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Abstract
Emotions modulate behavioral priorities based on exteroceptive and interoceptive inputs,
and the related central and peripheral changes may often be experienced subjectively. Yet, it
remains unresolved whether the perceptual and subjectively felt components of the emotion
processes rely on shared brain mechanisms. We applied functional magnetic resonance
imaging, a rich set of emotional movies, and high-dimensional, continuous ratings of
perceived and felt emotions depicted in the same movies to investigate their cerebral
organization. Eight main dimensions of emotions evoked during natural movie scene
perception were represented in the brain across numerous spatial scales and patterns.
Perceived and felt emotions generalized both between individuals and between different
samples of stimuli depicting the same emotions. The neural affective space demonstrated an
anatomical gradient from responses independent of specific emotions in polysensory areas
and default mode regions to more localized and emotion-specific discrete processing in
subcortical regions. Differences in neural activations during felt and perceived emotions
suggest that temporoparietal areas and precuneus have a key role in computing the affective
value of the sensory input. This affective value is then transformed into the subjective
emotional experience in the anterior prefrontal cortices, cerebellum, and thalamus.
Altogether these data reveal the similarities and differences of domain-general and emotion-
specific affect networks in the brain during a wide range of perceived and felt emotions.
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Introduction
Emotions promote survival by monitoring external and internal challenges and coordinating
automatic changes in peripheral physiology, behavior, motivation, and conscious experiences
(i.e., feelings) 1,2,3. Emotion circuits span the whole brain and are focused in the limbic and
paralimbic structures 4. Despite significant advances in mapping the neural basis of emotions,
two critical questions remain unanswered. First, how distinct emotional states - such as anger,
fear, or disgust - are coordinated in the brain, and second, what is the relationship between
the brain circuits that extract and recognize emotional information from the external input and
those that subsequently generate the phenomenological experience of emotions.

Emotions are organized categorically across multiple levels ranging from brain activity 5–9 ,
autonomic activation 10, somatosensory and interoceptive experience 11, facial, bodily, or vocal
behaviors 12–14 to subjective feelings 15. Recent behavioral studies suggest that the human
affective states span almost 30 distinct emotions 16. Yet, most imaging studies have
investigated either lower-order emotional dimensions (valence and arousal) 17 or the canonical
six "basic" emotions 5,18–21, only rarely extending the emotion space beyond these categories
6,22,23.

Emotional processing begins with the encoding of the survival impact of sensory information
based on, for example, the presence of predators or virus vectors, or others’ emotional
expressions and behavior 13,24,25 and contextual cues26. These cascading evaluative
processes may trigger the central and peripheral emotional responses and subsequently also
the subjective experience or feeling of emotion (see, e.g., 1,3,27). Emotional perception and
feelings are associated with activation in overlapping brain regions 28–30. However, an event
may trigger emotional states that are either congruent (e.g., seeing a smiling baby makes you
happy) or incongruent (e.g., seeing a smiling villain makes you scared) with the event.
Similarly, in anxiety disorders, emotional perception might be intact while the resulting
feeling is disproportionally biased towards anxious or fearful feelings 31. Thus, to map the
neural basis of emotional perception and feelings, we need to establish accurate stimulus
models distinguishing these two aspects independently. Yet, human neuroimaging studies
rarely differentiate perceptual versus experiential emotion processes 32.

Movies provide a powerful way to portray a wide range of human emotions. The characters
may be involved in nuanced and powerful emotional states (such as Rick Blaine on the airstrip
at the end of Casablanca or Rose DeWitt Bukater onboard the sinking passenger liner in
Titanic), and such scenes also elicit strong and consistent emotions in the viewers 33–35,36.
Thus, carefully curated cinematic stimuli allow mapping the high-dimensional representation
of both perceived and experienced emotions in the viewer’s brain.

In this study, we modeled the high-dimensional organization of perceived and felt emotions in
the human brain and tested how these models generalize across stimuli and participants. We
showed our participants two hours of emotional movies while measuring their brain activity
with functional magnetic resonance imaging. We selected a wide range of emotion categories
to cover a high-dimensional affective space (Figure 1A) and 2 hours of emotional movie
scenes from an existing emotion-elicitation database (Figure 1B; 37). We fitted emotion
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Figure 1. Methodological pipeline. A. Candidate emotions were selected based on previous studies.
B. A total of 70 movie clips with total duration of >2 hours were selected from 37 to elicit a wide range of
emotions. C. Dynamic ratings for perceived and felt emotion features were collected during movie
viewing. The reliability of the ratings of the emotion features was evaluated and only the 46 most reliable
features were included in the stimulus models. D. The emotion models were fit to the BOLD data using
a cross-validation scheme.

feature models derived from the dynamic emotion ratings to the fMRI data and adopted a
cross-validation scheme to evaluate the generalizability of the emotion models across
participants and movie stimuli (Figure 1C-D). This allowed us to directly compare the neural
basis of perceived and felt emotions using the same stimuli. The results show that movies
elicited consistent neural responses to a wide range of perceived and felt emotions that
generalize across stimuli and participants. The cerebral topographies of perceived and felt
emotions were partly separate, and neural emotion clusters only partially correspond to
behavioral emotion clusters.

