

Basics of biological modelling with PET data

Riku Klén

11.9.2023

•••••

About this lecture (what you should learn)

Contents of the talk

- PET imaging
- Image segmentation
- PET modelling
- Interpretation

Key terminology

- Dynamic PET
- TAC
- Compartment model
- Patlak plot
- Logan plot
- Parametric imaging

Why do we need modelling?

- PET images can contain millions of pixels (or voxels)
 - Big data
- PET images are 3D (static) or 4D (dynamic)
 - Hard to visualise
- Analysis is complex
 - Automation helps (a little)
- Conclusions are difficult to make
 - Modelling helps (a lot)
- Modelling is needed to extract important information

Static and dynamic imaging

Static PET imaging

40 minutes

Dynamic PET imaging

40 minutes, 13 frames

These example images were provided by Prof. Kirsi Virtanen.

Image analysis

Segmentation, modelling

• • • • • • • • • • • • • • •

Why PET imaging?

To understand how organism functions

Clinical motivation

- Locate diseases, e.g. cancer
- Find malfunctions, e.g. ischemia

Understanding physiology

- Neuroimaging, e.g. emotions
- Metabolic imaging, e.g. brown fat

Research

• Drug development, e.g. distribution

An example of PET image analysis

Total body O-15-water PET imaging

- PET image size: 440 x 440 x 380 x 24 ~ 1.8 billion voxels
 - Time series of 24 images (3D)
- Hard to visualise even harder to analyse manually
- Automatic analysis steps needed

Visualisation

Segmentation

Modelling

LCX

LAD ste

An example of PET image analysis

Total body O-15-water PET imaging

Ischemia

?

PET imaging flow

Radioactive tracer

- Various different tracer for different purposes, e.g. radioactive water for blood flow, glucose (FDG) for metabolism
- Produced with cyclotrone and radiochemistry lab
- Injection (or inhale)

PET imaging

- Duration from minutes to tens minutes
- Patient lays still
- Typically with CT or MRI

Image analysis

- Segmentation
- Visual inspection
- Modelling
- Results

Image segmentation

Manual segmentation

- 2D tools (e.g. paintbrush)
- Tedious & subjective (low repetitive)
- Human control

Semi-automatic segmentation

- 2D or 3D tools (e.g. region grow algorithm)
- Less tedious & subjective
- Some human control

Automatic segmentation

- 2D, 3D or 4D methods (e.g. deep learning)
- Fast & objective (repetitive)
- No human control

ADD FIG HERE

PET-MRI image segmentation in neuroimaging

Automatic PET-MRI registration

• Dynamic PET and MRI images are registered

Automatic MRI segmentation

 Manually segmented MRI templates

MRI brain template

https://www.fil.ion.ucl.ac.uk/spm/

PET-MRI image segmentation in neuroimaging

https://www.fil.ion.ucl.ac.uk/spm/

Time activity curve (TAC)

- Dynamic PET images form a 3D video over time
- Activity in a PET image for the same region in different time is called time activity curve (TAC)
- The region can be e.g.
 - Segmented tissue or organ
 - A single voxel
- TAC illustrates how the tracers behaves over the time
- TACs in different regions have different behaviour

T. Tolvanen: Studies on dosimetry of positron emitting radiopharmaceuticals. Doctoral dissertation, 2023.

Modelling of tracer kinetics

- Tracer injection and steady state
- Injection time(s) and imaging time
 - Depending on tracer, imaging can be done several minutes after the injection
- Delay: tracer reaches some tissues earlier than others
- Tracer behaviour
 - Reversible uptake
 - Irreversible uptake

Idea of PET modelling

Tissues are considered as separate compartments assuming

- Uniform concentration in each compartment
- Tracer flow from a compartment is relative to it's concentration
- Tracer does not change physiology
- Labelling the tracer molecule with a radionuclide does not alter its properties

Compartment models

- Compartment is a uniform object with measurable matter (=tracer concentration)
 - Marked typically as a box (C_1, C_2, C_3)
- Flow is a constant that determines movement of the matter
 - Marked typically as an arrow (f_1, f_2, f_3)
- Idea of compartment model is to model the flow of the matter in time in each C_i

