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ABSTRACT

SAANIJOKI, T., T. KANTONEN, L. PEKKARINEN, K. KALLIOKOSKI, J. HIRVONEN, T. MALÉN, L. TUOMINEN, J. J. TUULARI,

E. ARPONEN, P. NUUTILA, and L. NUMMENMAA. Aerobic Fitness Is Associated with Cerebral μ-Opioid Receptor Activation in

Healthy Humans.Med. Sci. Sports Exerc., Vol. 54, No. 7, pp. 00-00, 2022. Introduction: Central μ-opioid receptors (MORs) modulate affective re-

sponses to physical exercise. Individuals with higher aerobic fitness report greater exercise-induced mood improvements than those with lower

fitness, but the link between cardiorespiratory fitness and the MOR system remains unresolved. Here we tested whether maximal oxygen up-

take (V̇O2peak) and physical activity level are associated with cerebral MOR availability and whether these phenotypes predict endogenous

opioid release after a session of exercise. Methods: We studied 64 healthy lean men who performed a maximal incremental cycling test

for V̇O2peak determination, completed a questionnaire assessing moderate-to-vigorous physical activity (MVPA; in minutes per week), and

underwent positron emission tomography with [11C]carfentanil, a specific radioligand forMOR. A subset of 24 subjects underwent additional

positron emission tomography scan also after a 1-h session of moderate-intensity exercise and 12 of them also after a bout of high-intensity

interval training. Results: Higher self-reported MVPA level predicted greater opioid release after high-intensity interval training, and both

V̇O2peak and MVPA level were associated with a larger decrease in cerebral MOR binding after aerobic exercise in the ventral striatum,

orbitofrontal cortex, and insula. That is, more trained individuals showed greater opioid release acutely after exercise in brain regions espe-

cially relevant for reward and cognitive processing. Fitness was not associatedwithMOR availability.Conclusions:We conclude that regular

exercise training and higher aerobic fitness may induce neuroadaptation within the MOR system, which might contribute to improved emo-

tional and behavioral responses associated with long-term exercise. Key Words: OPIOID SYSTEM, POSITRON EMISSION

TOMOGRAPHY (PET), BRAIN IMAGING, FITNESS, PHYSICAL ACTIVITY LEVEL
Habitual physical activity and cardiorespiratory fitness
(CRF) are well-established modifiable lifestyle fac-
tors that promote brain health throughout the life

span. Higher fitness and greater amounts of physical activity
are linked with better cognitive functioning (1), lower levels
of anxiety and depression (2), and reduced risk for neurode-
generative disease (3). These biological and psychological
r correspondence: Tiina Saanijoki, Turku PET Centre c/o Turku
Hospital, Kiinamyllynkatu 4-6, 20520 Turku, Finland; E-mail:
oki@utu.fi.
for publication June 2021.
or publication February 2022.
tal digital content is available for this article. Direct URL citations
he printed text and are provided in the HTML and PDF versions
le on the journal’s Web site (www.acsm-msse.org).

/22/5407-0000/0
E & SCIENCE IN SPORTS & EXERCISE®
© 2022 by the American College of Sports Medicine

49/MSS.0000000000002895

1

opyright © 2022 by the American College of Sports Medicin
benefits of exercise are paralleled in brain structure and func-
tion. Better fitness and higher physical activity levels are asso-
ciated with higher gray (4,5) and white matter volume (4,6). In
addition, several intervention studies have demonstrated that
improved fitness positively affects brain volumes in older
adults, especially in frontotemporal regions that are important
for cognition and memory functions, and most susceptible to
age-related brain atrophy (7,8). Moreover, higher aerobic fit-
ness promotes efficient functional connectivity of multiple
brain networks supporting cognitive control and memory
functions (9,10).

