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Abstract
Obesity is a growing burden to health and the economy worldwide. Obesity is associated with central µ-opioid
receptor (MOR) downregulation and disruption of the interaction between MOR and dopamine D2 receptor (D2R)
system in the ventral striatum. Weight loss recovers MOR function, but it remains unknown whether it also recovers
aberrant opioid-dopamine interaction. Here we addressed this issue by studying 20 healthy non-obese and 25
morbidly obese women (mean BMI 41) eligible for bariatric surgery. Brain MOR and D2R availability were measured
using positron emission tomography (PET) with [11C]carfentanil and [11C]raclopride, respectively. Either Roux-en-Y
gastric bypass or sleeve gastrectomy was performed on obese subjects according to standard clinical treatment. 21
obese subjects participated in the postoperative PET scanning six months after bariatric surgery. In the control
subjects, MOR and D2R availabilities were associated in the ventral striatum (r= .62) and dorsal caudate (r= .61).
Preoperatively, the obese subjects had disrupted association in the ventral striatum (r= .12) but the unaltered
association in dorsal caudate (r= .43). The association between MOR and D2R availabilities in the ventral striatum was
recovered (r= .62) among obese subjects following the surgery-induced weight loss. Bariatric surgery and
concomitant weight loss recover the interaction between MOR and D2R in the ventral striatum in the morbidly obese.
Consequently, the dysfunctional opioid-dopamine interaction in the ventral striatum is likely associated with an obese
phenotype and may mediate excessive energy uptake. Striatal opioid-dopamine interaction provides a feasible target
for pharmacological and behavioral interventions for treating obesity.

Introduction
The prevalence of obesity is dramatically increasing and

there is an urgent need for novel efficient therapies.
Numerous studies point towards the role of the brain in
the development and maintenance of obesity1,2. Previous
studies indicate that both opioid and dopamine systems in
the brain’s reward circuit are dysfunctional in obesity. The
endogenous opioid system has been linked to hedonic
aspects of feeding in animals3,4. In humans, both µ-opioid
receptor (MOR) antagonists and inverse agonists have

been shown to reduce eating behavior5,6. Previously,
decreased MOR availability has been observed in the
reward circuit among obese subjects7,8. Thus, aberrant
opioid functioning in obesity may diminish the opioid-
dependent rewarding effects of eating. Alterations in
dopamine D2 receptor (D2R) expression and function in
obesity have been observed in some9–12 but not all human
imaging studies8,13. It is possible that the relationship
between D2R availability and measures of obesity is not
linear, but quadratic14 or age-dependent15. Alternatively,
it is possible that the effects of obesity on D2R are
mediated via the MOR system. Q1!Q2!Q3!Q4

Tight interaction between dopaminergic and opioi-
dergic systems has been proposed to underlie human
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reward functions16, but only a few studies have actually
investigated this issue. In humans, dopamine-releasing
drugs such as cocaine and amphetamine lead to endo-
genous opioid release17–19. In rats, both D2Rs and MORs
are closely connected in the striatum, which can be
morphologically divided into striosome/patch and
matrix compartments. MORs can control the release of
dopamine by inhibiting GABAergic interneurons in
VTA20–25. Furthermore, VTA dopamine neurons
express MOR postsynaptically, and direct inhibition
between MOR and dopamine neurons exists without
GABAergic signaling26.
Cross-talk between opioidergic and dopaminergic sys-

tems may underlie aberrant reward-related behaviors,
such as excessive feeding. In rats, intravenous adminis-
tration of MOR agonists triggers dopamine release and
feeding27, while MOR antagonists block dopamine release
and reduce food consumption28. Finally, in vivo PET data
from humans show that there is a close interaction
between MOR and D2R receptors in the reward circuit
among non-obese subjects, while this interaction is dis-
rupted in the ventral striatum among obese subjects,
potentially contributing to obesity29. However, it remains
unclear whether the dysfunctional MOR/D2R interaction
reflects a vulnerability endophenotype for obesity, or
whether it develops as a consequence of the obese state.
Bariatric surgery is the most effective method for weight

loss in obesity30. The surgical procedure significantly
lowers appetite31, but the actual molecular brain
mechanisms behind this are still poorly understood.
Bariatric surgery provides a powerful method for inves-
tigating changes in neuroreceptor systems and opioid-
dopamine interaction after weight gain. Previous studies
have investigated the effects of bariatric surgery and fol-
lowing weight loss to separate receptor systems, showing
mainly unaltered D2R availability and normalized MOR
availability32–35. Here we tested whether bariatric surgery-
induced weight loss could recover the dysfunctional
opioid-dopamine interaction in the obese.

