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ABSTRACT

Laughter and crying are universal signals of prosociality and distress, respectively. Here we investigated the functional brain basis of perceiving laughter and crying
using naturalistic functional magnetic resonance imaging (fMRI) approach. We measured haemodynamic brain activity evoked by laughter and crying in three exper-
iments with 100 subjects in each. The subjects i) viewed a 20-minute medley of short video clips, and ii) 30 min of a full-length feature film, and iii) listened to 15 min
of a radio play that all contained bursts of laughter and crying. Intensity of laughing and crying in the videos and radio play was annotated by independent observes,
and the resulting time series were used to predict hemodynamic activity to laughter and crying episodes. Multivariate pattern analysis (MVPA) was used to test for re-
gional selectivity in laughter and crying evoked activations. Laughter induced widespread activity in ventral visual cortex and superior and middle temporal and mo-
tor cortices. Crying activated thalamus, cingulate cortex along the anterior-posterior axis, insula and orbitofrontal cortex. Both laughter and crying could be decoded
accurately (66-77% depending on the experiment) from the BOLD signal, and the voxels contributing most significantly to classification were in superior temporal
cortex. These results suggest that perceiving laughter and crying engage distinct neural networks, whose activity suppresses each other to manage appropriate behav-

ioral responses to others’ bonding and distress signals.

1. Introduction

Humans have an urgent need to feel belonging to groups and use a
multitude of expressions for signifying this. Laughter is a universally
recognized positive social expression. It occurs frequently in human so-
cial interactions (Sauter et al., 2010; Scott et al., 2015) but is also com-
mon among nonhuman primates (Preuschoft, 1992; Ross et al., 2009)
and rodents (Panksepp and Burgdorf, 2003). Macaques and chim-
panzees use a quiet smile-like gesture to appease aggressive con-
specifics, whereas relaxed open-mouth vocalizations are associated
with both play behavior and pair formation (Preuschoft, 1992; Waller
and Dunbar, 2005). Similarly, humans use quiet smiles for signaling so-
cial approval and openness to social interaction (Calvo et al., 2012;
Calvo and Nummenmaa, 2015), whereas laughter is used more directly
for promoting social bonding (Dunbar, 2012; Scott et al., 2015). Func-
tional and acoustic properties of this kind of play signals in humans re-
semble those of numerous other animals, most notably other great apes
(Winkler and Bryant, 2021).
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Laughter is a powerful mechanism for bonding, as it is highly conta-
gious (Provine, 2004) allowing the bonding response to spread
throughout the interacting group to increase the effectiveness of this
type of ‘vocal grooming’ (Dunbar, 2012). Accordingly, behavioral work
suggests that a shared sense of humor is indeed a strong predictor of af-
filiation and altruism (Curry and Dunbar, 2013). Human molecular
imaging studies in turn have shown that the bonding function of
laugher is governed by the endogenous opioid system (Manninen et al.,
2017; Sun et al., 2022) that modulates both pleasurable and calm sensa-
tions (Nummenmaa and Tuominen, 2018; Kantonen et al., 2020) thus
signaling safety in close proximity with important others. Crying is also
used for signaling the need for social contact, but unlike laughter it is
evoked when social losses or social distancing is experienced. This kind
of cue engages the putative separation distress circuit in the mam-
malian brain that consequently modulates approach behavior and so-
cial contact seeking (Panksepp, 2003). Due to the centrality attachment
in mental health and well-being, it is critical to understand the func-
tional systems processing of these distinct types of social attachment
signals.
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Experiment 1: 96 movie clips (mean duration 12.5 s), total duration 21 mins

Experiment 2: First half of a feature film (The Commandment / Aku Louhimies), Duration 30 mins
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Experiment 3: Radio play (The Purge / Sofi Oksanen). Duration 15 mins
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Fig. 1. Experimental setup. The subjects viewed a medley of 96 movie clips (mean duration 12.5 s) in a fixed order (Experiment 1), 30 min of a featuee film (Ex-
periment 2) and listened to 15 min of radio play (Experiment 3). Intensity of laughter and crying in the movie clips was annotated at 0.25 Hz temporal resolu-

tion.
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Fig. 2. Time series for the laughter and crying regressors in each experiment.