Physical exercise also acutely affects the functioning of the
brain’s neuromodulatory systems, particularly the endogenous
opioid system (11). Endogenous opioid system and especially
μ-opioid receptors (MORs) are closely involved in processing
reward, motivation, and emotions (12). They also have a cen-
tral role in several physiological functions, such as pain pro-
cessing (13) and stress regulation (14), and recent evidence
links opioid system dysregulation with depressive and anxious
symptoms (15). Therefore, the opioid system could potentially
e. Unauthorized reproduction of this article is prohibited.
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TABLE 1. Subject characteristics (n = 64).

Mean (SD) Range

Age (yr) 25.4 (4.6) 20–36
BMI (kg·m−2) 24.1 (2.8) 18.5–31.0
Total physical activity (min·wk−1) 291 (165) 0–870
MVPA (min·wk−1) 160 (113) 0–870
V̇O2max (mL·kg−1·min−1) 44.5 (7.9) 25.8–61.7
mediate the psychological benefits of regular exercise, such as
anxiolysis and improved mood.

Animal studies investigating the effects of regular exercise
training on the opioid system have found elevated β-
endorphin and met-enkephalin levels in the periaqueductal
gray area and rostral ventromedial medulla after 5 wk of tread-
mill running (16) and shown that chronic exercise, in compar-
ison with short-term exercise or no exercise, decreases MOR
expression (17) and overall MOR availability in rat brain (18).
Exercising rats also show reduced sensitivity to antinociceptive
effects of exogenous opioid agonists such as morphine, which
may indicate downregulation of MORs resulting from increased
endogenous opioid concentrations elevated by regular exercise
training (19,20). Human neuroimaging studies have demon-
strated that a single bout of moderate-to-vigorous exercise stimu-
lates endogenous opioid release in the brain, which is associated
with affective responses induced by exercise (21–23). Taken to-
gether, converging evidence from animal and human studies sug-
gests that regular exercise training might induce neuroadaptation
within the central MOR system, subsequently contributing to
improvements inmood and stress regulation. However, in vivo
evidence from humans is currently lacking.

Here we investigated whether individual differences in
baseline MOR availability are associated with CRF and ha-
bitual physical activity levels in healthy young men. We used
in vivo positron emission tomography (PET) imaging with
the highly selective MOR agonist ligand [11C]carfentanil.
We coupledMOR data with measurement of peak oxygen con-
sumption (V̇O2peak), an objective and direct measure of CRF,
and with self-reported physical activity questionnaires. To test
whether higher fitness and physical activity levels influence
the capacity of acute exercise to activate the MOR system, we
also studied a subset of participants with [11C]carfentanil PET
after a session of high-intensity interval training (HIIT) and after
a 1-h session of aerobic exercise. Based on previous human and
animal research, we hypothesized that higher fitness and phys-
ical activity levels would be negatively associated with cerebral
MOR availability in the brain’s reward circuits and positively
associated with gray matter (GM) volume. In addition, we pre-
dicted that V̇O2peak and self-reported physical activity would be
associated with exercise-induced changes in MOR availability.
AQ3
METHODS

Subjects. The Ethics Committee of the Hospital District
of Southwest Finland approved the study protocol, and the
study was conducted in accordance with the Declaration of
Helsinki. The sample size was determined by a priori power
analysis based on our prior neuroreceptor PET studies
(24,25), which suggested that, with expected effect size of
r = 0.45, a sample size of 45 would be sufficient for establish-
ing the predicted effects at power of 0.95. Sixty-four male
adults with a variable exercise background were enrolled in the
study (Table 1). All subjects signed ethics committee–approved
informed consent forms. They were recruited via Internet discus-
sion forums, traditional bulletin boards, university-hosted email
2 Official Journal of the American College of Sports Medicine
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lists, and newspaper advertisements. The exclusion criteria were
poor compliance, a history of or current neurological or psychi-
atric disease, use of tobacco products or medication affecting
the central nervous system, current or past excessive alcohol
or substance abuse, and standard PET and magnetic resonance
imaging (MRI) exclusion criteria. Laboratory tests, urinalysis,
and an ECG were obtained to assess health and the absence
of psychoactive drugs. These data have originally been col-
lected in clinical trials EXEBRAIN (NCT02615756; n = 24)
and PROSPECT (NCT03106688; n = 40).

