
Chapter 1
Molecular Imaging of the Human Emotion 
Circuit

Lauri Nummenmaa, Kerttu Seppälä, and Vesa Putkinen

Abstract Emotions modulate behavioral priorities in the central and peripheral 
nervous systems. Understanding emotions from the perspective of speci!c neu-
rotransmitter systems is critical, because of the central role of affect in multiple 
psychopathologies and the role of speci!c neuroreceptor systems as corresponding 
drug targets. Here, we provide an integrative overview of molecular imaging studies 
that have targeted the human emotion circuit at the level of speci!c neuroreceptors 
and transmitters. We focus speci!cally on opioid, dopamine, and serotonin systems, 
given their key role in modulating motivation and emotions, and discuss how they 
contribute to both healthy and pathological emotions.

Keywords Molecular imaging · Human emotions · Dopamine system · Serotonin 
system · Opioid system

 Introduction

Emotions prepare us for action. They coordinate systemic activation patterns at 
multiple physiological and behavioral scales to promote survival. Most modern 
emotion theories consider emotions as modulatory systems interacting with both 
lower-order systems, such as those involved in homeostasis, as well as higher-order 
cognitive circuits supporting decision-making. Categorical models of emotions pro-
pose that evolution has speci!ed a set of basic emotions (usually including anger, 
fear, disgust, happiness, sadness, and surprise but possibly also others) that support 
specialized survival functions (Cordaro et  al., 2018; Cowen & Keltner, 2017; 
Ekman, 1992; Nummenmaa & Saarimäki, 2017; Panksepp, 1982). These basic 
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Fig. 1.1 Statistical summary of brain regions involved in emotional processing based on the 
NeuroSynth database (Yarkoni et al., 2011)

emotions are characterized by discrete neural and physiological substrates, distinc-
tive subjective feelings (such as “I feel happy”), expressions, and a selective func-
tionally dependent neural basis (Kreibig, 2010; Nummenmaa et al., 2014, 2018; 
Saarimäki et al., 2016; Tracy & Randles, 2011). Much of recent neuroimaging work 
has aimed at mapping the functional organization of the emotion circuits in the 
brain using functional magnetic resonance imaging (Hudson et  al., 2020; 
Nummenmaa & Saarimäki, 2017; Wager et al., 2015), and these studies have been 
successful in delineating the neurobiological architecture of emotions (Fig. 1.1).

Meta-analyses of the BOLD-fMRI data have however yielded inconsistent sup-
port for the discrete neural basis of emotions. One proposed explanation for this is 
the low spatial resolution of BOLD-fMRI coupled with univariate analysis: if spe-
ci!c neural populations coding different emotions are intermixed within one voxel, 
their activation differences cannot be revealed by univariate techniques. In line with 
this view, multivariate pattern recognition studies have consistently provided sup-
port for a discrete neural basis of different basic and complex emotions (Kragel 
et al., 2016; Kragel & Labar, 2015; Putkinen et al., 2021; Saarimäki et al., 2016, 
2018). Even though multivariate analysis techniques improve the discriminability 
and speci!city of data patterns across different classes or conditions (Norman et al., 
2006), they cannot resolve one of the main limitations of the BOLD-EPI data—that 
the signal is unspeci!c with respect to the underlying neurotransmitter circuits.

A single voxel in an echo-planar image may contain neurons operating with a 
multitude of different neurotransmitters, whose net activation is re#ected in the 
BOLD signal. Understanding emotions from the perspective of speci!c neurotrans-
mitter systems is however critical, because of the central role of affect in multiple 
psychopathologies and the role of speci!c neuroreceptor systems as drug targets. 
For example, the most commonly assumed working mechanism of antidepressants 
involves either increased neurotransmission by increasing synaptic neurotransmitter 
levels (such as norepinephrine or dopamine [DA]) or speci!c agonist effects of the 
targeted receptors. Thus, it is imperative to delineate not just the anatomical but also 
neuromolecular organization of the emotion circuits in the brain. Here, we provide 
an overview of the molecular mechanisms of emotions, with speci!c focus on in 
vivo imaging of speci!c neurotransmitter and neuroreceptor studies in humans. We 
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Fig. 1.2 Distribution of type-2 dopamine receptors, μ-opioid receptors, and 5-HT 1A transporters 
measured using PET radioligands

focus speci!cally on opioidergic, dopaminergic, and serotonergic mechanisms, as 
they can be readily studied in vivo in the human brain (Fig. 1.2).

