

First level fMRI data analysis

Lihua Sun, PhD Turku PET Centre, Turku, Finland 12.09.2023

Outline

- We learned the general linear model (GLM), preprocessing, and experimental design
- What is next:

Statistical analysis of the data

Outline

- What is 1st level analysis?
- Statistical models according to tasks
 - Contrasts
 - Operation in SPM12
 - To set the parameters
 - To make contrasts: T contrasts
- Resting state fMRI
- fMRI with movies

Why the 1st level analysis?

- Only two levels: 1st (within-subject) and 2nd (group-level).
- BOLD signals are dominanted by noise.
- Multiple repeated exposure to stimuli to increase signal-to-noise ratio
- Statistical analysis to extract the signal-associated brain responses
- Brain data is huge with large number of voxels.

Within-subject modelling

Positron emission tomography

Density

fMRI

Time

Statistical map

4D Data

Experimental design

1. Block design

2. Event-related design

To build the regressor

- BOLD responses are delayed: peak at 4-6 s and baseline 20-30 s.
- Convolved with the hemodynamic response function (HRF)
- The linear time-invariant (LTI) system

Block design

Block design: one regressor of interest (e.g. people vs. landscape)

Event-related design: two continuous regressors (people vs. landscape)

Contrasts

Experimental conditions: people vs. landscape

- Your interest is often the difference between the two conditions, which is "contrast"
- You can calculate the difference, sum or separately each conditions, which are calculated by different linear contrasts.
- We only focus on T contrast in this lecture !!

Difference between conditions

Separately

[10] or [-10] = "main effect Con1"

[01] or [0-1] = "main effect Con2"

More regressors

- [11-1-1]: (A+B) > (C+D)
- [1-11-1]: (A+C) > (B+D)
- \circ [1000]: main effect of A
- \circ [1100]: Sum of (A+B) vs the mean of the signal

SPM12

- SPM theoretical concepts of Statistical Parametric Mapping in a complete analysis package.
- Run in matlab
- <u>See more information:</u> <u>https://www.fil.ion.ucl.ac.uk/spm/s</u> <u>oftware/spm12/</u>

Simple or multiple regression, t-tests, ANOVA, ANCOVA

 $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$

The laughter experiment

Four stimuli types:

Laughter / Crying vocalization / Scrambled laughter / Scrambled Crying

Block design

The 16.5 s block contains Laughter, crying, or scrambled sound.

Operation in SPM12

Module List	Current Module: fMRI model specification	
fMRI model specification <-X	Help on: fMRI model specification Directory Timing parameters . Units for design . Interscan interval . Microtime resolution . Microtime onset Data & Design Factorial design Basis Functions . Canonical HRF Model derivatives Model Interactions (Volterra) Global normalisation Masking threshold Explicit mask	<-X <-X <-X -X 16 8 <-X No derivatives Do not model Interactions None 0.8

The design matrix defines the experimental design and the nature of hypothesis testing to be implemented. The design

	SPM12: parameter setting
Current Module: fMRI model specification	
Help on: fMRI model specification	
Directory Res	sult to store
Timing parameters	1
. Units for design	seconds Dependent variables
. Interscan interval	2.6
. Microtime resolution	
. Microtime onset	J
Data & Design	Imodel
Factorial design _ Otatistical	
Basis Functions)
Canonical HRF Regressor b	building
Model derivatives	Leave as default.
Model Interactions (Volterra)	
Global normalisation	or specify it necessary
No No	o masks
Explicit mask	

承 SPM12: Menu							
Spatial pre-processi	ng						
Realign (Esti	Slice t	timing	Smooth	Smooth			
Coregister (Normalis	e (E ▼	Segmer	nt			
Model specification, review and estimation							
Specify 1s	Specify 1st-level						
Specify 2nd	ecify 2nd-level Es			stimate			
Interence Results							
Dynamic Causal Modelling							
SI	PM for fun	ctional N	IRI				
Display	Check Reg	Render	. • FMRI	•			
Toolbox: •	PPIs	ImCalc	DICO	M Import			
Help Uti	ils 🔻	Batch		Quit			
Copyright (c) 1991,1994-2014							