Physical activity and aerobic fitness measure-
ments. Self-reported physical activity was assessed with a
questionnaire where participants rated the frequency (days
per week) and duration (hours and minutes per week) of
moderate-to-vigorous physical activity (MVPA) and other
physical activity during the last 3 months. CRF was assessed
as V̇O2peak, which was determined in a maximal exercise test
performed on a cycle ergometer starting at 40–50 W and
followed by an increase of 30W in every 2 min until volitional
exhaustion. Ventilation and gas exchangewere measured (Jae-
ger Oxycon Pro; VIASYS Healthcare) and reported as the
mean value per minute. The highest 1-min mean value of ox-
ygen consumption was expressed as the V̇O2peak.

PET data acquisition. We measured MOR availability
with the agonist radioligand [11C]carfentanil that has a high affinity
forMORs.Radioligand syntheses for the EXEBRAINandPROS-
PECT trials have been described previously (22,26). Subjects
refrained from exercise for at least 24 h and fasted for at least
2 h before scanning. Data were acquired with the 3 T Philips Inge-
nuity TF PET/MR (PhilipsHealthcare, Cleveland, OH) scanner or
PET/CT (GE Discovery VCT PET/CT, GE Healthcare (General
ElectricMedical Systems,Milwaukee,WI)) at Turku PETCentre.
Data acquisition started concomitantly with the intravenous ra-
dioligand bolus injection (M= 250MBq, SD= 13MBq), and ce-
rebral radioactivity was measured for 51 min. Data were
corrected for dead time, decay, andmeasured photon attenuation.

PET challenge paradigm for exercise-induced opi-
oid release. A subset of participants (n = 24; Table S1, Sup-
plemental Digital Content, http://links.lww.com/MSS/C538)
underwent an additional PET scan after a 1-h session of
moderate-intensity cycling exercise on a separate day, and 12
of these participants underwent a PET scan also after a session
of HIIT; the exercise protocols and opioid release data have been
reported previously (22). The order of the exercise/rest PET
studies was randomized and counterbalanced for these partici-
pants. Emotional reactions to physical exercise were measured
with the Positive Affect and Negative Affect Schedule (27).

MRI acquisition. Anatomical MR images were acquired
for VBM and for preprocessing the PET images with the 3 T
http://www.acsm-msse.org
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FIGURE 1—V̇O2peak correlated negatively with age (A) and BMI (B). Age correlated positively with BMI (C). V̇O2peak was positively associated with
change in positive affect after aerobic exercise (D).
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Philips Ingenuity TF PET/MR scanner using a T1-weighted
sequence with 1-mm3 resolution (repetition time, 8.1 ms; echo
time, 3.7 ms; flip angle, 7°; scan time, 263 s). Complementary
voxel-based morphometric analyses on the association be-
tween aerobic fitness, physical activity, and cerebral density
are described in Supplemental Digital Content, http://links.
lww.com/MSS/C538.

PETdata preprocessing and analysis. PET data were
processed with the automated Magia pipeline (28) (https://
github.com/tkkarjal/magia). Processing began with motion
correction of the PET data followed by coregistration of the
PET and MR images. Magia uses FreeSurfer (http://surfer.
nmr.mgh.harvard.edu/) to define the regions of interest (ROIs)
as well as the reference regions. The ROI-wise kinetic model-
ing was based on the extraction of ROI-wise time–activity
curves. The PET images were slightly smoothed using Gaussian
kernel (2-mm full width at half maximum) to increase the
signal-to-noise ratio before model fitting. Parametric images
were spatially normalized to MNI space and finally smoothed
using a Gaussian kernel (full width at half maximum = 6 mm).
[11C]carfentanil binding was quantified by binding potential
(BPND), which is the ratio of specific binding to nondisplaceable
binding in the tissue (29). The occipital cortex was used as the
reference region (30). Because of technical problems with the
PET scanner, the PET data after one aerobic exercise scan
and one HIIT scan were subsequently found invalid and were
excluded from the analysis.

