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Lowered endogenous mu-opioid receptor availability in
subclinical depression and anxiety
Lauri Nummenmaa 1,2,3, Tomi Karjalainen1, Janne Isojärvi 1, Tatu Kantonen 1, Jouni Tuisku1, Valtteri Kaasinen 1,4, Juho Joutsa1,4,5,
Pirjo Nuutila1, Kari Kalliokoski1, Jussi Hirvonen1,6, Jarmo Hietala 3,7 and Juha Rinne1

Major depressive disorder is associated with lowered mood, anxiety, anhedonia, sleep problems, and cognitive impairments. Many
of these functions are regulated by μ-opioid receptor (MOR) system. Preclinical, in vivo, and post-mortem studies have however
yielded inconclusive results regarding the role of the MOR in depression and anxiety. Moreover, it is not known whether alterations
in MOR are already present in subclinical depression and anxiety. In a large-scale retrospective cross-sectional study we pooled data
from 135 (113 males and 22 females) healthy subjects whose brain’s MOR availability was measured with positron emission
tomography (PET) using an agonist radioligand [11C]carfentanil that has high affinity for MORs. Depressive and anxious
symptomology was addressed with BDI-II and STAI-X questionnaires, respectively. Both anxiety and depression scores in the
subclinical range were negatively associated with MOR availability in cortical and subcortical areas, notably in amygdala,
hippocampus, ventral striatum, and orbitofrontal and cingulate cortices. We conclude that dysregulated MOR availability is involved
in altered mood and pathophysiology of depression and anxiety disorders.
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INTRODUCTION
Major depressive disorder (MDD) is associated with lowered
mood, diminished hedonia, sleep problems, and executive
function impairments. Many of these functions are centrally
regulated by opioidergic neurotransmission [1–3]. MDD has high
comorbidity with anxiety disorders [4], and several studies also
point towards the role of opioid system in modulating anxiety [5–
7]. Among opioid receptor (OR) classes (μ, δ, and κ receptors), the
μ-opioid receptors (MORs) mediate the effects of endogenous
β-endorphins, endomorphins, enkephalins, and various exogen-
ous opioid agonists [8]. Preclinical studies suggest that MOR
agonists have both antidepressant and anxiolytic effects [3]. MOR
activation with buprenorphine has antidepressant-like effects
which are mediated via μ-receptor partial agonism and κ-receptor
antagonism [9, 10]. Clinical studies also suggest that low-dose
buprenorphine treatment might be effective for depression ((e.g.
[11–13])), and low-dose buprenorphine therapy also leads to
significant reduction in suicidality in acutely suicidal patients [14].
Uncontrolled cohort studies have further found that morphine
administration following an acute trauma decreases the likelihood
of subsequent post-traumatic stress disorder (PTSD), presumably
via inhibition of fear conditioning following the traumatic event
thus suggesting anxiolytic action of the MOR system [15–17].Q1

In vivo imaging and post-mortem studies have yielded mixed
evidence on the role of MOR in depression and anxiety. One
positron emission tomography (PET) imaging study found that
experimentally induced sadness decreases opioidergic neuro-
transmission in rostral anterior cingulate cortex (ACC) in healthy
volunteers [18]. However, a more recent study reported opposite

findings, with negative emotions induced by social rejection
increasing opioidergic processing in amygdala and thalamus [19].
One clinical study also found increased MOR availability in the
thalamus in major depression [20]; this finding was however not
replicated in a subsequent study [21]. Personality trait harm
avoidance (which is also a risk factor for developing affective
disorders) has also been reported to correlate positively with
cerebral MOR availability [22]. In PTSD, μ-receptors are upregu-
lated in the OFC and downregulated in the amygdala and ACC
[23]. Data from post-mortem studies with suicide victims are
mixed, with some reporting higher OR binding [24, 25], some
lower binding [26], and some no differences [27] compared with
controls subjects. Q2

The current study
Altogether preclinical experiments and human pharmacological
and clinical studies point towards depression and anxiety related
alterations in the MOR system, whereas human in vivo imaging
and post-mortem studies have yielded mixed results, possibly due
to compromised statistical power. Furthermore, it is known that
subthreshold depressive and anxious symptomology predict
future inset of mood disorders [28], yet the contribution of MOR
to depressive or anxious symptoms that occur prior to the first
onset of a full depressive/anxious episode remain unknown. Here
we tested for the association between subclinical depression and
anxiety, as measured with standardized self-reports, and MOR
availability in the brain in a large cross-sectional register-based
study. We compiled data from 135 individuals scanned with
radioligand [11C]carfentanil who had also completed Beck
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Depression Inventory II (BDI-II; [29]) and trait anxiety scale from the
state-trait anxiety inventory ((STAI-X; [30])). We show that worse
subclinical symptoms of depression (i.e. BDI-II scores in the range
of 0–12) and anxiety are associated with lowered MOR availability,
most clearly in the brain circuits governing mood and emotion
regulation.

