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Basic problems associated with scientific
measurement

ERRORS PRESENT AT ALL LEVELS; THEY ALSO ACCUMULATE FROM LEVEL TO LEVEL
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ow well is target variable reflected in true scroe (construct validity)
ow well true score is retlected in observed score? (reliability)
ow well does observed score predict behaviour? (criterion-based validity)




Making inferences about the population
Sampling

Acquisition Single subject Population

Statistical inference



CONTROLS ARE THESE BRAINS PATIENTS
STATISTICALLY

DIFFERENT?

Starting point: Images where voxel intensities retlect the outcome measure



Sneak peek: Analysis of PET vs. tMRI data

- PET data needs to be modelled before population level inference
« Dynamic 4D image or static 3D image —> 3D image

o Voxel intensities reflect outcome measure (receptor density,
metabolism....)

- Similarly, EPI data needs to be modelled before population level inference
« Dynamic 4D image —> 3D image

o \Voxel intensities reflect the fit of the stimulation model to the BOLD time
series



3D neuroimaging data
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ROIl-based analyses

regularly shaped
can use univariate stats
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» Pros: Anatomically accurate if ROlIs well definied, data can be analyzed with simple
univariate statistical tests

» (Cons: Laborious, using many ROIls not teasible, averaging within ROl not always
appropriate
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Voxelwise Univariate voxelwise data

Controls —_p outcome =P regularly shaped
measures can use mass
univariate stats

Patients

MASS UNIVARIATE TESTING FOR ALL VOXELS
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MASS UNIVARIATE TESTING FOR ALL VOXELS






Voxel intensity = outcome measure
(BPND, contrast estimate, tissue probability)

SUBJECT 1

SUBJECT 2

SUBJECT 3

THE BASIC RECIPE




-ull-volume analyses witn real brains

Basic problem: Individual brains differ in size and shape
Solution to the problem: Make brains similar by warping them
Problems with the solution

o \Warps distort anatomy

o Anatomical information is not the precise anyway

« How should we warp the brains?



I'he MNI space as the target

ICBM 152 template

Based on average of 152 brains that
have been spatially normalized

Statistical average of the typical
western adult brain

Problem: not necessarily
representative of study sample

In fMRI can also use e.g. spherical
models




Spatial normalization in practice

1. Linear (12-parameter affine) normalization NATIVE
o Match size and position )
2. Nonlinear normalization
e Linear combinations of smooth

discrete cosine basis functions

TRANSLATION ROTATION /ZO0OM SHEAR

-

—™

AFFINE NORMALIZATION: 4*3 PARAMETERS



FWHM = spatial extent of the filter



Example on smoothing brain-PET images
UNSMOOTHED 12mm FWHM
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Non-significant [l &AMV A Non-significant
oligleigle ‘7 oligle]igle

Masked at>0 | *™ Masked at >0
f ? Q
' visible ' ' hidden

Applying explicit / threshold mask is necessary to avoid modelling noise



What sort of voxelwise model to fit”?

ANOVA, ANCOVA, linear regression...



Between-groups design

Voxelwise
comparison
with mass univariate
iINndependent samples tests




1) Mean images for each group
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Non-obese

3) Region-of-interest data
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Karlsson et al (2015 J Neurosci)
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Challenge / longitudinal design

Lag hours or days

Challenge:
Task, drug, etc.

Voxelwise
comparison
with mass
univariate repeated
measures tests
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Fast vs.
Non-palatable

Fast vs.
Palatable

FDR Middle cingulum

Non-palatable meal M Palatable meal M Fast
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Tuulari et al (2018 J Neurosci)



Correlational design

Univariate
biological
variable
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Lowered mu-opioid receptor levels in subclinical depression
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Voxel intensity = outcome measure
(BPND, contrast estimate, tissue probability)

SUBJECT 1

SUBJECT 2

SUBJECT 3

THE BASIC RECIPE
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