supplementary Tables S1–S3) and noteworthy curves recovered
from the training set were different from the original according to maxSUV (d = 3, p < 0.05)
but not in AUC SUV (d = 0.12, p > 0.05).

Figure 6. Poor-quality input TACs (training set, n = 56)—original and recovered by the Feng–Bayes
model. The peak is recovered while the tail is kept similar to the original curves.

(7) Fit with (trained) Feng-Bayes function of the test set with poor-quality PA inputs (only tails).
The 20 inputs that resulted in poor quality according to the selection criteria validated

on step 5 from the 92 late inputs were recovered by fitting the model trained after step 6.
The recovered input curves obtained were used for FUR modeling.

2.5. Image Analysis
2.5.1. Preprocessing

Each reconstructed early PET image was averaged across its frames and the resulting
average image was used to acquire normalization parameters in conjunction with a brain
[18F]FDG template in use at the Turku PET Centre. With these parameters, the PET dynamic
images were then spatially normalized, and time–activity curves (TAC) were extracted from
four regions of interest (ROI) (frontal, temporal, parietal and occipital lobes) obtained using
MarsBaR (version 0.44, http://marsbar.sourceforge.net/, accessed on 1 January 2019).

2.5.2. Compartmental Modeling—Model 3k

Input functions (original and IR) of the reference set and poor-quality training set
were utilized with the extracted brain TACs to run a 3k compartmental model [51,52] with
vascular fraction fixed to 0.05. The [18F]FDG PET tracer, once in the blood circulation, is
considered in the compartment Cp (plasma), and the time–activity concentration in the
plasma is also the input function that we aim to recover and is the amount of tracer available
for each tissue to be taken up. The two-tissue compartmental model for [18F]FDG, which
assumes that the tracer, once in the tissue (in this case the brain), can only be in two compart-
ments, namely Cf (free (to diffuse back into the plasma or undergo phosphorylation)) and

http://marsbar.sourceforge.net/
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Cb (bound or metabolically trapped, due to the phosphorylation of fluorodeoxyglucose,
which does not undergo further metabolization nor dephosphorylation for the time of the
experiment). The rate of transfer of [18F]FDG between compartments in each direction
is described by the so-called rate constants (1/min) and these are also used in the formu-
lation of differential equations that analytically formulate the compartment model. The
compartment Cp (activity in plasma) is connected to Cf in the tissue by K1 (inward in the
tissue) and k2 (outward from the tissue), while k3 links Cf to Cb. The fitted parameters
were K1, K1/k2 and k3, whilst ki was derived by K1 ∗ k3/(K1 + k2) [18]. Ki is the net influx
constant rate of [18F]FDG in the tissue and the most important hyperparameter obtainable
from this modeling for [18F]FDG in this context. The multiplication of Ki for the glucose
concentration in the blood is used in PET studies (but not here) to obtain the glucose
metabolic rate, the rate at which the cells of a specific tissue take up and utilize glucose.

2.5.3. Maximal Theoretical K1 Threshold Calculation

In the reference set, we also had available PET studies with [15O]H2O, which were
analyzed according to a previously published paper [5] to estimate the cerebral blood flow
(CBF). With the following equations, the K1max was computed:

CPF = CBF × (1 − Htk), (9)

K1max = CPF ∗ Extraction (set to 1, upper limit), (10)

CPF, cerebral plasma flow, Htk, hematocrit

2.5.4. Fractional Uptake Rate Modeling

Input functions (original and IR) of reference and poor-quality training and test sets
were utilized with the extracted brain TACs to compute the FUR [16]. FUR is correlated to
the Ki calculated with CM [18].

2.6. Statistical Analysis

Data are presented as mean ± SD (or confidence intervals (CI) 95%). A quantification of
the effect size magnitude between the two groups of measurements is performed calculating
the Cohen’s d and using the thresholds defined in Cohen (1992) [53]: |d| < 0.2 “negligible”,
|d| < 0.5 “small”, |d| < 0.8 “medium” and otherwise “large”. Group comparisons of the
results obtained between original and input recovery model curves were performed with
paired t-test statistics corrected for multiple comparisons with Bonferroni method.