MATERIALS AND METHODS
Subjects
The sample consisted of 135 historical, healthy individuals (22
females, 113 males, mean age 29, SD age 10.35 years; Tables 1
and S-1) studied with high-affinity agonist radioligand [11C]
carfentanil [31], retrieved from the AIVO (http://aivo.utu.fi)
database of in vivo PET images hosted at the Turku PET Centre.
All subjects signed informed consent forms. Data were pooled
from four scanners (GE Healthcare Discovery: 23 subjects, Siemens
ECAT Siemens High Resolution Research Tool (HRRT) scans:
17 subjects, GE Healthcare Discovery 690 PET/CT scanner:
43 subjects and Philips Ingenuity PET/MR scanner: 52 subjects).
All subjects had given informed consent and completed the BDI-II
questionnaires as a part of the corresponding experimental
protocol; subsample of 105 subjects (84 males, 21 females) had
also completed the STAI-X form. Four subjects with BDI-II scores
exceeding the clinical cut-off (12 points) were excluded from the
sample. Because the STAI-X is not a clinical screening instrument,
no cut-off could be specified; however none of the subjects had
clinically diagnosed anxiety disorders. No subjects had neurologic
or psychiatric diseases or currently abused alcohol or illicit drugs;
subjects with medications affecting the CNS were also excluded.
Seven female subjects smoked. The data were acquired between
2003 and 2018. The study protocol was approved by the Turku
University Hospital Clinical Research Services Board, and the study
was conducted in accordance with the declaration of Helsinki.
Power analysis on prior molecular imaging studies on personality
and [11C]carfentanil binding [22, 32, 33] suggested that an
expected effect size of r= 0.4, a sample size of 71 subjects would
be sufficient for establishing the predicted effects at power of
0.95.

PET and MR image preprocessing
PET images were preprocessed using the automated PET data
processing pipeline Magia [34, 35] (https://github.com/tkkarjal/
magia) running on MATLAB (The MathWorks, Inc., Natick, MA,
United States). Radiotracer binding was quantified using non-
displaceable binding potential (BPND), which is the ratio of specific
binding to non-displaceable binding in the tissue [36]. This
outcome measure is not confounded by differences in peripheral
distribution or radiotracer metabolism. BPND is traditionally
interpreted by target molecule density (Bmax), even though [11C]
carfentanil is also sensitive to endogenous neurotransmitter
activation [37]. Accordingly, the BPND for the tracer should be
interpreted as density of the receptors unoccupied by

endogenous ligands, i.e. receptor availability. Binding potential
was calculated by applying basis function method [38] for each
voxel using the simplified reference tissue model [39], with
occipital cortex serving as the reference region [40]. The
parametric images were spatially normalized to MNI-space via
segmentation and normalization of T1-weighted anatomical
images, and finally smoothed with an 8-mm FWHM Gaussian
kernel. Q3

Previous studies have established that depression [41] and
subclinical depressive symptoms are linked with compromised
cerebral integrity [42]. Cerebral integrity in turn is associated with
neuroreceptor-specific radiotracer uptake [43–45]. To rule out the
contribution of cerebral atrophy in our results, we performed a
complementary voxel-based morphometry (VBM) analysis of the
T1 images of the subjects to control for the effect of grey matter
density on radiotracer uptake. VBM was done with SPM12 (https://
www.fil.ion.ucl.ac.uk/spm/software/spm12/) which enables auto-
mated spatial normalization, tissue classification, and radio-
frequency bias correction to be combined with the segmentation
step. Cut-off of spatial normalization was 25 mm and medium
affine regularization 0.01 was used. Following normalization and
segmentation into GM and WM, a modulation step was
incorporated to take into account volume changes caused by
spatial normalization and to correct for the differences in total
brain size across subjects. Finally, the segmented, normalized, and
modulated GM images were smoothed using 8-mm FWHM
Gaussian kernel. Regional GM densities were extracted and used
to predict [11C]carfentanil BPND alongside with the BDI-II and
STAI-X scores. Q4