Results

Reliability of ratings of perceived and felt emotions

Subjective ratings confirmed that the participants perceived and felt a wide array of different
emotions while viewing the movies (Figure 2A-C). However, there was significant variation in
both occurrence, intensity, and intersubject consistency of the perceived and felt emotions.
We found a clear continuum from commonly and consistently reported emotions (fear, anxiety,
despair, devastated, sadness) to infrequently and inconsistently reported emotions (jealousy,

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.08.521183doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.08.521183


Figure 2: Reliability of emotion ratings. A. Percentage of raters for each emotion and each task
(perceived and felt combined) with above-zero ratings for at least one time point. B. Percentage of time
points for each emotion where at least one rater gave a non-zero rating. C. Mean intersubject correlation
of emotion ratings across pairs of raters. D. Similarity of mean ratings for perceived and felt emotions
across raters across all runs. In each panel, bars indicate the mean values across runs, dots show the
values for individual runs, and vertical lines indicate the min-max range. The emotions are ordered
based on the combined reliability of panels A–C calculated as the geometric mean of the percentage of
non-zero raters, non-zeros timepoints, and intersubject correlation or ratings (shown in the gray plot at
the top). Emotions not deemed reliable based on permutation statistics are shown with transparent
colors.

craving, hurt, satisfaction). The mean intersubject correlation of the ratings and the number of
participants giving above-zero ratings for each emotion were positively correlated. To avoid
spurious effects, we show the clustering analysis (Figure 3) and all further analyses only for
the 46 emotions, which showed reliable, non-zero rating profiles across the five runs (Figure
2). Clustering analysis for all emotions further confirmed that unreliable emotions are
separated from reliable ones (Supplementary Figure S2). Clustering for this reliable set of
emotions revealed a broad valence-related structure. The nine clusters were formed around
the following emotion categories: 1) sadness, anger, and fear, 2) disgust, 3) displeasure, 4)
embarrassment, 5) love, 6) surprise, 7) gratitude and joy, 8) amusement, and 9) calmness.

Temporal similarity between perceived and felt emotions

Next, we addressed the temporal similarities of perceived and felt emotions by calculating the
similarity between the time series for the perceived and felt emotion from the same category
(Figure 2D). Overall, the temporal similarity structures for the perceived and felt emotions
were consistent. Out of the 63 emotions, the mean correlation between perceived and felt
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Figure 3. The cluster structure of perceived and felt emotions. A: Correlation matrix and
dendrogram of ratings over emotion models across all runs and both felt and perceived emotions for
the reliably occurring emotions. Colors of the dendrogram indicate the clustering solution based on
rating data and is also reflected in subsequent figures. B: Alluvial diagram shows corresponding cluster
structures between felt and perceived emotions. C: Multidimensional scaling visualizes the similarity of
emotions based on the ratings of felt emotions (left) and perceived emotions (right). Emotions not
belonging to any cluster are shown in gray in the dendrogram and multidimensional scaling plots and
are left unconnected in the alluvial diagram.

emotions was above .60 (corresponding to 36% shared variance) for 32 emotions categories.
The emotions with the highest similarity included romance, impression, sexual desire, pride,
fear-related emotions (including fear, anxiety, horror, and thrill), and sadness-related
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categories (including sadness and glumness). While the perception of emotion led to a
consistent feeling of the same emotion for most emotion categories, there were also some
emotions with discordant perception and feeling (e.g., guilt, physical pain, confusion, anger,
hatred, interest, excitement, and nostalgia). The correspondence of the cluster structures
between perceived and felt emotions further highlights this decoupling (alluvial diagram in
Figure 3): Emotions clustering around love, pride, sadness, and impression had similar
perception and feeling structures, whereas social emotions clustering around humiliation,
loneliness, and insecurity were less consistently perceived and felt. While some emotions
were perceived more often than felt (e.g., physical and emotional pain, fury, zeal, and guilt),
others such as pity and nostalgia were mostly felt and rarely perceived in the movies (Figure
2A).