Statistical analysis. The effects of V̇O2peak and self-
reported physical activity on i) MOR availability, ii) MOR ac-
tivity after physical exercise, and iii) GM densities were
assessed in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) using
a linear regression model with body mass index (BMI) and
PET scanner (for baseline PET data) as a covariate. The statis-
tical threshold was set at P < 0.05, false discovery rate (FDR)
FIGURE 2—Negative association between self-reported MVPA level and chang
thresholded at P < 0.05, FDR corrected at the cluster level. Scatterplot shows th
dence interval) in the orbitofrontal cortex.

AEROBIC FITNESS AND Μ-OPIOID SYSTEM
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corrected at cluster level. Atlas-based ROIs were generated in
theMOR-rich regions in the brain (31) (amygdala, hippocampus,
ventral striatum, dorsal caudate, thalamus, insula, orbitofrontal
cortex, anterior cingulate cortex, middle cingulate cortex, and
posterior cingulate cortex) using AAL (32) and Anatomy (33)
toolboxes. Mean regional [11C]carfentanil BPND was ex-
tracted for each region, and the averaged ROI data were ana-
lyzed with R statistical software (https://cran.r-project.org)
(34). Complementary hierarchical Bayesian analyses are de-
scribed in Supplemental Digital Content, http://links.lww.
com/MSS/C538.
RESULTS

V̇O2peak is associated with physical activity level,
age, and BMI. V̇O2peak was positively associated with self-
reported physical activity (r = 0.45, P < 0.01) and negatively
associated with age (r = −0.37, P < 0.01; Fig. 1A) and BMI
(r = −0.46, P < 0.01; Fig. 1B). Age was positively associated
with BMI (r = 0.38, P < 0.01; Fig. 1C).

Higher MVPA level predicts a larger decrease in
MOR availability after HIIT.We recently showed that HIIT
significantly decreased MOR binding in human brain, indica-
tive of endogenous opioid release (22). Here we tested
whether exercise-induced changes in BPND would be associ-
ated with self-reported physical activity or V̇O2peak, indicative
of exercise habit-dependent MOR activation. We found a neg-
ative association between MVPA level and changes in BPND
after HIIT (Fig. 2), such that higher MVPA level was associ-
ated with a larger decrease in BPND after HIIT. This effect
was observed in the ventral and dorsal striatum, hippocampus,
left amygdala, thalamus, cingulate cortex, insular cortex, so-
matosensory cortex, temporal areas, and orbitofrontal cortex.
V̇O2peak and total minutes of self-reported physical activity
es in BPND after HIIT session in a subset of 11 participants. The data are
e corresponding association (least squares regression line with 95% confi-
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FIGURE 3—Higher fitness level predicted higher exercise-induced opioid release after moderate-intensity exercise, as indicated by a negative association
between changes in BPND after 1-h session of aerobic exercise and V̇O2peak (A) and self-reportedMVPA level (B). The data are thresholded atP < 0.05, FDR
corrected at the cluster level. Scatterplots show the corresponding association (least squares regression line with 95% confidence interval) in the putamen.
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were not associated with HIIT-induced BPND changes in this
small sample of 11 participants.

Higher V̇O2peak andMVPA level predict a larger de-
crease in MOR availability after aerobic exercise.
MOR availability shows notable variation between individuals
after aerobic exercise, such that [11C]carfentanil BPND de-
creases in some individuals and increases in others (22). Here
we found that both V̇O2peak (Fig. 3A) and self-reportedMVPA
level (Fig. 3B) were negatively associated with exercise-
induced change in BPND, such that higher V̇O2peak and higher
MVPA level predicted a larger decrease in BPND after exer-
cise. This effect was observed in the ventral and dorsal stria-
tum, left hippocampus, left thalamus, insular cortex, somato-
sensory cortex, temporal areas, and orbitofrontal cortex. No
associations were found between total self-reported physical
activity and exercise-induced change in BPND.