Subjects and methods
The study was conducted in accordance with the

Declaration of Helsinki and approved by the Ethical
Committee of the Hospital District of South-Western
Finland (SleevePET2, NCT01373892, http://www.
clinicaltrials.gov). All participants gave a signed
informed consent form prior to scans.

Subjects
We recruited 25 morbidly obese women (mean BMI

41 kg/m2) eligible for bariatric surgery. Either Roux-en-Y
gastric bypass or sleeve gastrectomy was performed as
their standard clinical treatment. Four subjects dis-
continued the study for personal reasons, and 21 parti-
cipated in the postoperative scanning six months after the
surgical procedure. 20 non-obese healthy women (mean
BMI 22 kg/m2) formed the control group. Data for this
patient cohort have been reported previously8,29,34. The
sample size was determined by a priori power analysis
based on our previous studies34. Characteristics of the
subjects are presented in Table 1. Clinical screening of the
subjects included history, physical examination, anthro-
pometric measurements, and laboratory tests. Exclusion
criteria involved opiate drug use, binge-eating disorders,
neurological and severe mental disorders, substance
abuse, excessive alcohol consumption (more than eight
units per week) determined by clinical interviews, medical
history, and blood tests. None of the controls smoked
tobacco, but 8 obese subjects were smokers (3–15 cigar-
ettes per day). Antidiabetic, antihypertensive, and
cholesterol-lowering drugs were paused prior to the study.

Image acquisition and quantification of receptor
availability
We measured D2 receptor availability with the antago-

nist [11C]raclopride36 and µ-opioid receptor availability
with the high-affinity agonist [11C]carfentanil37 using
positron emission tomography (PET) on two separate
visits. Subjects were scanned again with both radiotracers

Table 1 Characteristics of the subjects.

Obese preoperative (N= 25) Obese postoperative (N= 21) Healthy control subjects (N= 20)

Age (y) 41.2 ± 9.2 – 42.0 ± 13.2

BMI (kg/m2) 41.3 ± 4.1 31.9 ± 4.4 22.4 ± 2.6

Percentage of fat (%) 50.3 ± 6.7 43.2 ± 4.2 30.6 ± 6.4

Tobacco smokers/non-smokers (N) 8/17 5/16 0/20

Amount of alcohol use (units per week) 1.7 ± 1.8 N /A 2.9 ± 2.3

Injected activity of [11C]carfentanil (MBq) 253.2 ± 11.6 252.1 ± 15.0 251.2 ± 8.4

Injected activity of [11C]raclopride (MBq) 247.9 ± 20.8 254.5 ± 10.9 258.3 ± 15.7

Data are presented as mean ± SD.
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six months after bariatric surgery. Radiotracer production
has been described previously8. Both radioligands had
high radiochemical purity (>99%). Before scanning, a
catheter was placed in the subject’s left antecubital vein
for tracer administration. The Head was strapped to the
scanner table in order to prevent head movement. Sub-
jects fasted two hours prior to scanning. A CT scan was
performed to serve as an attenuation map. The clinical
well-being of subjects was monitored during the scanning.
We injected both tracers as a bolus in separate scans on