SPM12: setting contrasts

SPM12: result

Design matrix

Outline

- What is 1st level analysis?
- Statistical models according to tasks
 - Contrasts
 - Operation in SPM12
 - To set the parameters
 - To make contrasts: T contrasts
- Resting state fMRI
- fMRI with movies

Measures in resting state fMRI

- ReHo = regional homogeneity: larger value indicates a higher regional synchronization.
- ALFF = amplitude of low-frequency fluctuation: indicate the magnitude of neural activity
- FC = functional connectivity (between ROIs): interregional correlations

frontiers in SYSTEMS NEUROSCIENCE

DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI

Yan Chao-Gan* and Zang Yu-Feng*

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China

Toolbox for rs-fMRI analysis

- Matlab based
- Download DPARSF from: <u>http://rfmri.org/DPARSF</u>

	The R-fMRI Network a network for supporting resting-state fMRI related studies.					Q Log in / Register				
Home	Networking	Learning	Tools	Data	PubMed Studies	The R-fMRI Lab	About			

Data Processing Assistant for Resting-State fMRI						
Advanced Edition DPARSF A						
Working Directory:	y/Dropbox/ITraAllOnline/ITraAll/I	TraData/DPARSF_Updating	g			
Participants		Time Points: 0 TR (s): 0				
Template P ᅌ 🗸 EPI DIC	COM to NIFTI VICOM to	NIFTI BIDS to DPAF	RSF			
Apply Mats 🗸 Remove First	10 Time Points 🗸 Slice Timing	Slice Number: 0	Slice Order: [1 3 5 7 9 11			
Reference Slice: 0	FieldMap Correction	Voxe	el-Specific Head Motion			
🗹 Reorient Fun* 🗹 AutoMask	Cro	p T1 🗹 Reorient T1* 🗹 I	Bet 🔽 T1 Coreg to Fun			
Segment 🗸 New Segment + DAR	TEL Affine Regularisatio	n in Segmentation: 🔵 Ea	ast Asian 🧿 European			
Vuisance Covariates Regression	Polynomial trend: 1 Head	Motion model: Rigid-	body 6 Derivative 12			
• Friston 24 Voxel-specifi	c 12 Head motion scrubbi	ing regressors				
Nuisance regressors (WM, CSF, Glo	bal) Other covariates	Add mean back	lter (Hz): 0.01 ~ 0.1			
Normalize Bounding Box: [-90 -	126 -72;90 90 Voxel Size: [3 3	3 3]				
Normalize by using EPI templates	Normalize by using T1 image	e unified segmentation	Normalize by DARTEL			
Smooth Smooth by DARTEL	FWHM: [4 4 4]					
O Default mask O No mask O U	Jser-defined mask Use Default M	ask 🔛 🗌 Warp Ma	asks into Individual Space			
Detrend Nuisance Covar	iates Regression 🛛 🗸 ALFF	+fALFF Band (Hz): 0.01	~ 0.1 ✓ Filter			
Scrubbing V ReHo Cluster:	7 19 • 27 voxels	Smooth ReHo	Degree Centrality			
Functional Connectivity 🗸 Extr	act ROI time courses Define RO	Define ROI In	nteractively* CWAS			
Vormalize to Symmetric Template	🛿 Smooth 🗹 VMHC 🗌	Normalize Derivatives	Smooth Derivatives			
Parallel Workers #: 0	Functional Sessions #: 1	Starting Directory Name:	FunRaw			
Help Save	Load Utilities Qu	it Run				

Movie-based fMRI

- ✓ Ratings of different dimensions (social, emotional, neutral, objective...)
- ✓ Each regressor should contain certain number of stimuli. CAN NOT be too small number!

The general linear model (GLM) family

Resources

- Principles of fMRI: <u>https://youtu.be/OyLKMb9FNhg</u>
- Spm12 manual: <u>https://www.fil.ion.ucl.ac.uk/spm/doc/spm12_manu</u> <u>al.pdf</u>
- Behav Res (2014) 46:596–610