Despite significant interest in the neurobiology of human facial ex-
pression perception, there is a surprising paucity of data on the neurobi-
ology of the social bonding circuits engaged by laughter and crying.
This is saliently illustrated by the fact that the most widely used sets of
static and dynamic human facial emotional expressions (Ekman and
Friesen, 1976; Lundqvist et al., 1988; Tottenham et al., 2009; van der
Schalk et al., 2011) explicitly exclude laughter and crying from the ex-
pression categories. Although happy and sad facial expressions could be
interpreted as low-intensity variants of laughter and crying, it is likely
that the full-blown, multisensory communicative information conveyed
by laughter and crying is different than that contained in simple facial
expressions, and possibly also processed via disctinct neural circuitry.
In line with the paucity of experimental stimulus databases, the Neu-
roSynth database for fMRI activation meta-analysis (Yarkoni et al.,
2011) does not contain a sufficient number of studies for generating
meta-analysis for terms “laughter” or “crying”. This is in stark contrast
with studies on the canonical basic emotions (angry: 159, disgust: 103,
fear: 363, happy: 225, sad: 163 studies per April 15th 2021). The extant
literature however shows that laughter generation involves the motor
cortex, supplementary motor area as well as the limbic the regions such
as the anterior cingulate cortex, amygdala, nucleus accumbens, and
hippocampus. Further modulatory systems include basal ganglia, thala-
mus, and cerebellum (Talami et al., 2020; Gerbella et al., 2021).

Crying, in turn is generated via the interplay between medulla and
midbrain structures as well as the hypothalamus, amygdala, insula and
prefrontal cortices (Newman, 2007; Bylsma et al., 2019). Functional

imaging studies have established that hearing adult laughter and crying
activates the amygdala, insula, and auditory cortices (Sander and
Scheich, 2001; Sander et al., 2003, 2005; Fecteau et al., 2007). Pattern
recognition studies have also found that vocal affect bursts including
laughter and crying can be successfully decoded from the brain activity
in the auditory and inferior frontal cortices (Kotz et al., 2013; Paquette
et al., 2018). These, typically very focal, effects are in stark contrast
with the widespread activation of limbic and paralimbic circuits typi-
cally activated during emotional episodes (Kober et al., 2008;
Nummenmaa et al., 2012, 2014) and whose activity can also be used for
decoding the specific emotion state of an individual (Kragel and Labar,
2015; Kragel et al., 2016; Saariméki et al., 2016, 2018). Altogether
these data suggest that acoustic social signal perception is at least par-
tially decoupled from the engagement of the large-scale circuits gener-
ating affective responses.

1.1. The current study

Both laughter and crying occur in complex, dynamic social settings
with variable and dynamically evolving time courses. However, all the
previous studies on laughter and crying have measured brain responses
to isolated crying and laughter segments that are not representative of
the dynamic and ever-changing real world. Accordingly, it can be ques-
tioned whether these data generalize to the processing of complex and
dynamic real-world affiliative behavior (Adolphs et al., 2016). Here we
measured brain responses to laughter and crying and validated their
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Fig. 3. Brain responses to crying and laughter across all experiments. The data are thresholded at p <0.05 FWE corrected. Colourbar shows the t-statistic range
(hot = positive, cool = negative). ACC= Anterior Cingulate Cortex, IFG = Inferior Frontal Gyrus, mPFC= Medial prefrontal cortex, PCC= Posterior cingulate,
PCG = Precentral Gyrus, STG= Superior Temporal Gyrus, TPJ= Temporo-Parietal Junction.
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Fig. 4. Regional responses (betas) to laughter and crying across all experiments. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. IOC = inferior occipital gyrus,
mFG = middle frontal gyrus, oFusiformG = Occipital Fusiform gyrus, PCC = posterior cingulate, SFG = superior frontal gyrus, tFusiform = Temporal Occipital