Brain basis of perceived and felt emotions

We first evaluated where in the brain different perceived and felt emotions are represented
consistently across stimuli and participants (Figure 4). First, each of the five runs in our
experiment contained different movies depicting the same set of emotions, allowing us to test
the generalizability of emotion-related brain responses across stimuli. Figure 4A shows the
generalizability (i.e., correlations) of the cross-validated emotion models where three runs
were used for training and two runs for testing (for region-wise generalizability, see
Supplementary Table S1). For both perception and feeling, the responses were most
consistent in the right temporal cortex, bilateral temporoparietal junction, anterior cingulate
cortex, and precuneus. For emotional perception, the responses were also consistent
bilaterally in the temporal cortices. For feelings, the model was also consistent in the anterior,
medial, and dorsolateral prefrontal cortices, thalamus, and cerebellum. Second, we evaluated
the consistency of emotion-related brain responses across participants. Figure 4B shows that
we found largely overlapping, widespread effects for both perception and feeling in regions
covering occipital, temporal, and parietal lobes, posterior midline, and cerebellum. The only
notable difference was the more consistent prefrontal activity for feelings, which was absent
for perception.

To test whether low-level stimulus features could explain the emotion-related brain activity, we
ran the same analysis with a model that included the emotion features and three low-level
visual and auditory features (Supplementary Figure S4). As expected, low-level stimulus
feature models explained sensory activity in V1/V2, V2/MT, and A1/STG. However, activity in
regions, including TPJ, STS, and MPFC, was unaffected, showing that stimulus-related activity
in these regions reflects emotional processing rather than purely sensory processing.
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Figure 4. Consistency of emotion models. A. Generalizability of emotion responses for different
stimuli for felt (left) and perceived (right) emotions. B. Consistency of the cross-validated models across
participants for felt (left) and perceived (right) emotions. Regional data are thresholded at FWER p<.05
of the mean fit of all run combinations (3 training runs, 2 test runs, 10 combinations). Statistics are
based on the 95th percentile of maximum statistics in surrogate data (max. over ROIs and 95th
percentile over null iterations with circularly shifted training data).

Regional responses to specific perceived and felt emotions
Next, we analyzed ROI-level data to address the representation of perceived and felt emotions
in different brain regions by quantifying the region-wise consistency of the responses evoked
by each perceived and felt emotion (Figure 5). We first identified the emotion categories
associated with the most widespread activity changes across the brain (Figure 5, bar plot).
We found a clear gradient in the brevity of the distribution of emotion-evoked activity in the
brain across emotions. Perceived and felt amusement, thrill, and horror led to the most
widespread brain activation across the temporo-occipital, parietal, and midline regions. In
contrast, more neutrally-valenced emotions, such as calmness, neutral, and nostalgia, yielded
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Figure 5. Regional responses to specific experienced and perceived emotions. Total brain area
activated by individual emotions (top) and the regional consistency of emotion-wise responses for felt
(middle) and perceived (bottom) emotions. Emotions are ordered based on the spatial extent of
significant activations averaged over both tasks, and brain regions are ordered by the number of
emotions that are significantly correlated with the regional activity. The bar plots show the average
number of ROIs that were activated over all runs and the dots show individual-run results. Vertical lines
connect the minimum and maximum values over runs. The brain plots show the number of emotions
whose responses were statistically significant in at least one run; the matrix plot shows the
corresponding data at the level of single emotions at the scale of macroanatomical regions, each
comprising multiple ROIs across both hemispheres. The dots indicate the percentage of ROIs within
the macroanatomical regions that were significantly activated (hot colors) or deactivated (cold colors)
by the emotions over all the runs and over participants. The data are thresholded at two-tailed p < .05
(FWER corrected). For brain plots with higher resolution and bar plots color-coded with clustering
results, see Supplementary Figure S5.

focal deactivation in parietal midline and lateral regions. Anger- and disgust-related emotions
were also accompanied by deactivation in regions including STG and pSTS. Overall, sadness-
and happiness-related, calm emotions yielded weaker responses in fewer areas. Feelings led
to more widespread activation than perception for some emotions, such as surprise, fear, and
sexual desire, while the opposite was true for other emotions, such as agitation, zeal,
annoyance, hatred, guilt, anger,  and excitement.

There were also apparent regional differences in the breadth of tuning for different emotions
as demonstrated by the spatial gradient ranging from regions activated during most emotions
to those activated during few specific emotions (Figure 5). Superior temporal and posterior
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midline regions (including precuneus and superior occipital gyrus) generally responded to
most emotions for both perception and feeling. More selective activity to clusters of emotions
was seen in regions such as cerebellum whose activity was associated with fear- and surprise-
related emotions and in superior parietal regions which yielded consistent responses to fear-
related emotions. Finally, regions such as the amygdala showed emotion-specific responses:
in the amygdala activity was consistent especially for amusement, joy, and perceived surprise.