We previously reported enhanced mood responses after aero-
bic exercise (22). Here, we found a positive association between
V̇O2peak and change in positive affect as measured with the Pos-
itive Affect andNegative Affect Schedule before and after aerobic
FIGURE 4—Negative association between V̇O2peak and baseline [11C]carfentani
level. Scatterplots show the corresponding association (least squares regression

4 Official Journal of the American College of Sports Medicine
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exercise (r = 0.59, P < 0.01; Fig. 1D), indicating that higher
V̇O2peak was associated with greater mood improvement.

Association of aerobic fitness and physical activity
level onMOR availability.We next tested whether baseline
differences in aerobic fitness are associated with MOR avail-
ability. Full-volume analysis showed a negative association
between V̇O2peak and baseline MOR availability (BPND) in a
large cluster extending to both hemispheres from the frontal
lobe to the parieto-occipital sulcus (Fig. 4). Significant associ-
ations were also observed in bilateral putamen, thalamus,
insula, and temporal cortices. In addition, the ROI analysis re-
vealed significant associations in orbitofrontal and middle cin-
gulate cortices (P < 0.05). Comparable analysis where MOR
availability was predicted with self-reported physical activity
yielded similar effects, but only when BMI was not controlled
for in the model (data not shown). Because gross brain atrophy
is negligible in healthy subjects younger than 37 yr, partial
volume effects due to atrophy are unlikely to significantly bias
our results. Therefore, we did not correct the data for partial
volume effects.
l BPND. The data are thresholded at P < 0.05, FDR corrected at the cluster
line with 95% confidence interval) in representative anatomical ROIs.

http://www.acsm-msse.org
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Aging has regionally specific effects on MOR availability
(31). Although our subjects had a relatively narrow age range
(M = 25.4 yr, SD = 4.6 yr), we nevertheless wanted to statisti-
cally control for potential aging-dependent effects in the MOR
availability. When age was entered in the analysis as a covar-
iate, no associations were observed between MOR availability
and V̇O2peak or self-reported physical activity at the a priori
statistical threshold. The unthresholded result files are avail-
able in Neurovault (https://neurovault.org/collections/
PTWTWOGG/). V̇O2peak showed a positive association with
GM density when controlling for age and BMI (Fig. S1, Sup-
plemental Digital Content, http://links.lww.com/MSS/C538).
These findings are described in detail in Supplemental Digital
Content, http://links.lww.com/MSS/C538.
DISCUSSION

The present findings indicate that aerobic fitness and habit-
ual physical activity level have a previously unrecognized role
in brain opioid signaling. Higher self-reported MVPA level
was associatedwith a larger decrease in cerebralMOR binding
after HIIT, and both higher MVPA level and higher CRF, as
measured by V̇O2peak, were associated with a larger decrease
in cerebral MOR binding after moderate-intensity aerobic ex-
ercise. These effects were observed in widespread cortical and
subcortical areas, most notably in the anterior cingulate cortex,
insula, orbitofrontal cortex, and ventral striatum. In other
words, more trained individuals showed greater acute opioid
release after exercise in brain regions involved in reward and
cognitive processing. Fitness and physical activity level were
not associated with baseline BPND. Conversely, V̇O2peak was
positively associatedwith GMdensity in several brain regions,
including the medial and lateral frontal and orbitofrontal cortices,
cingulate cortex, and striatum. Taken together, these data suggest
that aerobic fitness and exercise training at moderate-to-vigorous
intensity may modulate cerebral MOR function, which might be
an important pathway regulating exercise habits, and that aerobic
fitness and physically active lifestyle are associated with neu-
robiological markers of brain health (i.e., GM density) not
only in older adults but also in early adulthood.

