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Outline
WHAT: Nuts and bolts of pattern recognition with fMRI

WHY: When and why to use pattern recognition methods

HOW: Overview of the workflow



What



Statistical pattern recognition

Features and their configuration make the
Sylvester pattern

A sample

\.

”Sylvester”

A different
type of
sample




Statistical pattern recognition with fMRI

Multivoxel pattern analysis (MVPA)
(Supervised) machine learning
Decoding

Classification
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Zeng et al. (2012) Brain



Decoding movies from visual cortex
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Simplified framework:

TRAINING

e.g. Haxby et al. (2001) Science
Figure credits: Smith (2013) Nature



Simplified framework:

Image fMRI scan Voxel pattern Output

=SHOE

=SHOE?

During testing, the program
must guess the object viewed on
the basis of what it has learned
about similar patterns of activity.

e.g. Haxby et al. (2001) Science
Figure credits: Smith (2013) Nature
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Applications

Can we distinguish the brain activity underlying some mental states?

Can we distinguish patient groups by looking at their brain?
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Why pattern recognition?

Multivariate, thus has higher sensitivity when compared to univariate analyses
— Can detect pattern differences when activation overlaps

Univariate

Fear

Disgust




Why pattern recognition?

Multivariate, thus has higher sensitivity when compared to univariate analyses
— Can detect pattern differences when activation overlaps

Example: Representation of perceptual choices
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Why pattern recognition?

We can study representational content in a brain region rather than general

activation

Activity: Tells us about general involvement in cognitive
function (e.g. working memory)
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Why pattern recognition?

We can study representational content in a brain region rather than general
activation

Information: Tells us about representational content (e.g.
memory trace of A vs. memory trace of B)
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Why pattern recognition?

We can study representational content in a brain region rather than general
activation

Example: Representation of orientations

Accuracy
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Why pattern recognition?
Methods readily available from machine learning
The principle is relatively easy to understand

Has become a standard method, complementary to univariate analyses
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Overview of the workflow
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Step 1: Design and data acquisition

Goal: sample brain activity Categories
associated with different categories ]

Samples could be EPI volumes,
beta volumes, connectivity matrices,




Step 1: Design and data acquisition
GLM design principles apply Categories

Analysis will be easier with

- balanced number of samples per
category (in each run)

- careful randomization of
categories (fMRI autocorrelation
issues)




Step 2: Preprocessing

Minimal preprocessing

Within-subject analysis: data in native space
Between-subject analyses: data in MNI space

No smoothing

Normalization of signal intensities



Step 3: Type of analysis

Select the spatial and temporal range of
interest.

- Spatial resolution: wholebrain
(global patterns), ROI or searchlight
(local patterns)

- Time resolution: beta maps, single
time points, ...

Wholebrain

Searchlight

Region of Interest

time-resolved



Step 3: Type of analysis

Training samples

Split the data to training and testing
sets.

- Goal: avoid peeking / overfitting.

Testing samples



Step 3: Type of analysis

Challenge: we need to both...
i) maximize size of training data for Data
)\

: [ \
better model fit When data are not scarce
i) maximize size of test data for precise ~ nota problem:
generalization estimate !

\
When data are scarce:

Data
A

- Most people in neuroimaging use cross-validation



Step 3: Type of analysis

Solution: cross-validation

Efficient re-use of data for training and testing

Cross-validation

this is called
a CV-fold

Cross-validation schemes e.g.
Leave-one-run-out (LORO)

Leave-one-subject-out (LOSO) = 75%

= 36%

Test =) 39

— 75 % correct

Test Train = 77%




What do we have so far?

Feature = a measured variable used for classification, e.g. activity for each voxel
Pattern = a point in p-dimensional space (p = number of features)
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Step 4: Feature selection —
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Reduce the dimensionality by removing
e.g. “uninformative” voxels
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Ready to train and test the classifier!

Design and data acquisition
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Step 5: Classification
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Separate data in training and test data

Train a classifier (= find a good separating line™)
Apply the classifier (= the line) to test data
Check the results: accuracy of predicting test
data (=% correct prediction)



Step 5: Classification

ot Selected
Training samples Feature vectors
features F
0 <
BT Feature (I S

CT TN W selection [N

m m Voxel 2 Activity

()
Training set
Testing set

Testing samples
Separate data in training and test data
Train a classifier (= find a good separating line™)
Apply the classifier (= the line) to test data
Check the results: accuracy of predicting test

Voxel 1

Voxel 2

>N

data (=% correct prediction)



Step 5: Classification
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Step 5: Classification

Classifier = A function that separates feature space

Data Separating hyperplane Projection Classification

Weight vector

DV > 0?
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— Weights are trained during classifier training
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Step 5: Classification - linear classifiers

Gaussian Naive Bayes Linear Discriminant Support Vector Machine
Analysis

Ignores covariance between Considers covariance Maximizes margin (distance
voxels between voxels between closest points of
different classes)



Step 6: Statistics
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Classification accuracies o
Accuracy: significantly above chance?

— permutation tests
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Features contributing to classification: importance maps

Importance maps
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Category confusions: confusion matrix

Confusion matrix |
Mean fMRI confusion

matrix

Anger
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Saarimaki et al. (2016) Cereb Cortex



Representational similarity analysis (RSA)

RSA = A multivariate pattern analysis
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Representational similarity analysis

In RSA, we take our multivariate patterns (e.g. voxels) and calculate
pairwise dissimilarities (e.g. Euclidean distance or 1 - Person’s r)
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Representational similarity analysis

Representational similarities can be used e.g. for testing models of cognition
or for comparing different types of data.
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More resources

Experimental design, methodological choices etc:
https://fmrif.nimh.nih.gov/public/other-courses/mvpa

Conceptual lectures by Rebecca Saxe:
https://cbomm.mit.edu/fmri-bootcamp

Toolboxes & tutorials e.g.:
https://brainiak.org/tutorials/
http://www.pymvpa.org/tutorial.html
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