Spatial clustering of the neural responses to felt and perceived
emotions
We next analyzed the similarity of the response profiles by clustering the brain activity patterns
based on their between-run similarity and compared it with the similarity of ratings (depicted
in Figure 3). The clusters identified from the neural data differed from those in the self-report
data (Figure 6, see Supplementary Figure S3 for a side-by-side comparison of the similarity
structures). The large valence-based (pleasure/displeasure) cluster structure in self-report
data was absent in the neural data. At the neural level (Figure 7), the most prominent clusters
contained amusement- and confusion-related states (cluster 4) and fear- -related states
(cluster 3). Felt joy drove a small cluster (cluster 6). Neutral and calm romantic emotions also
formed another small cluster (cluster 7). Less reliable, but robust clusters were also found for
disgust (cluster 2) and felt calm, positive emotions (cluster 8). A large set of emotions also
stayed relatively independent of the larger clusters, forming two somewhat unreliable clusters,
driven by perceived happiness and emotions with a clear bodily component, such as physical
pain and sexual desire (clusters 5 and 1). Fear-related perceived and felt emotions
consistently clustered together. Similar grouping was also apparent for positive and neutral
emotions such as amusement and confusion.
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Figure 6. The cluster structure of the brain responses to perceived and felt emotions. The
organization of the figure is similar to the clustering of ratings in Figure 3. A: Between-runs correlation
matrix and dendrogram clustering of brain responses. B: Alluvial diagram of cluster correspondence
between perceived and felt emotions. C: Multidimensional scaling of similarity of brain responses to felt
(left) and perceived emotions (right).
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Figure 7. Brain-based clustering of emotions. Cumulative activity patterns for the brain clusters of
perceived and felt emotions. Cluster colors and numbers depict the clustering hierarchy and order of
emotion ratings in Figure 6. The clusters are ordered based on the mean reliability of the activity patterns
(between-runs spatial correlation) of the emotions contained within the cluster. The emotions in the
clusters are ordered by reliability, which is depicted by the bar plots. Brain maps show the cumulative
significant (p<.05 Bonferroni corrected over regions and emotions) activations over runs and emotions
belonging to each cluster, from negative 100% (all emotions are significantly negatively correlated with
BOLD activity in all 5 runs) to positive 100% (all emotions are consistently positively correlated). Thus,
inconsistent positive and negative activations across runs cancel each other out. Felt and perceived
emotions are shown in blue and red font, respectively. For complete results, see Supplementary Table
S7).

Discussion
Our main finding was that the emotions evoked during free viewing of movies are represented
in the brain across numerous spatial scales and patterns. While the self-report data revealed
that 46 emotions were consistently used to describe the affective content of the movies,
dimension reduction techniques revealed that these could be reduced to eight main emotion
dimensions. Neural activity related to both perceived and felt emotions were consistent across
individuals and generalized across different stimuli. There was also a region-specific gradient
ranging from temporoparietal regions to default mode and subcortical regions for the breadth
of emotional tuning. Some brain regions, such as the posterior temporal cortex and cortical
midline, were non-selectively activated during most emotions, while the emotion-specific
tuning was sharper outside these regions. Even more selective responses to specific emotions
were found mainly in subcortical regions. Similarly, there were large differences in the regional
specificity of the emotion-evoked activations. While some emotions (such as fear, anxiety, and
amusement) consistently engaged large-scale brain networks across temporal, parietal, and
midline regions, others, such as anger and disgust, showed more regionally selective patterns.
Finally, although perceived and felt emotions were often in alignment, the similarity in
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emotional perception and feeling and the resultant brain activation varied across emotions.
These results constitute one of the most comprehensive investigations of the neural basis of
emotional perception and experience. They highlight spatial gradients in the emotion-
specificity in the human brain, and outline similarities and differences in the neural basis of
perceiving and feeling different emotional states.

Generalizability and consistency of emotion responses in the brain

The generalizability of emotion models across different samples of the same emotion was
highest in temporoparietal, temporal, and anterior cingulate cortices and precuneus. These
regions are also activated during the processing of social information 38. This generalization
confirms that the emotion-dependent responses were not driven purely by visual, auditory, or
semantic features of the videos, as these were completely different across the movies.
Accordingly, adding low-level stimulus features to the emotion model improved across-
stimulus consistency in sensory areas, while the consistency in the regions responding to
emotions - temporoparietal, temporal, and midline regions - was unaffected.

The emotion models generalized well across participants, confirming the consistent and
shared nature of the emotional responses across individuals also on the neural level. Across-
participant generalization of affective responses has been more difficult to achieve than
across-stimulus generalization within individuals 5,6. However, our results revealed across-
participant consistency in widespread brain networks covering the sensory areas (occipital
and temporal lobes), posterior midline regions, and parietal regions often associated with
attention, consistent with previous studies showing high intersubject synchronization in these
regions during emotional moments of movies 17,38–41. This likely stems from the high degree of
consistency in the time-variant emotional response elicited by the movies, in comparison with
static and noisy “snapshot” emotions evoked by e.g. pictures or sound bursts. In movies,
emotions occur in natural contexts, which might lead to shared rather than individualistic
experiences.