Higher MVPA level and aerobic fitness predict a
greater decrease in MOR binding after exercise. Pre-
vious research has shown that exercise intensity modulates
opioid action in the brain (22,23). High-intensity exercise in-
duces a robust opioid release, whereas moderate-intensity ex-
ercise results in decreased MOR availability in some and in-
creased in other individuals (22). Here we report, for the first
time, that higher MVPA level is associated with higher cere-
bral opioid release after a bout of HIIT and that both higher
V̇O2peak and MVPA levels are associated with larger decrease
in cerebral MOR binding after moderate-intensity aerobic ex-
ercise. Together, these findings suggest that aerobic fitness
and physical activity level may shape opioidergic response af-
ter exercise. The dependency on prior aerobic fitness may also
explain why moderate-intensity exercise does not result in net
opioid release when individuals with different fitness statuses
AEROBIC FITNESS AND Μ-OPIOID SYSTEM
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are assessed together (22). The present findings go beyond
past reports, which have only examined the association of
training status on peripheral opioid concentrations after exer-
cise. Higher circulating β-endorphin levels have been found
in well-trained athletes, in comparison with untrained individ-
uals, after a graded exercise test (35) and after a bout of
supramaximal exercise (36). In contrast, high-intensity cycling
(70% and 80% of maximal oxygen uptake (V̇O2max)) resulted
in a similar increase in plasma β-endorphin concentration in
both trained and untrained individuals, whereas moderate-
intensity cycling (60% of V̇O2max) showed no effect on
plasma β-endorphin concentration (37). Although it has been
suggested that training-induced adaptation within the opioid
system could increase the response capacity to extreme exer-
cise stress (36), peripheral opioid levels probably do not mirror
those of the brain (38) and thus limits reasonable comparison
of these studies.

We observed greater decreases in MOR binding in more
trained individuals after exercise in the ventral and dorsal stri-
atum, left amygdala, hippocampus, thalamus, insular cortex,
somatosensory cortex, temporal areas, and orbitofrontal cor-
tex, and across the cingulate. MORs in these regions are
closely involved in processing both nociceptive and hedonic
signals (12) as well as modulating decision making and cogni-
tive control (39). Spatially more widespread correlation was
observed between training variables and the change in MOR
binding after HIIT than after aerobic exercise, although un-
equal sample sizes may confound their comparison. Although
both increased and decreased MOR binding were observed af-
ter moderate-intensity aerobic exercise, it should be noted that
the within-subject variability in MOR responses after aerobic
exercise far exceeds test–retest reproducibility. For example,
in the thalamus and anterior cingulate cortex, the test–retest
variabilities were 350% and 60% higher, respectively, in the
present study in comparison to the prior study examining
[11C]carfentanil test–retest reliability (40).

After HIIT, higher training level was associated with greater
opioid release in the thalamus, insula, left amygdala, and ante-
rior cingulate cortex—brain regions known to process sensory
and affective dimensions of pain (41–43). EnhancedMOR ac-
tivation in these regions may improve exercise tolerance in
more trained individuals by reducing pain and discomfort
levels and thus help to sustain the metabolic and mental de-
mands of high-intensity exercise. Higher fitness level was re-
cently also found to be associated with larger pain tolerance
after high-intensity but not after low-intensity exercise (44),
indicating a relationship between fitness, exercise intensity,
and opioid modulation. Moreover, the insular cortex is the
main brain site responsible for the awareness of subjective
feelings from the body (45), and it has been shown to play a
central role especially in fatiguing exercise. The magnitude
of insular activation varies with the intensity of exercise and
associates with subjective ratings of perceived exertion (46).
Interestingly, opioid modulation has shown to influence per-
ceived exertion and exercise capacity (47). In addition to
insula, prefrontal areas and anterior cingulate cortex have been
Medicine & Science in Sports & Exercise® 5
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proposed to be implicated in the capacity to tolerate high
levels of physical exertion and the determination of exercise
termination (48). Consequently, greater HIIT-induced opioid
release in more trained individuals maymodify subjective per-
ception of pain and fatigue and may thereby contribute to
greater tolerance of higher exercise intensities and improved
exercise performance.