Data analysis
The population-level full-volume statistical analysis was done
using SPM12. The normalized and smoothed BPND images were
entered into general linear model, where BPND was predicted with
depression and anxiety scores, respectively, while sex, age, and
PET scanner were entered into the models as nuisance covariates.
Statistical threshold was set at p < 0.05, FDR corrected at cluster
level. In a complementary methodological approach, the data
were analyzed by averaging voxelwise BPND within regions of
interest (ROIs). Atlas-based ROIs were generated in the MOR-rich
regions in the brain (amygdala, hippocampus, ventral striatum,
dorsal caudate, thalamus, insula, orbitofrontal cortex (OFC), ACC,
middle cingulate cortex, and posterior cingulate cortex using AAL
[46] and Anatomy [47] toolboxes). The ROI data were analyzed
with R statistical software (https://cran.r-project.org). Mean regio-
nal [11C]carfentanil BPND and GM densities from VBM were
extracted for each region. Q5

Regional effects were estimated using Bayesian hierarchical
modelling using the R package BRMS [48] that uses the efficient
Markov chain Monte Carlo sampling tools of RStan (https://mc-
stan.org/users/interfaces/rstan). We first fitted the models sepa-
rately for BDI-II scores (135 subjects) and STAI-X (105 subjects)
scores. Finally, we also fitted a model with both BDI-II and STAI-X
scores (105 subjects) to test the unique contribution of depression
and anxiety on MOR availability. We used weakly informative
priors: For intercepts, we used the default of BRMS, i.e. Student’s t-
distribution with scale 3 and 10 degrees of freedom. For
predictors, a Gaussian distribution with standard deviation of 1
was used to provide weak regularization. The BRMS default prior
half Student’s t-distribution with 3 degrees of freedom was used
for standard deviations of group-level effects; BRMS automatically
selects the scale parameter to improve convergence and sampling
efficiency. The BRMS default prior LKJ [1] was used for correlations
of group-level random effects. The ROI-level models were
estimated using ten chains, each of which had 1000 warmup
samples and 2000 post-warmup samples, thus totalling 20,000
post-warmup samples. The sampling parameters were slightly
modified to facilitate convergence (adapt_delta= 0.999;

Table 1. Subject characteristics.

Males (n= 113) Females (n= 22)

Age 25.23 (6.23) 45.50 (10.70)

BDI-II score 3.01 (2.78) 3.27 (3.13)

STAI-X score 33.57 (7.36) 32.52 (5.16)

Siemens High Resolution Research
Tool scans

8 9

GE Healthcare Discovery 690 scans 10 13

GE Discovery VCT PET/CT scanner 43 0

Philips Ingenuity PET/MR scans 52 0
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max_treedepth= 20). The sampling produced no divergent itera-
tions and the Rhats were all 1.0, suggesting that the chains
converged successfully. Before model estimation, continuous
predictors were standardized to have zero mean and unit
variance, thus making the regression coefficients comparable
across the predictors. Binding potentials were log-transformed
because posterior predictive checking [49, 50] indicated that log-
transformation significantly improves model fit. The log-
transformation essentially switches the model from additive to
multiplicative; it also helps in model fitting because the
assumption of linear additivity works poorly when the dependent
variable is restricted to positive values [51].

RESULTS
Figure 1 shows the spatial distribution of MOR availability in the
sample. BDI-II and STAI-X scores were positively correlated (r=
0.65, p < 0.001, two-sided) but independent of age and sex (p:s >
0.05). Males were older than the females (p < 0.05). Both
depression and anxiety were associated with reductions in MOR
availability when controlling for age and sex (Fig. 2). For
depression, these effects were widespread and bilateral. Most
profound subcortical effects were found in thalamus, amygdala,
hippocampus, and ventral striatum. Cortically the strongest effects
were found in the insula, precuneus, and in temporoparietal
regions. For anxiety, the pattern was anatomically comparable, yet
the magnitude of the effect was stronger with additional clusters
observed in the midcingulate and lateral prefrontal cortices. The
effects for anxiety remained similar when controlling for the PET
scanner. For depression, the effects remained significant in the
right hemisphere. Including the four subjects with BDI-II scores
>12 did not alter the results.