Out of our original 63 emotion categories, 46 (73%) had sufficient occurrence rates and high
intersubject reliabilities. The similarity of neural responses revealed that these emotions could
be divided into eight clusters. Outside these, we found considerable variability in the reliability
and intensity of the emotions evoked by the movies. Emotions such as embarrassment, pride,
humiliation, loneliness, shame, gratitude, hurt, and jealousy were difficult to elicit. The common
nominator for these emotions is that they often occur in personal social settings, and are not
typically experienced in third-person settings, such as while viewing a movie.

Emotional gradients in the brain

Our results also yielded maps of the affective space in both phenomenological and neural
domains. The neural affective space demonstrated a gradient-like organization ranging from
generic processing in temporoparietal and default mode regions to more localized, discrete
processing in subcortical regions.

The largest and most generic hub of the neural affective space was the temporo-parietal
junction (TPJ), which was activated during the perception and experience of most emotions.
TPJ is consistently engaged during social perception 42 and has been previously shown to

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.08.521183doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.08.521183


contain emotion-specific gradients also during perceived and experienced emotions 20.
Accordingly, TPJ activation suggests that social information processing is relevant to most
emotions evoked by movies. Taken further, social information processing might be an
integral part of human emotions in general, which warrants further investigation of the role of
social information in emotional processing.

Another central hub for emotion processing was the precuneus, which responded to most
perceived and felt emotions. Temporal pole and parietal regions, including SPL and IPL, also
responded to numerous emotions. These regions are part of the default mode network that
consistently shows differential activity patterns for different emotions 5,6,18. The default mode
network has been especially associated with sustained, slow changes in emotional states,
potentially reflecting the integration of emotion-related information and the conscious
experience of emotions 18,43.

Some regions showed moderately specific response profiles. For instance, activity in the
cerebellum was associated with fear- and surprise-related emotions. Superior parietal
regions yielded consistent responses to fear-related emotions. In turn, emotion-evoked
activity in subcortical regions was more narrowly tuned and was observed only for some
emotions. For example, the amygdala responded primarily to felt and perceived positive
emotions and perceived surprise, while the thalamus responded selectively to perceived and
felt fear. The selective, local activity does not necessarily mean that these regions would be
responsible for a single emotion. Instead, these regions are likely involved in the processing
of information that is more pronounced for a subset of emotions. The middle frontal gyrus -
implicated in relation to attention orienting - was active during fear-related emotions while
showing decreased activity primarily during calm emotional states, potentially reflecting
differences in attentional demands between emotions44.

Altogether these data show that the emotion circuits in the brain operate in both domain-
general and domain-specific manner. The core, domain-general components of the networks
likely encode the detailed emotional content of the sensory input, which is then processed in
a more granular manner across various extended emotion circuits whose engagement
depends on the specific emotional content.

Cerebral organization of the emotion space

The current study is the first large-scale investigation of emotion clusters identified based on
brain activity; the few previous studies have used far smaller sets of emotions 6.

The clustering of emotions based on self-reports revealed a primary valence-driven space of
emotional feelings, in line with the vast previous literature 45. Besides the positively and
negatively valenced clusters, we identified four smaller clusters around disgust, annoyance,
calmness, and confusion. For 91% of the emotion categories, both perceived and felt
emotions from the same category clustered together, most likely reflecting their highly
overlapping temporal structure within the movies. The temporal co-occurrence of perception
and feeling of the same emotion suggests shared underlying cognitive processes in both.
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The two largest and most consistent neural clusters consisted of amusement/confusion- and
fear-related emotions, respectively. The amusement/confusion cluster included positive and
neutral, mainly arousing emotions. Perceived awkwardness, annoyance, and amusement
were clustered together with felt amusement and confusion. The fear-related cluster included
various negative emotions, but the most robust activity was detected for fear. Also, four
other, smaller clusters (related to joy, romance/neutral, disgust, and calm, positive emotions)
showed clear, consistent brain activity. The other clusters (driven mainly by happiness and
emotions with a solid bodily component, such as physical pain and sexual desire) showed
less consistent activity across stimuli.

The cluster structure based on brain activation was not identical to the structure emerging
from the self-report data. In the self-reports, we identified clear emotion clusters (including
disgust, fear, and sadness, displeasure, embarrassment, love, joy, and calmness) that
resembled those found in previous studies 16. Notably, self-reported perceived and felt
emotions from the same emotion category often clustered together, while in the neural data,
the perceived and felt emotions from the same category often were split into different
clusters. As current emotion theories expect 3,27,46, subjective experience is only one part of
the overall emotional state and does not directly map to the underlying neural state. Thus,
emotion-related brain activity reflects various automatic changes in several functional
components, including subjective experiences, physiology, motor activation, motivation, and
cognition. Our results support the interpretation that neural similarities between emotions
result from changes in multiple functional components 47.