separate days. Injected amounts of [11C]carfentanil and
[11C]raclopride are presented in Table 1. After injection,
radioactivity in the brain was measured with the GE
Healthcare DiscoveryTM 690 PET/CT scanner (General
Electric Medical Systems, Milwaukee, WI, USA) for
51min, using 13-time frames. MR imaging was performed
with Philips Gyroscan Intera 1.5T CV Nova Dual scanner
to exclude structural abnormalities and to provide ana-
tomical reference images for the PET scans. Anatomical
images (1 mm3 voxel size) were acquired using a T1-
weighted sequence (TR 25ms, TE 4.6 ms, flip angle 30°,
scan time 376 s).
All alignment and coregistration steps were performed

using SPM8 software (www.fil.ion.ucl.ac.uk/spm/) run-
ning on Matlab R2012a (The Mathworks Inc., Sherborn,
Massachusetts). To correct for head motion, dynamic
PET images were first realigned frame-to-frame. The
individual T1-weighted MR images were coregistered to
the summation images calculated from the realigned
frames. Regions of interest (ROIs) for reference regions
were drawn manually on MRI images using PMOD
3.4 software (PMOD Technologies Ltd., Zurich, Switzer-
land). The occipital cortex was used as the reference
region for [11C]carfentanil and cerebellum for [11C]
raclopride. Receptor availability was expressed in terms of
BPND, which is the ratio of specific to non-displaceable
binding in the brain. BPND was calculated by applying the
basis function method for each voxel using the simplified
reference tissue model (SRTM) with reference tissue
time-activity curves (TAC) as input data38.
The subject-wise parametric BPND images were nor-

malized to the MNI space using the T1-weighted MR
images and smoothed with a Gaussian kernel of 8 mm
FWHM. Anatomic regions of interest were generated in
the ventral striatum, dorsal caudate nucleus, and putamen
using the AAL39 and Anatomy40 toolboxes. Statistical
analysis was performed as described earlier29. In the ROI
analysis, Pearson correlation was calculated between the
tracer-wise BPNDs in the striatal regions of interest.
Fisher’s z-test was used for quantifying whether ROI-level
Pearson correlations between the [11C]raclopride and
[11C]carfentanil BPND values were statistically different
between groups. Normality assumption was tested with
the Kolmogorov-Smirnov test.

To determine the striatal volumes in all three groups,
we used T1 images and automated FreeSurfer volumetric
analysis (Version 7). Preoperative differences in striatal
volumes between obese and non-obese subjects were
quantified with independent samples t-test and after
bariatric surgery in the obese subjects using repeated-
measures t-test.

Results
MOR and D2R availabilities are presented in the sup-

plementary table (S1). MOR and D2R availabilities were
associated in the ventral striatum (r= .62, p < 0.05) and
dorsal caudate (r= .61, p < 0.05) in the control subjects
(Fig. 1). Preoperatively, the obese subjects had disrupted
association in the ventral striatum (r= .12, ns), but the
unaltered association in dorsal caudate (r= .43, p < 0.05)
(Fig. 1). MOR and D2R availabilities in putamen were not
associated in either group.
The association between MOR and D2R availabilities in

the ventral striatum was recovered (r= .62, p < 0.05)
among obese subjects following the surgery-induced
weight loss (mean total weight loss 25.0 ± 8.2 kg and
22.1 ± 6.1%) (Figs. 1 and 2). There was no difference
between the two surgical procedures in receptor avail-
abilities or the association between receptors before or
after surgery.
In the volumetric analysis of striatal areas, there was no

significant difference in striatal volumes between pre-
operative obese subjects and controls in any ROI (ps >
0.05; Table 2). Weight loss did not influence volumes in
any region (ps > 0.05; Table 2).