3. Results
3.1. Further Validation and Testing of the IR Model via Compartmental Modeling

The comparison of the compartmental model (3k) parameters obtained with original
reference curves and IR model curves are shown Figure 7. The parameters were not
different in any of the brain ROIs evaluated.

Figure 8 shows the comparison between the compartmental model (3k) parameters
obtained with the original (poor-quality) training curves and those obtained with the IR
model curves. The parameters were different in all the brain ROIs evaluated. Additionally,
the K1 parameter was confronted with the maximal theoretical K1 obtainable by the
reference curves (based on their perfusion values) (Figure 9). Table 2 shows how K1 was
originally out of the physiological range for 44/56 subjects in at least one ROI of the four
considered, and after IR modeling, only three subjects remained with at least one ROI out
of range, even though two of the three subjects’ K1 ended up being close to the threshold
and the recovered input was still not close to the physiological range of K1 for only for
one subject.
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Figure 9. Compartmental model K1—IR modeling consistently reduces the values in the four ROIs
analyzed bringing K1 values below the theoretical maximum K1 estimated from the perfusion studies
of the reference curves. IR method failed to correct only one subject’s input according to the occipital
ROI (no change in K1 estimate and saturating at the modeling boundary). In two other subjects, the
recovered TACs produced a K1 that was closer to the threshold but above it.

Table 2. Number of input curves resulting K1 above maximal theoretical threshold in the training set
(n = 56).

Roi Original Input Recovery Model

Frontal 37 1
Occipital 44 3
Parietal 40 1
Temporal 40 1

3.2. IR Model Further Validation and Testing via FUR

Figure 10 shows the FUR results for reference, training, and test sets (only the poor-
quality curves), respectively. The FUR results for the reference curves were not different
between original and IR modeled curves, exhibiting small effect sizes (0.45–0.46 across
ROIs) and minimal percentual differences (−1.4% to −1.5%). When comparing original
and IR modeled of poor-quality input functions of the train set, the FUR differences had
large effect sizes (1.37 to 1.38 across ROIs) and the differences between the original and IR
model curves were −6.5 to −6.8% (across ROIs). The comparison of the test input curves
also produced large effect sizes (1.14–1.2 across ROIs) and the differences between the
FURs derived from original and IR model curves were between −8.7 and −8.8%. This
suggests that employing the IR method for modeling poor-quality input functions leads to
significant alterations in the input functions, subsequently exerting a notable impact on the
quantification results.
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Figure 10. Fractional uptake rate—Ki parameter across datasets and in comparison, between original
and recovered input functions—and the test set curves (n = 20 poor-quality curves) present a decrease
in Ki similarly to that shown in the training set (n = 56). Red lines display a positive slope and the
blue lines display a negative slope. ns = p > 0.05, **** = p < 0.0001.

4. Discussion

The main aim of the present study was to address one very common but inadequately
addressed problem of PET analysis of poor-quality input function data. Good-quality
input functions, especially when aiming at calculating compartmental model results, are
essential, since this modeling is extremely sensitive to the shape of the initial part of the
input function. In the proposed method, we set up a series of constraint terms, one of which
is a Bayesian noise-penalizing one in an optimization routine that we called an “input
recovery” (IR) method.

4.1. Validation

We validated the IR model, first showing that the input functions selected as reference
were successfully recovered solely based on the tail (5 min–100 min) of the input curve
and the hereby-validated constraint parameters. Secondly, the CM parameters resulting
from the reference input curves recovered via fitting were similar to the original reference
curves. Thirdly, when applying the IR model to the early study curves (training set) that
were selected for the poor quality group, we observed a recovery of the originally low peak
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of activity reflected by the significantly different maximal activity in SUV. The CM model
parameters of the training set substantially improved in 44/56 subjects for which at least
one ROI (out of the four brain ROIs analyzed) had a K1 that was above the theoretical
maximum and the correction reduced the subjects that did not have physiological values
to only 3/56 subjects, with 2/56 having a K1 right above the threshold. Fourthly, the IR
model applied to the test set composed of late poor-quality curves also produced quanti-
tative results (FUR) that were statistically different from the original poor-quality curves,
testifying that the model did produce new corrected curves that yielded different results.