Shared and distinct neural basis of perceived and felt emotions

Besides the spatial gradient ranging from generic to specific emotion responses, we also
found an anatomical distinction between perceived and felt emotions. Both perceived and
felt emotions elicited overlapping brain activity in the precuneus, temporo-parietal junction,
and auditory areas. While emotion perception engaged brain regions overlapping with those
activated while feeling the same emotion, feelings were accompanied by additional activity in
the anterior and prefrontal cortices, thalamus, and parts of the cerebellum, whose activity
was absent for emotional perception. These regions are consistently reported to activate
during emotional experiences elicited by different types of stimuli 5,6 36. Thus, we conclude
that the frontal regions, thalamus, and cerebellum process information during felt emotions
but not during emotion perception. Especially, we found direct evidence for the involvement
of the prefrontal cortex and anterior cingulate in generating subjective experiences of
emotions, as also suggested in previous studies 5.

Perceived emotion was often accompanied by a concordant feeling, but there were also
some emotions for which perception and feeling were decoupled. Alignment between the
perception of a character’s emotions and observers’ feelings has been rarely studied. One
previous study has shown that characters’ portrayed basic emotions and empathic
responses share only 11-35% of the variance in the feelings of the observers 20. In our data,
we found large variability in the shared variance between felt and perceived emotion from
the same categories (average 36%, ranging from almost 0% to close to 100%). Emotion
categories related to love and sexual desire, pride and impression, fear, and sadness were
both perceived and felt simultaneously. Thus, emotional contagion for these emotions is
high, suggesting that the perceived emotion is directly mirrored in the observer. These
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emotions are characterized by seeking affiliation with others 48. On the other hand, the
perception of less socially driven emotions such as boredom, interest, confusion, pity, and
anger were seldom accompanied by a simultaneous feeling of the same emotion.

Limitations

We carefully curated a set of 63 emotion categories for the study but could only reliably elicit
46 of them. Especially personal and social emotions, including jealousy, hurt, shame, and
gratitude, were difficult to elicit with movies, possibly due to the interpersonal nature of these
emotions. Due to methodological constraints (collecting self-reports took 20 hours per
participant), we collected self-reports and fMRI data from an independent set of raters. Thus,
it is possible that the emotions felt and perceived by the fMRI participants differed from those
of the raters. However, the raters came from the same population (young, healthy females)
as the fMRI participants and gave consistent ratings. Finally, our emotion models were built
on self-reported changes in categorical emotional content, which is optimal for investigating
slower changes in conscious perception and feeling but cannot track some of the fast,
momentary changes in stimulus content that subcortical regions might be responsible for.

Conclusions

Our results reveal the neural basis of the core emotional dimensions, and highlight spatial
cerebral gradients in representing different emotional states. Eight main dimensions of
emotions evoked during movie viewing are encoded in the brain across numerous spatial
scales and patterns, and perceived and felt emotions generalize both between individuals
and between different stimuli. There is a gradient from large-scale to regionally specific
representation of emotions ranging from higher-order temporoparietal areas to default mode
network, and finally to more selective activity, especially in subcortical regions. While
perception and feeling of different emotions were supported by numerous overlapping brain
regions, the activity was more focused in frontal, thalamic, and cerebellar activity during
feelings. Although emotional perception and the resultant feelings often go hand in hand, our
data highlight that they are also often decoupled in both conscious experience and brain
activity.

Methods

Generating the high-dimensional emotional space with movies

We initially selected a wide range of emotion categories to cover a high-dimensional affective
space (Figure 1A). First, we compiled an original list of 128 emotion categories based on
previous studies 6,16,24,49. Next, we translated the emotion categories into Finnish using a
glossary of Finnish emotion words 50. We then conducted a pilot study where 25 female
volunteers rated the similarity between emotion categories. The ratings were collected using
a modified online Q-sort where participants organized the categories into piles based on their
felt similarities (https://version.aalto.fi/gitlab/eglerean/sensations; 51. Based on the average
similarities, we selected a final list of 63 emotion categories that covered the whole emotion
space (Supplementary Table S2; Supplementary Figure S1).
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Next, we selected a set of movie stimuli from an existing database of emotional Hollywood
movies (Figure 1B; 37). First, we excluded black-and-white movies to minimize low-level visual
differences between scenes. Second, we excluded multiple clips with the same identifiable
characters from a single movie. Third, to ensure that the scenes elicit the desired emotions,
we collected pilot emotional intensity ratings from 13 Finnish-speaking female volunteers.
These raters evaluated the experience of 63 emotion categories (scale: 0=not at all, 4 =
extremely much) while viewing the scenes in 3-10-second segments (for more details, see
Supplementary Note 1). This selection procedure led to a final set of 39 scenes (length 0:16-
6:57; total duration 114 minutes; see scene list in Supplementary Table S3). For the fMRI
study, we divided the movie scenes into five runs of similar emotional content as defined by
the pilot ratings (8 scenes in runs 1-4 and 7 scenes in run 5; for a list of movies in each run
and their mean emotion ratings, see Supplementary Tables S4 and S5).