Because STAI-X scores were not available for all the subjects, we
also re-ran the BDI-II analyses for the sample for which both scores
were available. These data essentially replicated those for the
whole sample. No regions showed positive association between
MOR availability and the BDI-II and STAI scores. Due to imbalanced
sex distribution, we also reanalysed the data separately in the
male and female samples. The effects for the male sample were
similar to those as in the whole dataset (Fig. S-1), whereas for
females the associations were not significant, most likely due to
compromised statistical power (n= 22 for BDI-II and 21 for STAI-X).
The results of the full-volume analyses were corroborated in the

ROI analysis (Figs. 3, 4 and Table S-2). In general, associations
between BPND and BDI-II and STAI scores were negative in all the
tested regions even when accounting for subjects’ age, sex,
regional GMD density, and PET camera. We also estimated a
model that included both questionnaire scores simultaneously. In
that model, the posterior distributions for the regression
coefficients overlapped clearly with zero, suggesting that the
contributions of the questionnaire scores are likely not indepen-
dent. We also estimated a model where grey matter density was
modelled with age, sex, and the questionnaire scores, and found
no contributions for the BDI-II and STAI-X scales.

DISCUSSION
Our main finding was that subclinical symptoms of birth anxiety

Q7and depression were associated with lower MOR availability in a
predominantly male sample. These effects were observed in
widespread cortical and subcortical areas, most notably in
thalamus, amygdala, hippocampus, ventral striatum, and insular
cortices. These effects were also independent of sex and age, and
could not be explained with mesoscopic changes in cortical

Fig. 1 Mean [11Q6 C]-carfentanil BPND distribution in the sample (n= 135). .

Fig. 2 Regions where BDI-II (top row; n= 135) and STAI-X scores (bottom row, n= 105) were associated with MOR availability. The data are
thresholded at p < 0.05, FDR corrected.
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integrity, as quantified with VBM. As expected, depression and
anxiety scores were also highly correlated (r= 0.65), and we could
not find unique associations with the observed alterations in MOR
availability in the present sample. This effect is consistent with the
shared pathophysiology and concomitant comorbidity of depres-
sion and anxiety in general [4]. We did not find associations
between grey matter density and the questionnaire scores,
suggesting that the observed association between the MOR
system and depressive/anxious symptomology cannot be
explained by general structural changes in the brain. Instead, it
is more specific to the MOR system. MORs are expressed
abundantly in the brain circuits governing mood and emotion
regulation [1] and exogenous opioid agonists are potent

modulators of mood [3]. These findings thus suggest that
individual differences MOR-mediated neurotransmission might
underlie sustained changes in negative affectivity, as indexed with
the depressive and anxious symptomology.

Depressive and anxious symptoms are associated with low MOR
availability
MOR availability, as measured with [11C]carfentanil, has high
spatial autocorrelation [52] and it is thus not surprising that the
depressive and anxious symptoms were associated with MOR
availability in large clusters. Clear peaks were however found in
thalamus, insulae, and across the cingulate cortex. Structural
alterations in the dACC and insula are commonly observed across
a wide range of mental illnesses, and their structural integrity is
associated with cognitive function [41]. Meta-analysis of metabolic
PET studies have also revealed lowered glucose metabolism in the
ACC in MDD [53]. These results based on T1-weighted MR imaging
or [18F]-FDG-PET are however unspecific with respect to the
underlying neurobiology, whereas the present data point towards
altered opioidergic neurotransmission as a potential molecular
mechanism. Because both ACC and insulae are involved in both
affective and executive functions impaired in MDD [54, 55], this
also fits with the data showing that opioidergic system modulates
both executive [2] and affective functions [1]. Age is strong
predictor of MOR availability [35, 56] and this effect—negative
associations in midbrain/amygdala and positive associations in
frontal and temporal cortex—was also observed in this sample
(data not shown). However, age is unlikely to explain the
associations between MOR, depression, and anxiety, because we
adjusted for age in the statistical models, and because the
correlations between age and BDI-II and STAI-X scores were not
significant.
Because MOR agonists (such as β-endorphin) suppress the

activity of the HPA axis by inhibiting neurons releasing
corticotropin-releasing hormone in the paraventricular nucleus
of the hypothalamus [57, 58], it is possible that dysfunctional MOR
system might make an individual vulnerable to psychological
stressors subsequently leading to development of depressive and
anxiety disorders. As such, the present findings are also important
when considering that subclinical depressive symptoms increase
the risk for both depression and anxiety, whereas subclinical
anxiety symptoms constitute primarily a risk factor for anxious
psychopathology [28]: it is possible that dysregulated MOR system
could be the key shared neurobiological mechanism predisposing
individuals to both anxious and depressive psychopathology.