 Studying Human Neuroreceptor Systems In Vivo

Most commonly used functional imaging (fMRI) and electromagnetic (MEG / 
EEG) techniques for recording brain activation do not yield any information regard-
ing the underlying mechanisms of neurotransmission. Because pharmacological 
microstimulation studies are not feasible in humans, main approaches for studying 
emotion-related neurotransmission involve different activation, blockade, and 
depletion studies, as well as nuclear medicine imaging techniques for direct in vivo 
measurements.

 Pharmacological Activation and Blockage Studies

The classical behavioral pharmacological approach involves delivering speci!c 
receptor agonists or antagonists or other pharmacologically active agents into the 
circulatory system or directly into the target tissue in the case of animal studies. In 
humans, these studies are dif!cult to conduct, because oral or intravenous adminis-
tration leads to systemic rather than regionally speci!c effects, and it has been well 
established through animal studies that the effects of receptor agonists/antagonists 
can be regionally highly selective (Berridge & Kringelbach, 2015). One way for 
overcoming this limitation is to use a pharmacological imaging approach, where 
functional imaging or electromagnetic recordings are performed during pharmaco-
logical treatment versus a placebo condition, which allows us to identify the brain 
regions where drug action leads to neural responses. However, these regional 
responses may still be in#uenced by system-level effects, and pinpointing the 
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speci!c regions whose pharmacological manipulation leads to altered BOLD signal 
is dif!cult. Furthermore, these studies employ potent pharmacological agents such 
as morphine or dexamphetamine that require strict clinical supervision. Finally, 
pharmacological manipulations may lead to physiological effects that directly con-
found the BOLD signal, such as respiratory depression caused by opioid agonists 
(Pattinson, 2008), further complicating their interpretation.

 Monoamine Depletion Studies

A complementary approach to pharmacological activation and blockage studies 
involves techniques that temporarily lower the functioning of monoamines such as 
5-HT, DA, and catecholamine, typically by blocking the synthesis or restricting the 
intake of amino acid precursors. The three most widely used techniques involve 
acute tryptophan depletion (ADT) to block 5-HT transporter synthesis by dietary 
restriction of the 5-HT precursor l-tryptophan. The effect is ampli!ed by the con-
sumption of a large quantity of other amino acids that compete with tryptophan at 
the blood–brain barrier (Booij et  al., 2003). Phenylalanine/tyrosine depletion 
(APTD), in turn, targets the dopaminergic/catecholamic systems by restricting the 
dietary intake of its precursors, phenylalanine and tyrosine. Such techniques result 
in speci!c short-term effects in distinct neurotransmitter systems rather than on 
general protein metabolism in the brain (Booij et al., 2003); however, the interpreta-
tion of these results is complicated due to distinct system-level effects on transmitter 
synthesis. Nevertheless, these techniques are valuable when investigating the 
involvement of monoamine system function in speci!c mood disorders.