Generating emotion models from ratings of perceived and felt
emotions
We collected dynamic ratings of perceived and felt emotions during movie viewing using an
online rating tool from another independent sample of 16 Finnish-speaking female volunteers
(Figure 1C). The final selection of 39 movie scenes were shown and ratings were collected
similarly as in the pilot study. The participants could replay each clip as many times as they
wanted. We collected ratings of perceived and felt emotions from the same participants on
separate runs and counterbalanced the order of ratings (i.e., perceived or felt first). We created
the dynamic emotion models for each movie scene by linear interpolation to the end-points of
the short clips. All ratings were set to zero at the beginning of each scene. Due to the low and
variable sampling rate and slow changes of the interpolated ratings, we approximated the
hemodynamic response function (HRF) as a single gamma function, excluding the undershoot
typically included in the canonical double gamma HRFs.

Next, we performed a reliability analysis to ensure that only reliably evoked emotions would
be included in the stimulus models  (Figure 1C). We used a combined reliability measure
considering the number of raters that reported perceiving / feeling each emotion, the number
of time points when the emotion was detected, and the average intersubject correlation of
the emotion ratings. We first calculated the percentage of raters that gave non-zero ratings
for each emotion for at least one time point for each run. Second, we calculated the number
of time points that received non-zero ratings from at least one rater. Third, we calculated the
rating-wise mean intersubject correlation between all pairs of raters. Finally, we calculated
the geometric mean of these three measures to derive a joint reliability value for each
emotion. To include emotions that were consistently rated for at least one task, we
calculated the mean reliability across runs for each task separately and used the higher of
these values for each emotion to select the emotions to be included in the subsequent
analyses. We evaluated the chance level of reliability as the combined reliability for
permuted data. Each permutation consisted of shuffling the values between emotions
independently for the three aforementioned measures and recalculating the reliability. The
95th percentile of this distribution across iterations, emotions, and tasks was used as a
statistical threshold for defining the reliable emotions used in the data analysis.
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fMRI participants and experimental design

Fifty right-handed Finnish-speaking healthy female volunteers (mean age 24.9±4.4, range 20-
38 years) with normal or corrected to normal vision participated in the study. No participants
had current psychiatric conditions or medication affecting the central nervous system. All
participants gave written informed consent according to the Declaration of Helsinki and were
compensated for their time and travel expenses. Aalto University's ethics committee approved
the study protocol.

Functional magnetic resonance imaging (fMRI) was performed on two separate days. In the
first fMRI session, we obtained structural images and two functional runs of movie scenes. In
the second session, we obtained three functional runs of movie scenes.

Participants watched the movie scenes without a specific task and were instructed only to
watch them as they would e.g. watch movies on YouTube. Each of the five runs consisted of
7-8 movie scenes and lasted for approximately 23 minutes (range 22-24 mins). The order of
movie scenes within a run was fixed for all participants, and the order of runs was
counterbalanced across participants. A run started with a fixation cross presented for 9.6
seconds (i.e., 4 TRs), followed by the first scene. The movies were played one after another
without gaps. After the last movie of a run, a fixation cross was presented for 9.6 seconds.

Sound was delivered through Sensimetrics S14 insert earphones (Sensimetrics Corporation,
Malden, Massachusetts, USA). Each participant’s sound level was adjusted individually to be
loud enough over the scanner noise. Visual stimuli were back-projected on a semi-transparent
screen using a Panasonic PT-DZ110XEJ data projector (Panasonic, Osaka, Japan) and via a
mirror to the participant. Stimulus presentation was controlled with Presentation software
(Neurobehavioral Systems Inc., Albany, CA, USA). An fMRI-compatible face camera (MCR
Systems Ltd, Leicester, UK) was used to ensure that participants had their eyes open during
the whole scan.

fMRI data acquisition and preprocessing

We collected MRI data with a 3T Siemens Magnetom Skyra scanner at the Advanced
Magnetic Imaging Centre, Aalto Neuroimaging, Aalto University. To improve the binocular field
of view, we used a 30-channel Siemens receiving head coil modified from a standard 32-
channel coil by removing the two coil elements surrounding the eyes. We collected whole-
brain functional scans using a whole-brain T2*-weighted EPI sequence with the following
parameters: 44 axial slices, interleaved order (odd slices first), TR = 2.4 s, TE = 24 ms, flip
angle = 70°, voxel size = 3.0 x 3.0 x 3.0 mm3, matrix size = 64 x 64 corresponding to FOV 192
x 192 mm2, PAT2 parallel imaging. To avoid the signal from fat tissue, we used a custom-
modified bipolar water excitation radio frequency (RF) pulse. Finally, we collected high-
resolution anatomical images with isotropic 1 x 1 x 1 mm3 voxel size using a T1-weighted MP-
RAGE sequence.