Discussion
Our main finding was that opioid-dopamine interaction is

recovered by bariatric surgery and concomitant weight loss.
No change in striatal volumes was observed postoperatively.
Dysfunctional opioid-dopamine interaction in the ventral
striatum is associated with an obese phenotype and may
mediate excessive energy uptake, and we have reported
earlier that MOR levels return to normal after weight loss34.
Behaviorally this is in line with previous studies, showing
improved satiety and lowered appetite after bariatric sur-
gery41,42. We have previously shown that striatal opioid and
dopamine systems are coupled in non-obese but not in
obese subjects29. In the normal-weight subjects, the inter-
action was strongest in the ventral striatum, but also sig-
nificant in the dorsal caudate. Growing evidence indicates
that MOR and D2R are expressed in the same striatal
neurons26,43. The interaction between these receptor sys-
tems is likely crucial in regulating appetite, because it breaks
down in the striatum in the obese subjects, while associa-
tion in the dorsal caudate remains intact. This might
explain unaltered D2R levels in obesity: although obesity-
dependent dysfunction in the dopaminergic system is
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shown in numerous animal studies, it may be mediated
through MOR-dependent mechanisms without having any
effect on the actual number of D2R proteins. Even if the
amount of D2R protein stays the same in obesity, decou-
pling of MOR and D2R in the striatum may cause altered
dopaminergic functions.
MORs are co-localized with D2Rs in striosomes44.

Dopaminergic neurons in the striosomes project directly to
the ventral tegmental area (VTA) and substantia nigra,
whereas neurons projecting to GABAergic neurons are
distributed in the matrix compartment45. Pathways pro-
jecting from striosomes back to the midbrain exert disin-
hibitory control over the dopaminergic neurons46, thus
having a direct influence on the reward functions. These
neurons are under direct opioidergic control47. Accord-
ingly, endogenous opioids disinhibit the neurons projecting
from the patches to the midbrain (i.e., disinhibiting the
disinhibiting neurons), and in this way increase

Fig. 1 Correlations between [11C]raclopride BPND and [11C]carfentanil BPND in the ventral striatum, dorsal caudate, and putamen. The
association is recovered in the ventral striatum after surgery-induced weight loss. A significant association was found in dorsal caudate in all groups,
whereas no association was found in the putamen in any group.

Fig. 2 Mean correlations between [11C]raclopride BPND and [11C]
carfentanil BPND in non-obese and obese subjects before and
after surgery. Asterisks denote significant between-groups
differences.

Karlsson et al. Translational Psychiatry Page 4 of 7
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dopaminergic firing in VTA. The rewarding effects of
opioids are dependent on the MORs located in the
striosomes48

Based on the observation that dopamine release caused
by opioids in the striatum is dependent on the MORs in the
striosomes in mice48, we hypothesize that aberrant opioid
function in obese humans might lead to diminished
dopamine release caused by eating. When obese subjects
lose weight, the interaction between MOR and D2R is
reverted. This further supports the notion that the inter-
action between these receptor systems is a normal state.
The dysfunction of opioid-dopamine interaction in the
ventral striatum might be an important factor underlying
overeating, and thus a feasible target for pharmacological
and behavioral interventions. This has already been noted
in pharmacological studies. MOR antagonist naltrexone
therapy alone does not lead to significant weight loss, but
promising results are obtained when it is coupled with
bupropion (a dopamine and norepinephrine reuptake
inhibitor)49–52. Combination therapy of naltrexone and
bupropion has been approved by FDA and EMA for weight
management in adults53 and a certain amount of obese
patients achieve significant weight loss54–56. The favorable
effect of the combination therapy may be due to the tight
coupling of MOR and D2R. Moreover, the better efficacy of
the combination therapy over monotherapies underlines
the complex pattern of neurotransmitter networks under-
lying overeating and suggests that both aspects of reward
functions—wanting and liking, processes mediated by
dopaminergic and opioidergic systems, respectively57—
have to be taken care of in order to treat obese patients.
This study has certain limitations. Only female subjects

were studied, and the results may not be generalizable
to male subjects. It was not possible to differentiate
the combined effects of postoperative weight loss and
altered gut anatomy and function. Altered neuroreceptor
interaction may be due to the changes in gut hormones
but also due to reduced intake of palatable foods. Further
studies are needed to elucidate the sole effect of weight
loss due to altered energy intake on the interaction of
opioid and dopamine receptors by comparing the effects
of weight loss by surgery versus dieting.

Conclusions
Obesity is associated with disrupted opioid-dopamine

interaction in the ventral striatum, but this is recovered by
weight loss after bariatric surgery. The dysfunction of
opioid-dopamine interaction might be an important fac-
tor underlying overeating.
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