Compartment models, dynamic modelling

- Concentration in a compartment is a function of time [denoted C(t)], and flow is constant [f]
- From a PET image we can define values C_i(t) for each measured timepoint
- We are interested in finding the flow constants f_i
- E.g. change of C₁(t) at time t is C₂(t) f₂-C₁(t) f₁ and change of C₃(t) is C₂(t) f₃

• • • • • • • • • • • • • • • •

Compartment models, example

Compartment models, formulas

• In mathematical notion the example model becomes a differential equation:

$$\frac{\partial C_1(t)}{\partial t} = C_2(t)f_2 - C_1(t)f_1$$
$$\frac{\partial C_2(t)}{\partial t} = C_1(t)f_1 - C_2(t)f_2 - C_2(t)f_3$$
$$\frac{\partial C_3(t)}{\partial t} = C_2(t)f_3$$

• Solving this with the measured $C_i(t)$ values gives the flow constants f_i

Compartment models in PET imaging

Typical models in PET have 2 or 3 compartments

- One compartment is blood
- Other compartments for tissues or organs

Thus 1 tissue compartment model =2 compartment model and 2 tissue compartment model =3 compartment model,

Blood in compartment model is called input function. It can be measured or estimated from image

Patlak plot for irreversible uptake

Patlak plot is based on the observation that solution of simple irreversible model satisfies

$$\frac{C_2(t)}{C_1(t)} = A \frac{\int_0^t C_1(s) ds}{C_1(t)} + B$$

In other words plotting $\frac{C_2(t)}{C_1(t)}$ against $\frac{\int_0^t C_1(s)ds}{C_1(t)}$ gives a line

• Works also for 2 tissue compartment model

1 tissue compartment model

 $\frac{\partial C_2(t)}{\partial t} = C_1(t)f_1$

What is $\int_0^t C_1(s) ds$?

- $\int_0^t C_1$ is integral from 0 to *t*, which means area under the curve
- In practice simple area
 - Only rectangulars and triangles

Turku PET

Patlak plot for irreversible uptake

K.C. Schmidt, F.E. Turkheimer: Kinetic modeling in positron emission tomography. Q J Nucl Med. 2002 Mar;46(1):70-85.

Logan plot for reversible uptake

Patlak plot is based on the observation that solution of simple irreversible model satisfies

$$\frac{\int_0^t C_2(s)ds}{C_2(t)} = A \frac{\int_0^t C_1(s)ds}{C_2(t)} + B$$

In other words plotting $\frac{\int_0^t C_2(s)ds}{C_2(t)}$ against $\frac{\int_0^t C_1(s)ds}{C_2(t)}$ gives a line

• Works also for 2 tissue compartment model

Logan plot for reversible uptake

K.C. Schmidt, F.E. Turkheimer: Kinetic modeling in positron emission tomography. Q J Nucl Med. 2002 Mar;46(1):70-85.

1 tissue compartment model

 $\frac{\partial C_1(t)}{\partial t} = C_2(t)f_2 - C_1(t)f_1$

 $\frac{\partial C_2(t)}{\partial t} = C_1(t)f_1 - C_2(t)f_2$

Compartment models in PET

- Step one: define your model
 - Based on literature or experiments
- Step two: obtain data
 - PET scan and image analysis
- Step three: modelling
 - Use software to find coefficients

How to interpret modelling results?

- Interpretation depends on the tracer
 - Different tracers are used to image different functions
- For example FDG accumulates in myocodria and is used to image glucose uptake
 - FDG can be used to measure metabolism
 - Cancer tissue can be located with FDG
- In many applications the most interesting parameter is K_1
 - It represents the transport of the tracer blood compartment to the first tissue compartment
 - Bigger value means faster transport

2 tissue reversible compartment model

Parametric imaging

- For modelling regions, only one activity value per time point is considered
- Parametric imaging refers to modelling of individual voxels
 - Compartment modelling computationally demanding
 - Typically Logan or Patlak methods are used

PET image

TAC for region

Example MATLAB project compartment models

Pharmacokinetic Modeling

https://demonstrations.wolfram.com/PharmacokineticModeling/

•••••

What you should have learn

Contents of the talk

- PET imaging
- Image segmentation
- PET modelling
- Interpretation

Key terminology

- Dynamic PET
- TAC
- Compartment model
- Patlak plot
- Logan plot
- Parametric imaging