The improved capacity of more trained individuals to acti-
vate the MOR system in response to exercise may also repre-
sent a neurobiological adaptation process induced by regularly
repeated exercise bouts. Thus, improved MOR activation ca-
pacity could reinforce the adoption and maintenance of new
exercise routines and, speculatively, underlie the rapid positive
affective adaptation observed already within a few training ses-
sions of both moderate- and high-intensity exercise in previ-
ously sedentary individuals (49,50). In line with this, we found
that participants with higher CRF experienced greater improve-
ments in mood after the aerobic exercise. This accords with pre-
vious studies reporting that better fitness level (51) and regular
exercise participation are associated with more positive affec-
tive responses (52,53) and enhanced anxiety relief (52,54) after
a bout of exercise. We propose that greater opioid release could
explain enhanced emotional and antinociceptive responses re-
ported by people with higher exercise levels and, thus, bear
implications in exercise adoption and engagement (55), yet
this idea remains to be determined in future studies.

Association of aerobic fitness and physical activity
level with MOR availability. We found that V̇O2peak and
self-reported physical activity were negatively correlated with
baseline [11C]carfentanil BPND, suggesting that higher levels
of regular exercise promoting better aerobic fitness may in-
duce neuroadaptation within the endogenous opioid system.
However, these associations were no longer statistically signifi-
cant when age was introduced as a covariate in the model be-
tweenMORavailability and aerobic fitness or self-reported phys-
ical activity, despite our subjects’ narrow age range (20–36 yr).
Indeed, recent work has shown a prominent effect of age on
MORs, especially before the age of 40 yr (31). Aging increases
MOR availability in frontotemporal areas and decreases it in
the thalamus and nucleus accumbens (31). Thus, pure age effects
would unlikely explain our findings, for example, in the thala-
mus. Given that also CRF is markedly influenced by age, physi-
cal activity level, and BMI (56,57), it remains inconclusive
whether the presently observed effects on MOR availability re-
flect mere age-specific effects or joint effects between fitness
and age. Age-dependent MOR downregulation may, in fact, be
propelled by declining physical fitness, yet this speculation war-
rants further research inmore controlled subject cohorts allowing
for differentiation between the intertwined effects of age, CRF,
physical activity level, and BMI on MOR availability.

Prior animal studies have established a relationship between
habitual physical activity and MOR expression (17,18).
Chronic exercise, in comparison with short-term exercise or
no exercise, decreases MOR expression (17) and overall
MOR binding in rat brain (18), demonstrating a causal link be-
tween exercise and MOR binding. Reduced MOR binding
6 Official Journal of the American College of Sports Medicine
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may reflect downregulation of MORs, increased opioid tone,
or, after competition between endogenous opioids and the ra-
dioligand, a combination of the two. Animal studies suggest
that regular exercise training increases tonic endogenous opi-
oid levels. In rats, exercise training for 5 to 8 wk increases
basal β-endorphin concentration in cerebrospinal fluid (58)
and plasma (59) and elevates both β-endorphin and met-
enkephalin levels in the periaqueductal gray area and rostral
ventromedial medulla (16). Such rise in tonic opioid levels is
also associated with altered pain processing, as regular exer-
cise training increases nociceptive threshold in rats (60) and
reverses measures of pain in animal models of chronic pain
(16,61,62), and as these effects can be reversed by an opioid
receptor antagonist naloxone (16,60–62). Exercise-induced
opioidergic pain modulation has also been demonstrated in
humans. Six-week aerobic exercise intervention decreased
pain intensity and interference in low active patients with
chronic low back pain, and participants with the highest num-
ber of minutes in the target exercise intensity zone exhibited
the greatest increases in endogenous opioid analgesia as
indexed by naloxone–placebo condition differences in evoked
pain responses (63). This suggests a dose–response effect so that
higher intensity and amount of exercise may generate greater ad-
aptation of the MOR system. Chronic exercise has also been
demonstrated to result in decreased sensitivity to analgesic effects
of exogenous opioid agonists such as morphine both in humans
(64) and animals (19,20), which indicates that regular exercise
may induce cross-tolerance to exogenously administered opioid
agonists because of greater concentrations of endogenous
opioid peptides. Altogether, these studies indicate a role of
habitual physical activity in theMOR system, which may con-
tribute to long-term adaptations of various physiological and
behavioral responses associated with regular exercise, such
as improved mood and pain and stress regulation.