 Molecular Imaging with Positron Emission Tomography

Functional molecular imaging using positron emission tomography (PET) is the 
current gold standard for in vivo molecular imaging in humans. It is based on inject-
ing radiolabeled, biologically active molecules into the circulation. These molecules 
bind to speci!c target sites, and their unstable isotopes subsequently undergo posi-
tron emission decay. The radioisotope emits a positron—an antiparticle of an elec-
tron—which loses kinetic energy as it travels through brain tissue. After a certain 
degree of deceleration, the positron can interact with an electron, leading to an 
annihilation event producing two gamma photons (rays) moving in opposite direc-
tions. The gamma rays are recorded by the detector units of the PET camera, and on 
the basis of simultaneously detected gamma rays on the opposite sides of the detec-
tor ring, the location of the annihilation event can be computed. This subsequently 
allows reconstruction of the tracer uptake in the tissue. When combined with mea-
surements of tracer input and output, these raw radioactivity counts can be 
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transformed into biologically meaningful information such as radioligand binding 
at neuroreceptors.

This technique provides excellent biological resolution due to the potential for 
developing highly selective radioligands binding to different protein targets and 
spatial resolution up to a few millimeters. Despite its high sensitivity for in vivo 
biomarker tracing, PET lacks the capability for capturing the underlying tissue mor-
phology; as such, this information usually needs to be acquired through separate 
MR or CT scans. Functional imaging of slow-acting neurotransmission is however 
possible (Backman et al., 2011; Zubieta et al., 2001), although temporal resolution 
is limited to tens of minutes for most neurotransmission studies. Modern integrated 
PET—MRI systems (Judenhofer et al., 2008) also allow for the simultaneous mea-
surement of perfusion with both PET and arterial spin labeled MRI (Heijtel et al., 
2014; Zhang et  al., 2014), or perfusion with MRI and neuroreceptor occupancy 
(PET) signi!cantly broadening the utility of PET (Sander et al., 2019). Furthermore, 
joint analysis of PET and structural MR images provide complementary informa-
tion about the mesoscopic organization of the brain (Manninen et al., 2021). All in 
all, the PET technique is currently the most accurate and speci!c tool available for 
investigating in vivo neurotransmission in humans.

 The Dopamine System

Rewards exert a powerful in#uence on our behavior. Both humans and animals are 
motivated to obtain various rewards ranging from food and sex to social contact, and 
the pleasurable sensations we experience on receiving the reward further reinforce 
our motivation to seek and consume the same reward in the future. The monoamine 
neurotransmitter dopamine (DA) and its receptors D1-D5 have been well- established 
as playing a key role in motor control and reward-related behavior and pleasure. 
There are multiple DA pathways in the brain that consist of neuronal projections 
which synthesize and release DA (Fig. 1.3). The mesolimbic pathway projects from 
the ventral tegmental area (VTA) to the ventral striatum. This pathway is particu-
larly involved in processing incentive salience, generating pleasure responses and 
reinforcement learning. The mesocortical pathway projecting from the VTA to the 
prefrontal cortex is, in turn, more involved in executive functions although it also 
contributes to reward processing. The nigrostriatal pathway connects substantia 
nigra to the striatum (putamen and caudate) and contributes critically to motion 
control. Finally, the tuberoinfundibular pathway connects the hypothalamus and 
the pituitary gland. Importantly, all the main functions of the dopamine system are 
also central to reward processing, and it comes as no surprise that dopamine system 
has been implicated as one of the primary molecular pathways for reward (Wise & 
Rompre, 1989), and microinjection studies in animals have established that dopa-
mine stimulation of the nucleus modulates incentive motivation (DiFeliceantonio & 
Berridge, 2016; Peciña & Berridge, 2013).

AU1
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Fig. 1.3 Main dopamine pathways in the brain