Fusiform Cortex.

consistency in three large-scale (n = 100) fMRI experiments. We mea-
sured haemodynamic brain activation and presented our subjects with
audiovisual episodes containing naturalistic laughter and crying in
medley of short video clips with no consistent narrative (Experiment
1) as well as in the context of a feature film with strong plotline (Exper-
iment 2). Additionally, naturalistic audio-only laughter and crying
episodes were presented in the context of a radio play with a clear plot-
line (Experiment 3). We show that all experiments yielded reliable and
dissociable responses to laughter and crying. Statistical pattern recogni-
tion further allowed accurate classification of laughter and crying
episodes, with voxels in the auditory cortices contributing most consis-
tently to the classification.

2. Methods

Altogether 102 volunteers (51 females, mean age 31 years, range
20-57 years) participated in the study and completed all the three ex-
periements. The exclusion criteria included a history of neurological or
psychiatric disorders, alcohol or substance abuse, current use of med-
ication affecting the central nervous system and the standard MRI ex-
clusion criteria. Two additional subjects were scanned but excluded
from further analyses because of unusable MRI data due to gradient coil
malfunction. All subjects gave an informed, written consent and were
compensated for their participation. The ethics board of the Hospital
District of Southwest Finland had approved the protocol and the study
was conducted in accordance with the Declaration of Helsinki.
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Fig. 5. Brain responses to laughter in each experiment. The data are thresholded at p <0.05 FWE corrected. Colourbar shows the t-statistic range (hot = positive,

cool = negative).
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Fig. 6. Brain responses to crying in each experiment. The data are thresholded at p <0.05 FWE corrected. Colourbar shows the t-statistic range (hot = positive,

cool = negative).

2.1. Experimental design

Three experiments were conducted to map the brain basis of per-
ceiving natural laughter and crying and all subjects completed all the
experiments. First, to map responses to natural audiovisual laughter we
used our previously validated movie viewing paradigm in which the
subjects viewed a compilation of 96 movie clips extracted from main-
stream English language feature films (mean duration 12.5 s; total du-
ration 20 min) containing variable emotional and non-emotional con-
tent (for details, see Karjalainen et al., 2017, 2019; Lahnakoski et al.,
2012). The movie clips were presented in fixed order without breaks in
between and contain no coherent plot structure when viewed after each
other. Second, subjects viewed the first 30 min of the Finnish feature
film Kdsky (The Commandment by Aku Louhimies / Helsinki Filmi,
2008). This allowed testing for generalization of the brain responses to
laughter with two independent audiovisual stimulus sets of which one
contained a clear narrative structure. Third, to measure responses to
naturalistic acoustic laughter only, the subject listened to the first
10 min of a radio play Puhdistus (Purge, Sofi Oksanen / Radioteatteri,
2011). Although lacking in strict experimental control, this kind of nat-
uralistic and high-dimensional stimulation model is more representa-
tive of the social world we encounter every day than well-controlled
but artificial stimuli traditionally used in neuroimaging studies
(Adolphs et al., 2016). To account for potential low -level sensory con-
founds between laughter and crying, we extracted the basic low-level
acoustic and visual features of the stimuli and contrasted the mean
acoustic / visual feature levels between the laughter / crying segments
in each experiment. This analysis (Table S1) revealed that none of the
visual features different between the conditions, and for acoustic fea-
tures the differences were limited to RMS crossing for the short movies

and zero crossing and entropy for the long movie. Importantly, for the
audiobook, none of the differences were statistically significant. This
analysis suggests that although laughter and crying have different
acoustic and visual characteristics, low-levels sensory features are un-
likely to confound with the results.

The film clips were presented via NordicNeuroLab VisualSystem
binocular display, sound was delivered binaurally via MRI-compatible
headphones (Sensimetrics S14) at a comfortable level adjusted individ-
ually for each participant. During the radio play a fixation cross was
shown on the screen. Subjects were instructed to attend the stimuli sim-
ilarly as they were viewing a movie or listening to a podcast, other than
that there was no specific task. For all the stimuli used in the three ex-
periments, dynamic ratings with a 4 s temporal resolution were ob-
tained for the intensity of perceived laughter and crying from a separate
sample of subjects (n = 6) who did not participate in the fMRI study.
The average ratings were subsequently used as regressors in GLM analy-
sis.

2.2. MRI data acquisition

The MRI data were acquired using a Phillips Ingenuity TF PET/MR
3T whole-body scanner. High-resolution (1 mm3) structural images
were obtained with a T1-weighted sequence (TR 9.8 ms, TE 4.6 ms, flip
angle 7°, 250 mm FOV, 256 x 256 reconstruction matrix). A total of
407 functional volumes were acquired with a T2*-weighted echo-
planar imaging sequence (TR 2600 ms, TE 30 ms, 75° flip angle,
240 mm FOV, 80 X 80 reconstruction matrix, 62.5 kHz bandwidth,
3.0 mm slice thickness, 45 interleaved slices acquired in ascending or-
der without gaps). Significant gross brain pathology was excluded with
T2-weighted images.
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Fig. 7. Confusion matrices for decoding laughter and crying in the Experiments 1-3.

2.3. Structural and functional MRI data preprocessing

MRI data were preprocessed using fMRIPprep 1.3.0.2 (Esteban,
Markiewicz, et al. 2018). The following preprocessing was performed
on the anatomical T1-weighted (T1w) reference image: correction for
intensity non-uniformity, skull-stripping, brain surface reconstruction,
spatial normalization to the ICBM 152 Nonlinear Asymmetrical tem-
plate version 2009c (Fonov et al., 2009) using nonlinear registration
with antsRegistration (ANTs 2.2.0) and brain tissue segmentation. The
following preprocessing was performed on the functional data: co-
registration to the T1w reference, slice-time correction, spatial smooth-
ing with a 6 mm Gaussian kernel, automatic removal of motion artifacts
using ICA-AROMA (Pruim et al., 2015) and resampling the MNI152N-
Lin2009cAsym standard space. Low-frequency drifts were removed
with a 240-s- Savitzky—Golay filter (Cukur et al., 2013).

2.4. GLM data analysis

The fMRI data analyzed in SPM12 (Wellcome Trust Center for Imag-
ing, London, UK, (http://www.fil.ion.ucl.ac.uk/spm). To reveal regions
activated by laughter and crying, a separate general linear model
(GLM) was fitted to the data where the BOLD signal was modelled with
the laughter / crying intensity regressors as parametric modulators.
Data were analyzed in two ways: First, by modeling all three experi-
ments together (as all subjects completed all the experiment) and sec-
ond, by modeling each experiment individually to address the general-
izability of the effects across the experiments. Contrast images for the
main effects of laughter and crying were generated for each participant
and subjected to a second-level (random effects) analysis for popula-
tion-level inference. The statistical threshold was set a p<0.05, FWE
corrected.

To visualize and further analyze the laughter and crying dependent
responses, regional effects (betas) for laughter and crying were ex-
tracted in bilateral a priori anatomical regions of interest (ROIs) in oc-
cipital (inferior occipital and fusiform gyrus), parietal (angular and pos-
terior cingulate gyrus and precuneus), temporal (Heschl's gyrus,
planum temporale, and planum polare), frontal (frontal pole, middle
and superior frontal gyrus), and limbic (nucleus accumbens, amygdala,
and thalamus) regions. The ROIs were defined basis on the Harvard-
Oxford atlas. The betas were then subjected to repeated measures t tests
to reveal significantly different regional responses to laughter versus

crying.
2.5. Statistical pattern recognition

A between-subject classification of natural laughter and crying was
performed in datasets from three experiments including movie clips,
feature film, and radio play, separately. For the classification, one label
(either laughter or crying) was assigned to each time point of the signal
based on the observation and evaluation of 6 raters (see experimental

design section for more details). Each dataset was divided into 10
chunks and all time-points with the same class in a chunk were consid-
ered as a single event of that class. We checked the distribution of the
chunks and confirmed that timepoints with the same label were not in-
terspersed into different chunks; otherwise temporal autocorrelation of
adjacent timepoints could result in an artificially increased classifica-
tion accuracy. The average chunk length was 120 s for the movie clips.
198 s for the full movie and 83 s for the radio play; overall the data con-
tained 20 events for each subject. Chunk-wise GLM with regressors for
each class (laughter and crying) was fit to the data resulting in 20 beta
weights (2 classes X 10 events per class) as input for the MVPA. The
beta weights were then normalized (p = 0, 6 = 1) before the applica-
tion of MVPA.

An SVM classifier with radial basis function (RBF) kernel was
trained to identify the laughter and crying using leave-one-subject-out
cross-validation, where the model was trained on the data from all ex-
cept one subject and tested on the hold-out subject data. We repeated
this procedure 100 times so that each subject was once considered as
the hold-out subject. This analysis was performed on each experiment's
dataset (movie clips, Finnish feature film, and radio play) using whole-
brain images which were previously skull-striped. We performed an
ANOVA feature selection to the training set within each cross-
validation where 5000 voxels with the highest F-score were selected.
We calculated the accuracy of the classifier by computing the propor-
tion of correctly classified events relative to the total number of events.
The MVPA analyses were performed in Python using the PyMVPA tool-
box (Hanke et al. 2009).

3. Results

The 3D result maps are available on NeuroVautl at (https://
identifiers.org/neurovault.image:790873). Fig. 2 shows the time series
of the laughter and crying bursts in each experiment. We first ran a joint
analysis across the experiments to test which brain regions are acti-
vated by laughter and crying irrespective of the stimulation type (Fig.
3). This revealed that both laughter and crying activated auditory cor-
tices and inferior and ventral temporal cortical areas, yet the auditory
responses were more clearly bilateral for laughter. Furthermore, laugh-
ter was associated with significant activation in the motor and lateral
frontal cortex, and deactivations in the anterior, middle, and posterior
cingulate cortices, as well as temporo-parietal junction (TPJ). Con-
versely, crying was associated with increased activation in the posterior
cingulate and precuneus, in addition to the medial frontal and thalamic
activations. Direct comparison between laughter versus crying revealed
that laughter only elicited stronger activations in the left superior tem-
poral cortex, while crying-related responses were stronger in the infe-
rior and ventral occipital regions, throughout the parietal, temporal,
and frontal cortices as well as in the thalamus (Fig. 3-4).

We next tested for the main effect of laughter and crying separately
for each experiment. For laughter, this analysis (Figs. 5-6) indicated
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Fig. 8. Voxels contributing most significantly to the accurate classification of laughter and crying across the three experiments.

consistent activation of the auditory cortices to laughter in all the ex-
periment. In the audiovisual experiments significant activations were
also found in the brainstem, thalamus, V1, ventral temporal and lateral
superior temporal cortices, somaotosensory, motor, and lateral frontal
cortices. Amygdala activations were most prominent in the experiment
with movie clips, whereas striatal activations were strongest in the ex-
periment with the full movie. In the audio only experiment the re-
sponses were restricted to the auditory and right lateral frontal cortex.
Crying also activated the auditory cortices consistently across experi-
ments. Additional consistent activations were found in the posterior
cingulate cortex, somatosensory cortex, and parts of the frontal and
middle cingulate cortices. In the experiment with movie segments, cry-
ing resulted in large-scale deactivations in the primary visual cortex as
well as throughout the temporal visual areas.

3.1. Statistical pattern recognition

Because both laughter and crying activated overlapping areas (most
notably in the auditory cortex) we next assessed whether laughter and
crying nevertheless elicited statistically discernible activation patterns
in these and other areas. We ran the pattern recognition for the whole-
brain gray matter mask, which yielded classification accuracies that sig-
nificantly exceeded the permutation-based chance level. Classification
accuracies generally exceeded 0.66 for both laughter and crying in all
experiments (Fig. 5), being the most accurate in the experiments with
audiovisual stimuli and least accurate in the audio-only experiment.
The voxels contributing most significantly to accurate classification
were in the auditory cortices in all the experiments, with comparable
foci in the superior temporal cortices across all experiments.

4. Discussion

Our main finding was that perceiving laughter and crying from nat-
ural scenes engages distinct cortical and subcortical networks. These re-
sponses were moderately consistent across the three experiments, al-
though in the acoustic-only experiment they were focused more nar-
rowly on the auditory cortices. The frontoparietal and cingulate regions
showed opposite activation patterns with laughter and crying, with de-
creased activity during laughter episodes and increased activity during
crying episodes. While auditory cortices were consistently activated
across experiments for laughter and crying sounds, statistical pattern
recognition revealed distinct activation patterns for both vocalization
types primarily in the auditory cortex. These results show that separa-
ble neural circuits are engaged in processing distinct types of social at-
tachment cues, and that pattern recognition during dynamic scene per-
ception allows reliable separation of laughter and crying evoked activa-
tion patterns.

4.1. Brain responses to naturalistic laughter and crying
Our data revealed that naturalistic laughter and crying evoked

widespread cortical and subcortical activation patterns that extend well
beyond the auditory cortices. For laughter, most prominent activations

were observed in M1, lateral frontal cortex and thalamus. These effects
were paralleled by significant deactivations in the anterior, middle, and
posterior cingulate cortices as well as temporo-parietal junction (TPJ).
The latter set of regions however showed the opposite pattern during
crying sounds: These regions were significantly more active during the
perception of the crying sounds. In addition to these regions, crying ro-
bustly activated the posterior cingulate / areas, in addition to the me-
dial frontal and thalamic activations. This contrasts with prior uni-
modal studies that have found that laughter and crying evoked activa-
tions focussed primarily on the auditory cortex, amygdala, and insula
(Sander et al., 2003; Wild et al., 2003; Sander and Scheich, 2005;
Fecteau et al., 2007).

Grooming-based social bonding imposes constraints on the maxi-
mum possible social network size (Dunbar, 1991). Consequently, eco-
logical pressures demanding larger group sizes have led to the evolu-
tion of more effective mechanisms for facilitating social bonding
(Dunbar, 2022). Laughter is a pleasant prosocial signal that is highly
contagious (Scott et al., 2015) and prior studies have indicated that
laughter also induces activation of the motor and premotor areas
(Lavan et al., 2017). Such “mirroring” of laughter may serve social
bonding, as it presumably allows effective spreading of laughter across
large crowds (Dunbar, 2012; Manninen et al., 2017), and both behav-
ioral experiments and positron emission tomographic studies indicate
that the calming effects of the laughter-evoked endogenous opioid re-
lease act as the safety signal promoting subsequent seeking of similar
social contacts (Manninen et al., 2017).