For each BOLD-fMRI run, we performed the preprocessing with fMRIprep version 1.1.8 (52;
RRID:SCR_016216). First, we used fMRIprep to prepare a reference volume and its skull-
stripped version. Next, we co-registered the BOLD reference to the T1w reference image using
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bbregister (FreeSurfer), which implements boundary-based registration 53. Co-registration was
configured with nine degrees of freedom to account for distortions remaining in the BOLD
reference. Head-motion parameters for the BOLD reference (transformation matrices and six
rotation and translation parameters) were estimated before spatiotemporal filtering using
mcflirt (FSL 5.0.9, 54). BOLD runs were slice-time corrected using 3dTshift from AFNI (55,
RRID:SCR_005927). The resulting slice-timing corrected BOLD time series were resampled
onto their original, native space by applying a single, composite transform to correct head-
motion and susceptibility distortions. Next, we applied spatial smoothing with an isotropic,
Gaussian kernel of 6mm FWHM (full-width half-maximum). The resulting "non-aggressively"
denoised runs were produced, and the noise regressors were used for nuisance regression
during analysis. The BOLD time series were resampled to MNI152NLin2009cAsym standard
space, generating a preprocessed BOLD run in the corresponding space.

After preprocessing, we extracted the voxel-wise BOLD time series within the group brain
mask, and converted them to percent signal change for each participant. Next, we calculated
the mean ROI time series in regions defined with Brainnetome 56 and cerebellar connectivity
57 atlases covering the cerebral cortex, subcortical regions, and the cerebellum. We included
273 regions in the analyses after omitting one cerebellar ROI falling outside the group brain
mask. Signals extracted from deep white matter and cerebrospinal fluid and the six motion
time series and their second-order effects and linear trends were regressed from the ROI level
data. To match the frequency content of the slowly evolving emotion time series (emotion
event lengths ranged from 20 to 100 seconds), we filtered the data of periods between 200
(twice the length of the longest event) and 20 seconds (i.e., .005 to .05 Hz). We employed a
finite impulse response filter designed with the Parks-McLellan algorithm with a ripple of <1dB
in the passband and 40dB in the stopband. Transition bands extended from ~−24dB at 0Hz in
the lower stopband and up to 0.0613Hz in the upper stopband.

Fitting the emotion models
We estimated the beta weights of the emotion models with least-squares fitting after removing
the mean of the signals and models (Figure 1D). For between-runs generalization, we fitted
the model to the mean standardized activity of all participants in the training runs (three runs).
We then tested the model fit on the individual activity time series of the participants in the test
runs (the remaining two runs). The process was repeated for all permutations of training and
test runs (10 combinations in total). Next, for within-run generalization, we used 10-fold cross-
validation across participants. Here, we fitted the model to the mean activity of 45 participants,
and the fit of the predicted activity was tested on the individual activity of the left-out
participants. This process was repeated for each of the ten cross-validation folds and ten
combinations of runs.

To test whether low-level stimulus features could predict the fit, we repeated the same fitting
process for the emotion models extended with two visual features (presence of high spatial
frequencies and differential energy between subsequent frames) and one auditory feature
(root-mean-squared power) from the movies. The resulting low-level stimulus feature time
series were added to a combined emotion and low-level stimulus features model.
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Reliability of the neural responses to emotion categories

To evaluate the reliability of emotion responses while avoiding the circularity of correlating
neural responses within the same run, we calculated a spatial correlation matrix for each
emotion between all combinations of non-overlapping training and test runs used in the
between-runs cross-validation (i.e. emotion responses in the training set were correlated
with those in the test set). A mean correlation matrix was produced by averaging the
correlation matrices over the 10 run combinations, and this matrix was used for evaluating
the reliability of brain-wide responses to emotions and performing the subsequent brain-
based clustering. Additionally, to reduce the effects of non-significant activations on the
brain-wide reliability measure, we repeated a similar analysis using generalized (two-sided)
Dice indices of the thresholded activity maps. This procedure provided highly similar results
as the correlation matrices and is therefore omitted in the subsequent sections.

Cluster analysis

To investigate the similarity structure of the dynamic emotion ratings and emotion-related
brain activity, we performed an average linkage hierarchical clustering for both data
separately. The leaf order was optimized by maximizing the sum of the similarities of
adjacent emotions (optimalleaforder-function,
https://www.mathworks.com/help/stats/optimalleaforder.html), and default thresholding was
used (70% of maximum linkage) as the clustering cutoff for the visualization.
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