PET studies using the radioligand [11C]raclopride in humans have consistently 
demonstrated DA release in central pathways during reward processing. Due to the 
poor temporal accuracy of PET, it is exceedingly dif!cult to dissect the contribution 
of reward expectation and consumption phases to the release of DA: It is dif!cult to 
design suf!ciently long (~45 min) tasks where rewards would be only anticipated 
but not delivered. As a result, studies conducted in this area mix both anticipation- 
and consumption-related effects. The PET analysis of DA transmission in reward 
has shown that feeding—one of the most salient biological rewards—triggers DA 
release primarily in the striatum. Because the magnitude of DA release is associated 
with the evaluation of the subjective pleasantness of the meal, this !nding has been 
interpreted as evidence for hedonic (rather than homeostatic) responses to feeding 
(Small et al., 2003). This is further supported by another series of studies, which 
measured DA release during intravenous glucose/placebo delivery, thus precluding 
the subjective evaluation of the reward value of the glucose, yet systemically alter-
ing the blood glucose levels simulating a postprandial state (Haltia et  al., 2007, 
2008). These studies found no differences between the glucose and placebo condi-
tions, suggesting that alterations in circulating glucose levels are not suf!cient for 
central DA release. Instead, the hedonic responses driven by the orosensory and 
chemical taste pathways appear to be crucial for the DA response triggered by 
feeding.

There is less evidence for DA processing of other primary reward signals, but 
some studies suggest that romantic (Takahashi et al., 2015) and maternal attachment- 
related rewards (Atzil et  al., 2017) are processed via the dopamine system in 
humans. However, these studies are dif!cult to interpret as the latter (Atzil et al., 
2017) reported dopamine activations in regions where [11C]raclopride has either 
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low or no speci!c binding and no sensitivity to even D2/D3R antagonist challenge 
(Svensson et  al., 2019), and the former was based on an individual-differences 
approach (Takahashi et al., 2015) and failed to show signi!cant main effects of DA 
release across the whole group of subjects. In addition, murine models typically 
show a decrease in DA release in response to social contact seeking (Manduca et al., 
2014), rather than an increase as suggested by human PET data; this might however 
be due to cross-species differences. Striatal DA reward signaling has however been 
shown to extend beyond biologically signi!cant rewards. For example, more “cog-
nitive” rewards such as listening to one’s favorite music (Salimpoor et al., 2011), 
gambling (Joutsa et al., 2012), and playing video games (Koepp et al., 1998) leads 
to striatal dopamine release. In all of these tasks, the reward value is learned rather 
than intrinsic, suggesting that acquired reward signals are processed in comparable 
fashion via DA signaling as those with innate reward value. This is most clearly 
highlighted by data that shows that simple cognitive tasks such as task switching 
may trigger striatal DA release as soon as they are coupled with rewards (Jonasson 
et al., 2014).

Negative emotions also induce DA release. One study using [18F]fallypride 
revealed increased dopamine release in the amygdala and mediolateral frontal cor-
tex during processing of negative emotional words (Badgaiyan et al., 2009), while a 
subsequent study using [11C] raclopride found similar effects in the caudate nucleus 
and putamen (Badgaiyan, 2010). There are multiple possibilities for the apparently 
contradicting !ndings showing that both pleasure and displeasure can lead to DA 
activation. For example, it is possible that the DA response to negative stimuli 
re#ects preparatory avoidance behavior triggered by the aversive stimulus, consis-
tent with the role of DA release in motor responses geared toward speci!c behav-
ioral patterns. This might be re#ected in similar activation as the preparatory 
approach for rewards during pleasurable events. Finally, type-2 DA receptors (D2R) 
have also been linked with executive control and working memory (Backman et al., 
2011), and the emotion-dependent DA activations might re#ect the prediction and 
planning of both escape (negative emotions) and seeking and exploration responses 
(positive emotions).

Recent PET–fMRI fusion imaging has also tried to dissect the speci!c role of 
DA in processing different aspects of emotions, speci!cally the pleasure- displeasure 
(valence) and arousal axes. This approach is based on separate PET measurement of 
neuroreceptor distribution, which can then be used to predict emotion-dependent 
BOLD responses in subsequent fMRI experiments (Karjalainen et al., 2017). The 
logic of these experiments is to examine whether interindividual variation in the 
regional BOLD responses is dependent on corresponding variability in neurotrans-
mitter availability, which would be indicative of DA involvement in the emotional 
processes targeted in the fMRI experiment. However, this work has failed to estab-
lish associations between D2R availability and emotion-speci!c BOLD responses 
(Karjalainen et al., 2018) and instead suggests a key role of opioid system in modu-
lating basic affective responses (see below).