Fig. 3 Association between BDI-II and STAI-X scores on selected regions of interest. The plots show least-squares regression lines with 95%
confidence intervals. Statistically significant correlations are flagged with an asterisk.

Fig. 4 Posterior distributions of the regression coefficients for the
BDI-II and STAI-X scales. Thick lines show 80% posterior intervals,
and the lines extend until 99% posterior intervals.
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Given the centrality of opioid system in hedonia and reward
[59] the present results might reflect lowered mood and/or
anhedonia in the subjects scoring high on the depression and
anxiety scales [60]. Indeed, human PET studies have found that
MOR system responds to a variety of rewards ranging from
feeding to social interaction and physical exercise [61–65]. In
animal models, opioid agonists, and partial agonist buprenorphine
reduce symptoms of anxiety and depression [9, 10] as well as
alleviate the effects of psychological stressors such as separation
distress [66]. Similarly in humans, fusion imaging studies with [11C]
carfentanil-PET and functional magnetic resonance imaging have
found that high OR availability in the striatum and limbic system
suppresses haemodynamic brain responses while viewing distres-
sing videos [67, 68]. Moreover, opioid agonists make humans
evaluate external stimuli more positively [69]. Altogether these
data fit with the view that MOR neurotransmission acts as an
important buffer against psychological stressors. This accords with
the data showing that mental health disorders are consistently
associated with increased prescription opioid use, and majority of
patients with opioid prescription for pain in the US also have
comorbid depression and anxiety [70]. It is thus possible the
lowered mood and MOR system tone might—either deliberately
or inadvertently—lead to self-medication of emotional pain and
dysphoria with MOR agonists, potentially aggravating the misuse
potential of opioids [71].
Because none of the subjects had depression scores in the

clinical range, these results do not necessarily parallel those
obtained in clinically depressed patients, and future imaging
studies need to address the relationship between MDD, anxiety
disorders and MOR system functioning. However, our data clearly
point towards the role of MOR neurotransmission in lowered
mood, here indexed by depressive and anxious symptomology.
These large-scale data from a subclinical sample accord with the
currently limited imaging data on the role of opioidergic
neurotransmission in depression in humans: First, experimentally
induced negative moods deactivate the μ-system in healthy
volunteers, suggesting opioidergic regulation of mood [18]. Some
prior small-scale clinical PET studies have also found MOR
dysregulation in MDD [20] and PSTD [23]. These present data
show that integrating subclinical data for well-powered statistical
analysis can complement the picture drawn from clinical
populations.

Limitations
Our study was based on historical data that were acquired with
different PET cameras that may, despite cross-calibration, produce
different binding potential estimates (See Table S-3). All images
were however reanalysed using the same analysis pipeline, and
potential scanner-related biases were statistically controlled for in
the analyses. Not all the subjects (n= 135) who had completed
the BDI-II had completed also STAI-X questionnaire (n= 105) thus
the sample sizes were not equal for these two analyses. However,
we also validated the effects of BDI on the sample who had
completed both questionnaires, and found essentially same
results as in the whole sample. Even though well-powered for
the primary outcome measure, the data however do not allow
establishing reliable sex differences in the depression and anxiety
linked MOR expression due to imbalanced sex distribution in the
sample, and due to low number of females in the sample the
present results can mostly be interpreted to represent MOR
function in males. Finally, the data are cross-sectional thus we
cannot conclude whether the links between MOR availability and
depression/anxiety scores reflect (i) genetically determined
individual differences in MOR availability [72] contributing to
vulnerability endophenotypes for depressive/anxious mood or (ii)
downregulation of MOR neurotransmission resulting from pro-
dromal depression or anxiety.

CONCLUSIONS
We conclude that central opioidergic neurotransmission is be
involved in the maintenance of depressed and anxious mood,
potentially predisposing individuals to affective psychopathology.
This neurobiological correlate of risk factors for MDD/anxiety
disorders is relevant for pre-emptive paradigms in affective
disorders. MOR system might be the critical brain system
accountable for dysregulated mood in depression, and possibly
further predisposing individuals for exogenous opioid abuse.
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