We also observed significant motor cortex activation for the crying
sounds. There is evidence for contagious crying and affect sharing al-
ready in infants (Simner, 1971; Geangu et al., 2010) and meta-analysis
of functional imaging studies have found that perceiving infant crying
activates the dorsal anterior insula, the pre-supplementary motor area
and dorsomedial prefrontal cortex and the inferior frontal gyrus, as well
as thalamus and cingulate cortices (Witteman et al., 2019). This kind of
somatomotor “mirroring” of sadness may promote social behavior by
synchronizing the thoughts and feelings across individuals, and fMRI
studies using intersubject correlation analyses have indeed found that
brain activation in the middle/anterior cingulate cortices becomes in-
creasingly synchronized across individuals during negative emotional
states (Nummenmaa et al., 2012, 2014). The anterior cingulate cortex is
a part of the putative separation distress circuit in humans, responding
to the perceived physical or affective proximity of conspecificts
(Panksepp, 2003). The cingulate cortex acts as a key node of the human
saliency network (Bressler and Menon, 2010), it is possible that the cry-
ing-evoked cingulate activity reflects the orienting response towards
the abrupt yet socially highly relevant distress call. However, the insu-
lar cortex is also centrally involved in interoceptive processing and par-
ticularly so during emotions (Craig, 2002; Critchley and Garfinkel,
2017); the present fMRI experiments cannot however reveal which of
these mutually non-exclusive roles of the insula better explains the
data.

Stimulus-evoked deactivations were also observed for both stimuli
and particularly for laughter. It is possible that they reflect the reflexive
motor “mirroring” of laughter for bonding purposes, thus leading to dis-
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engagement of the midline mentalizing networks. Similar midline deac-
tivations were not observed consistently for crying, thus processing of
others’ distress might be less automatic and more contingent on slower
social and evaluative processing. However, deactivations are difficult to
interpret in BOLD-fMRI where the signal of interest is inherently rela-
tive, thus further studies should elaborate this issue with truly quantita-
tive measures such as MEG or PET.

Our data indicate that laughter perception relies on somatomotor
mirroring mechanisms promoting automatic laughter contagion for
bonding purposes, whereas perception of crying involves more elabo-
rate higher-order mentalizing processes. Speculatively, these differ-
ences may indicate that social laugher might have older evolutionary
origins than affective crying. Indeed, comparative data suggest that
evolutionary origins of human laughter can be tracked back to 10 mil-
lion years ago sharing significant similarities with other hominidae
(Davila Ross et al., 2009), whereas crying involving affective lacrima-
tion is a unique human social signal which has evolved more recently
(Gracanin et al., 2018).

4.2. Discrete neural signatures for laughter and crying

Across the three experiments we were consistently able to classify
the presence of laughter and crying with above chance level accuracy.
Unlike prior studies on vocal affect categorization (Kotz et al., 2013;
Paquette et al., 2018), we classified brain signals evoked by unstruc-
tured and uncontrolled, dynamic naturalistic stimuli. Despite the com-
plex unstructured stimulus, we nevertheless achieved high classifica-
tion accuracies particularly in the audiovisual experiments. This shows
how pattern recognition can be used for disentangling the specific so-
cial perceptual processes that are embedded in high-dimensional and
dynamic sensory input. Voxels contributing most significantly to classi-
fication of the laughter and crying sounds were localized in the superior
temporal cortices. This is in line with previous studies on decoding of
auditory affective signals such as vocalizations and music, in which
classification can typically be achieved in the auditory cortices (Kotz et
al., 2013; Paquette et al., 2018; Putkinen et al., 2021).

Yet, these findings do not accord with patter recognition studies of
emotions evoked by e.g. film clips or mental imagery, which consis-
tently suggest discernable and emotions-specific activation patterns in
the limbic and paralimbic emotion circuits (Kragel and Labar, 2015;
Kragel et al., 2016; Saarimaki et al., 2016, 2018). Despite high statisti-
cal power with 100 subjects and long naturalistic experiment, we found
no evidence for discernible activation patterns for laughter and crying
in the limbic or subcortical regions in general. These findings can likely
be reconciled by the fact that vocal expressions of laughter and crying
are communicative signals rather than direct readouts of an individual's
emotional state, and the corresponding acoustic-communicative differ-
ences are picked up by the multivariate classifier. Thus, it is not unex-
pected that their processing does not necessarily lead to emotion-
specific activation in the subcortical circuits that govern affective pro-
cessing similarly as for the perception of actual emotion-eliciting
episodes (Nummenmaa and Saariméki, 2017).