Given the central role of dopamine in modulating motivation and reward, it is not 
surprising that dysregulated dopaminergic neurotransmission is the hallmark of 
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numerous addictive disorders (Volkow et al., 2009). Human imaging studies have 
demonstrated that alcohol and drug dependence are associated with lowered D2R 
availability (Martinez et al., 2012; Volkow et al., 1996, 2001). Additionally, drug- 
induced striatal dopamine responses are blunted in methamphetamine abusers 
(Volkow et al., 2014). With behavioral addictions and addiction-like behaviors, the 
results are less clear. Animal studies on obesity suggest that striatal D2R is down-
regulated in the obese brain (Johnson & Kenny, 2010), while human studies have 
yielded mixed results with some !nding lower (de Weijer et al., 2011; Volkow et al., 
2008; Wang et al., 2001) and others unaltered (Haltia et al., 2007, 2008; Steele et al., 
2010) D2R availability in the striatum. Finally, pathological gambling is not associ-
ated with altered D2R availability (Joutsa et  al., 2012). However, gambling- 
dependent dopamine signaling is ampli!ed in pathological gamblers versus controls 
(Joutsa et  al., 2012), in contrast to the blunting effect observed in amphetamine 
abusers upon drug administration (Volkow et al., 2014). In sum, substance abuse 
appears to markedly downregulate the D2R system possibly via direct pharmaco-
logical effects, whereas behavioral addictions and addiction-like states are modu-
lated by at least partially independent pathways.

 Opioid System

Endogenous opioids are expressed widely throughout the human central nervous 
system (Fig. 1.4) and numerous high-density receptor sites constitute central nodes 
in the human emotion circuit (Kantonen et al., 2020). Among the three classes of 
opioid receptors (μ, δ, and κ), the μ receptors mediate the effects of endogenous 
β-endorphins, endomorphins, enkephalins, and various exogenous opioid agonists 
(Henriksen & Willoch, 2008). The predominant action of μ-opioids in the central 
nervous system is inhibitory, but they can also exert excitatory effects. The neurons 
synthesizing β-endorphin are found in the arcuate nucleus in the hypothalamus and 
the nucleus tractus solitarii of the medulla, which projects extensively to regions 
throughout the CNS. Dopamine is oftentimes considered the primary neurotrans-
mitter for reward processing (Wise & Rompre, 1989). Opioid and dopamine sys-
tems are however closely interlinked on cellular level (Tuominen et al., 2015), and 
opioids can produce reward independently of dopamine (Hnasko et al., 2005), likely 
via partially independent molecular pathways. Moreover, both opioidergic and 
dopaminergic microstimulation of the nucleus accumbens modulate incentive moti-
vation (DiFeliceantonio & Berridge, 2016; Peciña & Berridge, 2013), suggesting 
complementary roles of these neurotransmitter systems in motivational and hedonic 
aspects of reward.

Opiates are commonly used illicit drugs, particularly in the United States, where 
the lifetime prevalence of opioid use disorder exceeds 2% (Grant et al., 2016). Such 
high misuse potential is attributed to the strong “liking” responses—the pleasurable 
subjective experiences produced by drug consumption (Comer et  al., 2012). 
However, experiments with drug-naïve volunteers have not provided consistent 
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Fig. 1.4 Organization of the human opioid system in the brain. Note that as speci!c opioid neuron 
projections cannot be established, this !gure instead characterizes the relative expression of differ-
ent receptor subtypes in some of the key nodes of the emotion circuit

results on opioid agonists associated with liking or pleasure. Some studies report 
increased pleasure upon μ-receptor (MOR) agonist delivery (Riley et  al., 2010; 
Zacny & Gutierrez, 2003, 2009), whereas others have not corroborated these !nd-
ings (Ipser et al., 2013; Lasagna et al., 1955; