Statistical Pattern Recognition with fMRI

Heini Saarimäki University Instructor (Statistical Methods in Psychology) Human Information Processing Laboratory Tampere University

Outline

WHAT: Nuts and bolts of pattern recognition with fMRI

WHY: When and why to use pattern recognition methods

HOW: Overview of the workflow

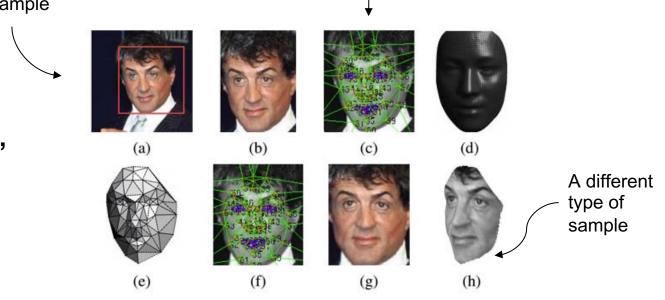
What

Statistical pattern recognition

Features and their configuration make the Sylvester pattern

A sample

"Sylvester"

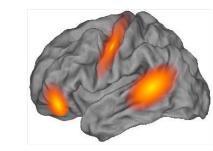


Statistical pattern recognition with fMRI

Multivoxel pattern analysis (MVPA) (Supervised) machine learning Decoding Classification

. . .

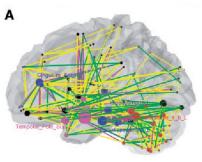
"Fear"



Brain activity pattern

Functional connectivity pattern

"Depression"



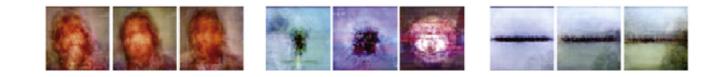
Zeng et al. (2012) Brain

Decoding movies from visual cortex

Presented movies

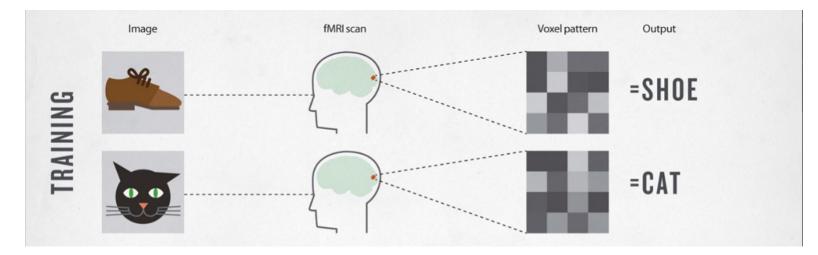


Reconstructed movies (AHP)



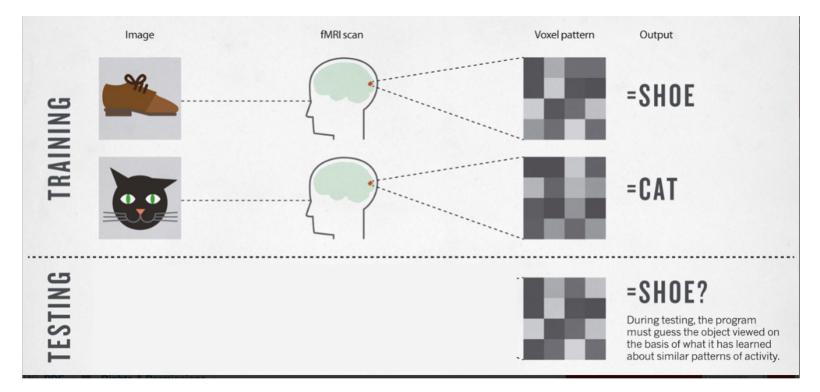
Nishimoto et al. (2011) Curr Biol

Simplified framework:



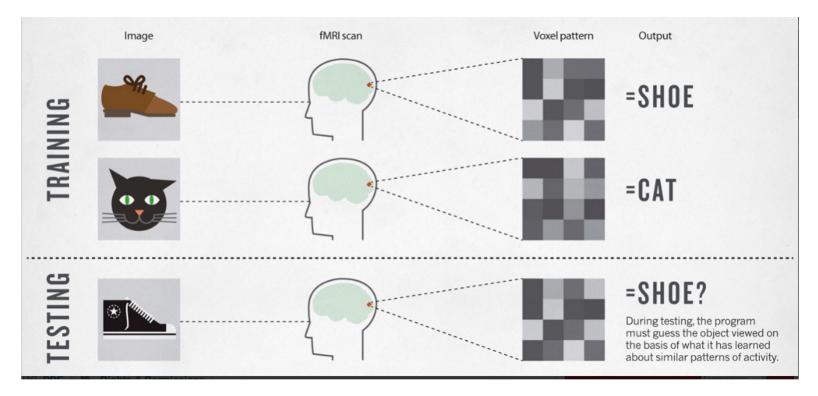
e.g. Haxby et al. (2001) *Science* Figure credits: Smith (2013) *Nature*

Simplified framework:



e.g. Haxby et al. (2001) *Science* Figure credits: Smith (2013) *Nature*

Simplified framework:



e.g. Haxby et al. (2001) *Science* Figure credits: Smith (2013) *Nature*

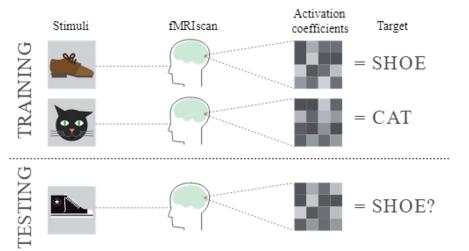
Applications

Can we distinguish the brain activity underlying some mental states?

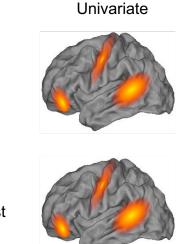
Can we distinguish patient groups by looking at their brain?

Medical Diagnosis

Brain-Computer-Interface



Multivariate, thus has higher sensitivity when compared to univariate analyses \rightarrow Can detect pattern differences when activation overlaps



Disgust

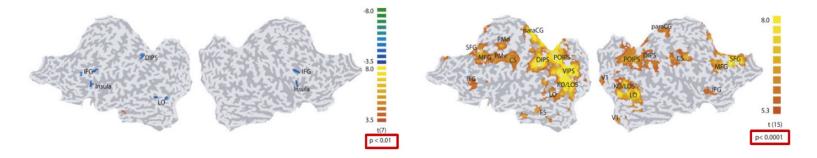
Fear

Multivariate, thus has higher sensitivity when compared to univariate analyses \rightarrow Can detect pattern differences when activation overlaps

Example: Representation of perceptual choices

univariate

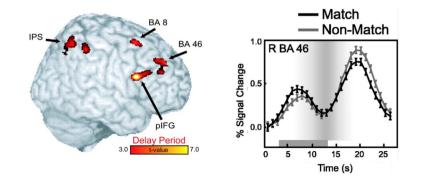
multivariate



Li et al. (2009) Neuron

We can study representational content in a brain region rather than general activation

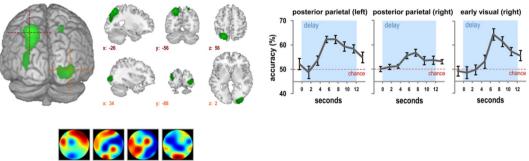
Activity: Tells us about general involvement in cognitive function (e.g. working memory)



Curtis et al. (2004) J Neurosci

We can study representational content in a brain region rather than general activation

Information: Tells us about representational content (e.g. memory trace of A vs. memory trace of B)

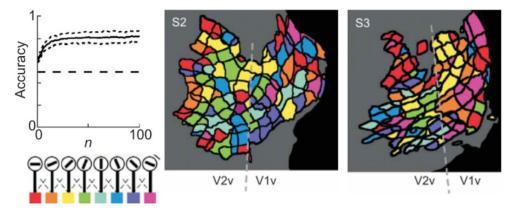


individual sample set

Christophel et al. (2012) J Neurosci

We can study representational content in a brain region rather than general activation

Example: Representation of orientations



Kamitani & Tong (2005) Nat Neurosci

Methods readily available from machine learning

The principle is relatively easy to understand

Has become a standard method, complementary to univariate analyses

How

Overview of the workflow

Selected Preprocessing Training samples Feature vectors features Activity /oxel 1 Type of analysis eature selection Voxel 2 Activity **Feature selection** Training set Testing set Classification **Testing samples** 80% correct **Statistical analyses** Voxel 2

Design and data acquisition

Step 1: Design and data acquisition

Goal: sample brain activity associated with different categories

Samples could be EPI volumes, beta volumes, connectivity matrices,

. . .

Categories

Training samples

Step 1: Design and data acquisition

GLM design principles apply

Analysis will be easier with

- balanced number of samples per category (in each run)
- careful randomization of categories (fMRI autocorrelation issues)

Categories

Training samples

Step 2: Preprocessing

Minimal preprocessing

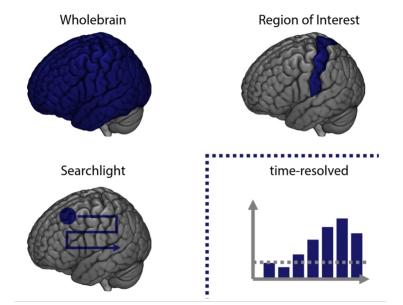
Within-subject analysis: data in native space Between-subject analyses: data in MNI space

No smoothing

Normalization of signal intensities

Select the spatial and temporal range of interest.

- Spatial resolution: wholebrain (global patterns), ROI or searchlight (local patterns)
- Time resolution: beta maps, single time points, ...



Split the data to training and testing sets.

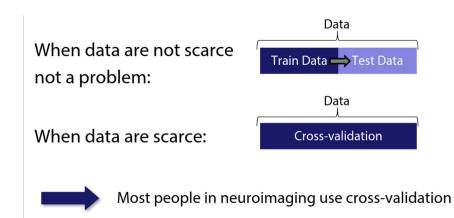
- Goal: avoid peeking / overfitting.

Training samples

Challenge: we need to both... i) maximize size of training data for

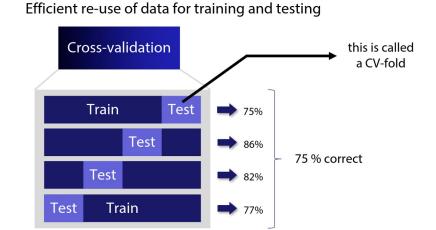
better model fit

ii) maximize size of test data for precise generalization estimate



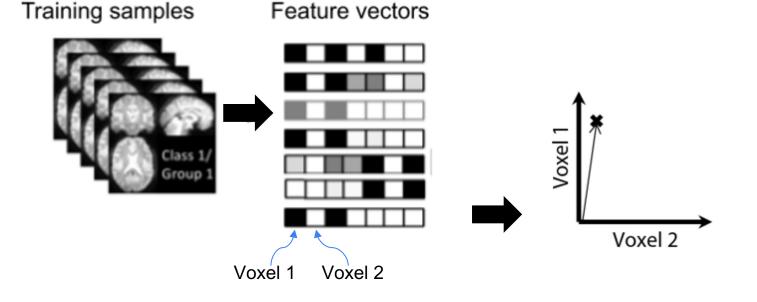
Solution: cross-validation

Cross-validation schemes e.g. Leave-one-run-out (LORO) Leave-one-subject-out (LOSO)



What do we have so far?

Feature = a measured variable used for classification, e.g. activity for each voxel Pattern = a point in p-dimensional space (p = number of features)



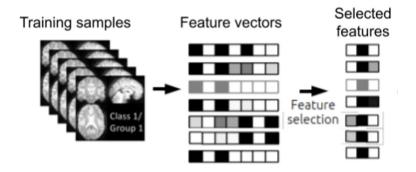
Step 4: Feature selection

Challenge:

Too few samples, too many dimensions

Solution:

Reduce the dimensionality by removing e.g. "uninformative" voxels



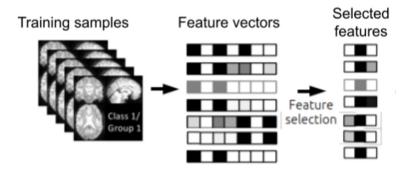
Step 4: Feature selection

Challenge:

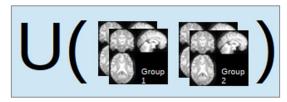
Too few samples, too many dimensions

Solution:

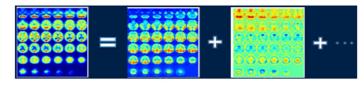
Reduce the dimensionality by removing e.g. "uninformative" voxels



ANOVA



PCA

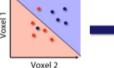


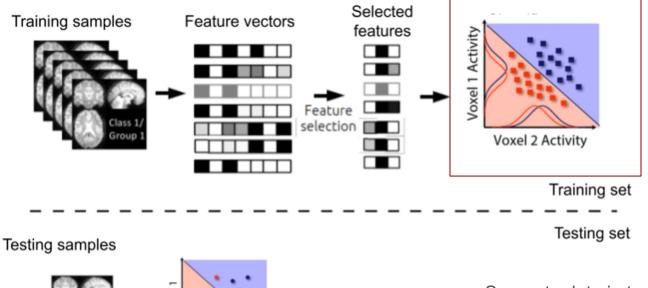
Ready to train and test the classifier!

Design and data acquisition Selected Preprocessing Feature vectors features Activity Voxel 1 Type of analysis election Voxel 2 Activity **Feature selection** Training set Testing set **Classification** 80% correct **Statistical analyses**

Testing samples

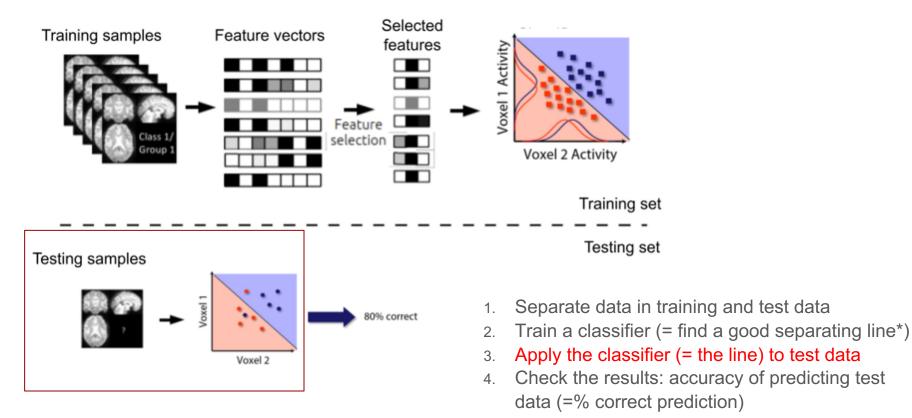
Training samples

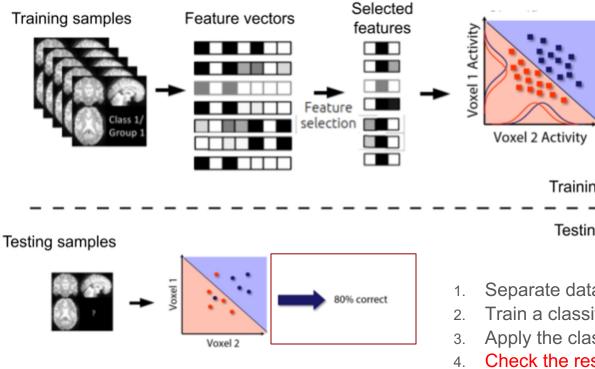




- - Voxel 2

- 1. Separate data in training and test data
- 2. Train a classifier (= find a good separating line*)
- 3. Apply the classifier (= the line) to test data
- Check the results: accuracy of predicting test data (=% correct prediction)

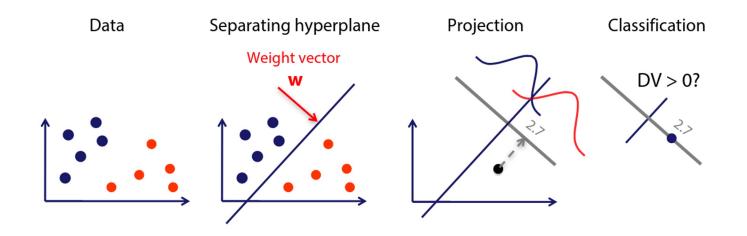




Training set Testing set

- Separate data in training and test data
- Train a classifier (= find a good separating line)
- Apply the classifier (= the line) to test data
- Check the results: accuracy of predicting test data (=% correct prediction)

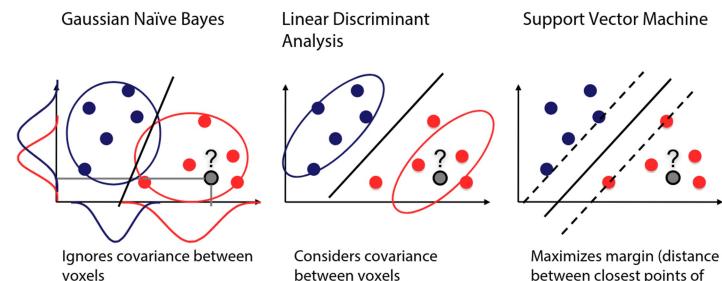
Classifier = A function that separates feature space



Weights are trained during classifier training

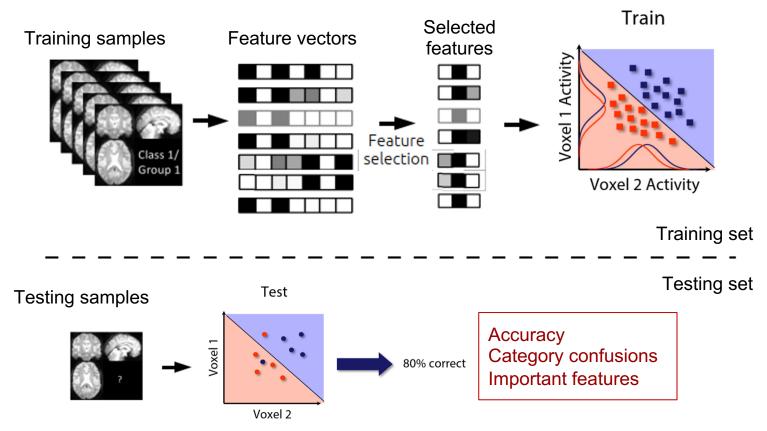
$$f(x) = w^T x + b$$

Step 5: Classification - linear classifiers



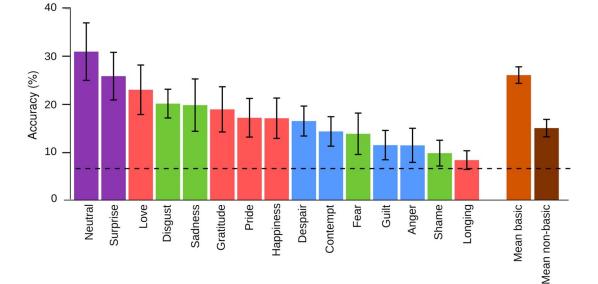
between closest points of different classes)

