

Second-level analysis of PET and MRI data

Lauri Nummenmaa
Turku PET Centre / TYKS

Twitter: @TurkuPETcentre WWW: http://pet.utu.fi

Basic problems associated with scientific measurement

ERRORS PRESENT AT ALL LEVELS; THEY ALSO ACCUMULATE FROM LEVEL TO LEVEL

TARGET
(e.g. specific neuro-receptor)

TRUE SCORE (T)
How target is
defined
(e.g. number of receptors)

OBSERVED
SCORE
(Outcome
measure such
as BPND)

PREDICTION
OF BEHAVIOR
(e.g. anxietylike behaviour)

- How well is target variable reflected in true scroe (construct validity)
- How well true score is reflected in observed score? (reliability)
- How well does observed score predict behaviour? (criterion-based validity)

Making inferences about the population

Sampling Acquisition Sample Population Single subject Statistical inference

Starting point: Images where voxel intensities reflect the outcome measure

Sneak peek: Analysis of PET vs. fMRI data

- PET data needs to be modelled before population level inference
 - 4D image —> 3D image
 - Voxel intensities reflect outcome measure (receptor density, metabolism....)
- · Similarly, EPI data needs to be modelled before population level inference
 - 4D image —> 3D image
 - Voxel intensities reflect the fit of the stimulation model to the BOLD time series

Univariate data
Regularly shaped

Controls Patients 5 3 t-test 6 5 6 6 5 6 2

3D neuroimaging data Irregularly shaped

ROI-based analyses

Univariate data regularly shaped can use univariate stats

- Pros: Anatomically accurate if ROIs well definied, data can be analyzed with simple univariate statistical tests
- Cons: Laborious, using many ROIs not feasible, averaging within ROI not always appropriate

Controls

estimate, tissue probability) outcome measure contrast

SUBJECT 1

THE BASIC RECIPE

SUBJECT 2

NORMALI-

ZATION

SUBJECT 3

TEMPLATE

GLM

THRESHOLD TO HIGHLIGHT

Full-volume analyses with real brains

- Basic problem: Individual brains differ in size and shape
- Solution to the problem: Make brains similar by warping them
- Problems with the solution
 - Warps distort anatomy
 - Anatomical information is not the precise anyway
 - How should we warp the brains?

The MNI space as the target

- ICBM 152 template
- Based on average of 152 brains that have been spatially normalized
- Statistical average of the typical western adult brain
- Problem: not necessarily representative of study sample
- In fMRI can also use e.g. spherical models

Spatial normalization in practice

- 1. Linear (12-parameter affine) normalization
 - Match size and position
- 2. Nonlinear normalization
 - Linear combinations of smooth discrete cosine basis functions

TRANSLATION ROTATION

NATIVE

SHEAR

AFFINE NORMALIZATION: 4*3 PARAMETERS

Smoothing

FWHM = spatial extent of the filter

Example on smoothing brain-PET images

UNSMOOTHED

16mm FWHM

12mm FWHM

32mm FWHM

Why smooth?

- Smoothing neuroimaging data: reduces noise and anatomical discrepancies
- Assumption: error terms are roughly Gaussian; FWHM greater than voxel size
- Enables hypothesis testing and dealing with multiple comparison problem in functional imaging
- However introduces problem of how to correct for multiple comparisons

Raw data: 16384 independent numbers

8 by 8 square

Kernel-based smoothing How many independent numbers?

Problem with kernel-based smoothing: How many numbers are independent?

https://matthew-brett.github.io/teaching/random_fields.html

Random Field Theory in nutshell

- Estimate the number of resels in the image
 - Resel= block of pixels / voxels of the same size as the FWHM of the smoothness of the image.
 Depends on both image size and FWHM
- Work out the Euler characteristic (EC) of the image
 - Property of the image after it has been thresholded.
 Roughly number of blobs in image after thresholfing
- Resels and EC are linked: when Z thresholds increases and EC drops the expected EC approximates the probability of observing one or more blobs at that threshold.

What sort of voxelwise model to fit?

ANOVA, ANCOVA, linear regression...

Masking the data

Applying explicit / threshold mask is necessary to avoid fitting model to noise

Between-groups design

1) Mean images for each group

2) Statistical differences (t-map)

3) Region-of-interest data

Karlsson et al (2015 J Neurosci)

Challenge / longitudinal design

Lag hours or days Challenge: Scan 2 Scan 1 Task, drug, etc. Voxelwise comparison with mass univariate repeated measures tests

Tuulari et al (2018 J Neurosci)

Correlational design

Lowered mu-opioid receptor levels in subclinical depression

Nummenmaa et al (2020 Neuropsychopharmacology)

estimate, tissue probability) outcome measure contrast

SUBJECT 1

THE BASIC RECIPE

SUBJECT 2

NORMALI-

ZATION

SUBJECT 3

TEMPLATE

SMOOTH

GLM