Exercise-induced affective and antinociceptive responses
may also be modulated by other neurotransmitter systems,
such as the endocannabinoid system (65). Plasma endocanna-
binoid levels increase peripherally after acute aerobic exercise
in humans (65–68) independent of physical activity level (67),
whereas long-term aerobic exercise decreases circulating
endocannabinoid levels (69,70). Given the close interaction
of opioid and endocannabinoid systems in the reward and
emotion processing brain pathways (71–73), further studies
should also examine central endocannabinoid signaling in ex-
ercise settings.

Limitations. The interpretation of [11C]carfentanil PET
studies is challenging. High-intensity exercise led to a signifi-
cant decrease in MOR binding, whereas moderate-intensity
exercise resulted in both decreased and increased MOR
binding. According to the competition principle, reduced
[11C]carfentanil BPND is typically interpreted as evidence of in-
creased endogenous opioid release. Similarly, increased BPND
has been suggested to mirror MOR “deactivation” as an acute
decrease in synaptic endogenous opioids (42,74). However,
because BPND is a composite measure that does not differenti-
ate between receptor density and affinity, radioligand binding
http://www.acsm-msse.org
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can also be affected by receptor trafficking and changes in
binding affinity. Although we cannot directly specify which
interpretation is most appropriate, our findings nevertheless
are consistent with the modulatory role of aerobic fitness and
physical activity level in MOR responses after both high-
intensity and moderate-intensity exercises. Next, our data were
sampled from two distinct projects using two different PET
scanners. Although the outcome measure BPND theoretically
controls for minor differences in scanner signal-to-noise ratios
(75), comparable PET scanning protocols may yield different
BPND estimates across scanners. Our recent study comparing
BPND values of various PET ligands across PET scanners,
however, suggests that the BPND values obtained from PET/CT
and PET/MRI are sufficiently comparable for [11C]carfentanil
(76). Even though we corrected for potential scanner-related
biases in the analyses, a possible confounding effect of different
scanners remains in the analyses. Furthermore, because females
and males may have differential neurochemical responses to ex-
ercise (77) and differences in brain MOR availability (31), the
findings may not be generalizable to females. Finally, because
of underpowered sample, this first demonstration of the role of
fitness and training measures on exercise-induced opioid re-
lease should be considered as preliminary evidence.

CONCLUSIONS

We conclude that higher training status is associated
with greater reductions in MOR availability after a bout of
AEROBIC FITNESS AND Μ-OPIOID SYSTEM
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high-intensity exercise, suggesting greater exercise-induced
opioid release in more trained individuals. Higher MVPA
level and higher aerobic fitness also predict exercise-induced
changes inMOR binding after a bout of aerobic exercise, indi-
cating a role of habitual physical activity in MOR modulation
also at moderate exercise intensities. Aerobic fitness was pos-
itively associated with GM density but not associated with
baseline MOR availability. Altogether, our findings suggest
that improving aerobic fitness by regular physical activity of
moderate to high intensity may induce neuroadaptation within
the MOR system by improving exercise-induced opioid function-
ing, which may further modulate physiological and behavioral
responses governed by the opioid system.
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