Although the joint analysis across the experiment indicated consis-
tent activations for laughter and crying, some discrepancies were also
observed. Most notably, effects for laughter were predominantly nega-
tive outside the temporal cortex in Experiment 3 (radio play), whereas
similar effect for crying was observed in Experiment 1 (movie seg-
ments) for crying. Although we can only speculate about the reasons
leading to the differential effects, these likely involve the stimulus
modality (Experiments 1-2: audiovisual, Experiment 3: auditory), tem-
poral scale aspects of the stimulus model (Experiment 1: short movie
segments, Experiments 2-3: long scenes) as well as the actual stimulus
contents and the frequency, type, and context of the laughter and cry-
ing episodes. Nevertheless, it must be stressed that the experiment-wise
pattern classification yielded consistent results and similar regions also
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contributed to classification accuracy across experiments, further indi-
cating the consistency of the laughter and crying related responses
across modalities and conditions.

4.3. Limitations

Laughter is a complex social signal. Although it is used for signaling
social affiliation, it can also be used to signal rejection, and laughter-
evoked activations differ depending on the perceived positive versus
negative intent (Ethofer et al., 2020). Also, behavioural and neuroimag-
ing studies have revealed that humans are sensitive in spotting genuine
versus volitional laughter, which also elicit distinct neural activation
patterns (Scott et al., 2015; Lavan et al., 2017). Tractographic studies
suggest that emotional and conversational or social laughter are sub-
served by partially separable neural networks (Gerbella et al., 2021).
We did not specifically annotate for the type of laughter in the video
clips and the radio play thus it remains unresolved how specific versus
generalizable these effects are across different laughter types. Also, we
deliberately used unconstrained naturalistic stimuli and did not define
the stimulation a priori, but instead used subject-based annotations for
deriving it. To overcome the generalizability issue pooled the data from
three experiments (total duration >60 min) with 100 subjects in each,
and robust GLM activations as well as significantly above-chance level
classification accuracy was observed in all experiments.

Separate analysis of the three experiments revealed that the laugh-
ter and crying evoked activations were not completely consistent across
different experiments (Figs. 3-6), highlighting the intrinsic variability
in the naturalistic stimulus episodes occurring in the three experiments.
Despite variation across experiments, the pooled GLM effects for laugh-
ter and crying (Fig. 3) can be considered as the regions that are most
consistently activated while perceiving laughter and crying across vari-
able naturalistic contexts. Finally, vocal emotional expressions may
lead to facial mimicry (Hietanen et al., 1998; Volynets et al., 2020) po-
tentially influencing motor and premotor conditions. The utilized PET-
MRI scanner did not allow recording of facial movements, so this re-
mains a potential confound. In a separate control analysis, we however
correlated the head motion regressor time series against the stimulus
models for laughter / crying and observed no significant associations,
indicating that at least gross subject motion does not confound with the
results.

Conclusions

Laughter and crying engage both shared and distinct cortical and
subcortical circuits. Although they both trigger robust activation in the
auditory cortex, these sensory cortical responses allow reliable encod-
ing of the whether laugher or crying was present in the current audiovi-
sual segment. Activity within the cortical midline network altered be-
tween laughter and crying episodes. These results suggest that perceiv-
ing laughter and crying engage distinct neural networks, whose activity
suppresses each other to manage appropriate behavioral responses to
others’ bonding and distress signals. We propose that laughter might be
a simple trigger for chorusing bonding behavior thus requiring very lit-
tle mentalizing effort, whereas understanding why someone is crying is
more dependent on mentalizing and higher-order social cognition.
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