Step 6: Statistics



Classification accuracies

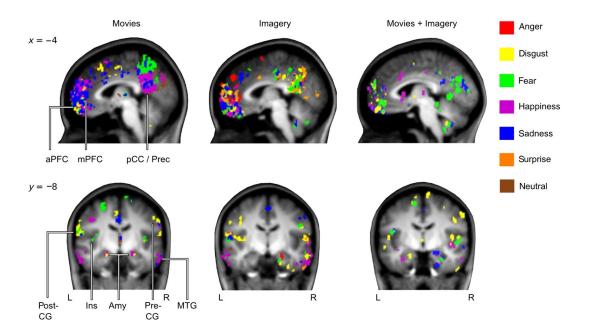
Accuracy: *significantly* above chance? \rightarrow permutation tests



Saarimäki et al. (2018) SCAN

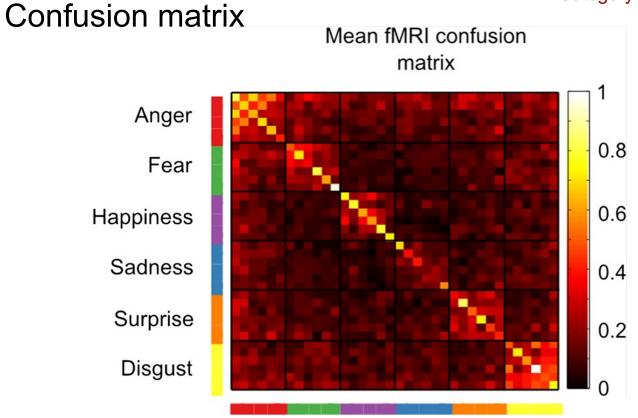
Features contributing to classification: importance maps

Importance maps



Saarimäki et al. (2016) Cereb Cortex

Category confusions: confusion matrix



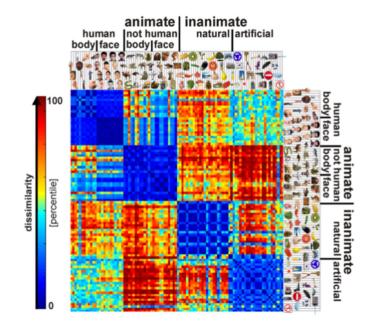
Saarimäki et al. (2016) Cereb Cortex

Representational similarity analysis (RSA)

RSA = A multivariate pattern analysis method to investigate the content and format of representations.

Pattern recognition: are two patterns different?

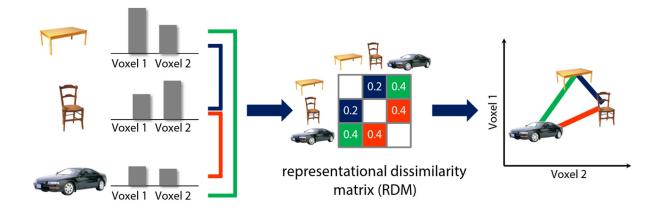
Representational similarity analysis: how are the two patterns different?



Kriegeskorte et al. (2008) Neuron

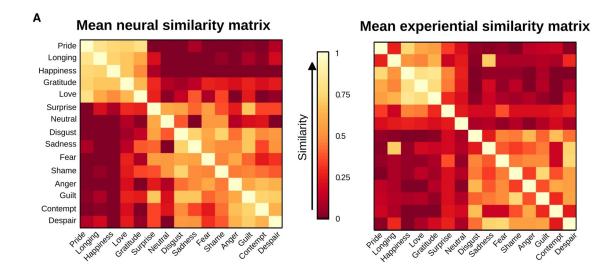
Representational similarity analysis

In RSA, we take our multivariate patterns (e.g. voxels) and calculate pairwise dissimilarities (e.g. Euclidean distance or 1 - Person's *r*)



Representational similarity analysis

Representational similarities can be used e.g. for testing models of cognition or for comparing different types of data.



Saarimäki et al. (2018) SCAN

More resources

Experimental design, methodological choices etc: https://fmrif.nimh.nih.gov/public/other-courses/mvpa

Conceptual lectures by Rebecca Saxe: https://cbmm.mit.edu/fmri-bootcamp

Toolboxes & tutorials e.g.: https://brainiak.org/tutorials/ http://www.pymvpa.org/tutorial.html