4.2. Interpretation

We chose this method because the Bayesian penalization had been successfully ap-
plied in the field of PET image reconstruction [39] and we expected to succeed with its
application to our problem. The results are in line with the expectations and confirmed that
the chosen approach of input modeling can provide inputs with a significantly different
peak (recovered) and physiologically plausible kinetic parameters derived from CM. This
allows for the PET dynamic scans from time 0 from the injection (“early”) to carry the com-
partmental model analysis without the saturation of parameters (touching the boundaries)
or errors produced by the solver not reaching convergence.

4.3. Comparison

This method was originally designed for correcting a pre-existing sampled input
with the standard frequent sampling protocols but with a poor quality that resulted in the
non-physiological peak shapes/heights or derived parameters via CM. Other groups have
tried to reconstruct/fit the missing input functions with alternative methods to minimize
the need for samples during the PET studies in association with a strong population input
function equation [54–60]; these methods have a rather rigid input function shape scaled by
the few samples withdrawn at the end of the study. We chose to place less emphasis on the
population averages and instead developed a method that was more anchored in real data
by incorporating a larger portion of the curve tail’s sampled datapoints. This approach also
allows for a wider range of peak shapes through constraints on the relationships between
the input function parameters.

A common example of methods to derive the input function is that from the images
(IDIF) [34,36]. Compared to IDIF methods, our method is more expensive in terms of the
data required, but extracting the input from the image—e.g., from the carotid arteries—
requires that: (a) the region has to be in the field of view; (b) the resolution has to be
adequate; (c) the region to extract should not be affected by spill-over effects from neigh-
boring regions; and (d) the tracer should have a good noise/signal ratio (which is not true,
for example, for [18H]H2O).

4.4. Applicability

So, this method becomes helpful when IDIF methods are not applicable. Moreover, it
promotes the reuse of data acquired with old scanners, aligning with sustainable research
principles that advocate to not always strive to acquire more data but also reuse old data
and explore with these using new hypotheses. On the top of this, the IR method ensures
the fitting of high-quality curves while minimizing errors generated during quantification
by poor-quality curves.

4.5. Further Developments

Future developments for this approach involve: (1) refining the sampling protocol to
reduce the number of samples required while still achieving optimal results—it is important
to note that this aspect was not initially included in the scope of the planned analyses; (2) a
direct comparison of the current method with more widely accepted image-derived input
functions (IDIFs), which was unfeasible due to the limitations in the available image data.
Most of the images were late scans, lacking the initial peak of tracer activity, and the early
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scans were acquired using outdated PET scanners with insufficient spatial resolution to
extract a carotid input function.

4.6. Limitations

One limitation inherent to the study’s design is the unavailability of the true input
curve for the poor-quality sampled inputs. As discussed earlier, deriving the input from
image was not an option; therefore, the internal validation for this study was the physi-
ological plausibility of the K1 obtained via CM based on the reference studies for which
the perfusion studies were available. Also, it remains to be determined whether patients’
characteristics—rather than the tail characteristics per se—may influence the input function
kinetics. Since there are no studies investigating the sex differences in the [18F]FDG tracer
kinetics in the brain during clamp (and this study did not aim to investigate this question),
we cannot exclude that such differences exist; given that our population being predomi-
nately female, the results might not be generalizable. It must be noted that our statistical
analyses are conducted within subjects, which mitigate such limitations. An additional
limitation could be the manual visual pre-selection of the input as good or poor quality, as
first step to create the selection criteria.

5. Conclusions

In conclusion, the validation steps of the proposed input recovery (IR) modeling
approach against a reference set of curves proved to be useful and successful. The recovered
curves were similar to the original ones in the reference set. In the training set (poor-quality
curves), the peak region and the kinetic parameters from the compartmental model (CM)
were different from the original curves, and the peak was “recovered” (higher) and, for
example, K1 became physiologically plausible in almost all cases (except 3/56). As PET
imaging is expensive and involves exposing the study subjects and volunteers to ionizing
radiation, all these efforts are jeopardized in cases of poor-quality input curves. Therefore,
we suggest that the method described herein could be employed to provide meaningful
[18F]FDG-PET results.
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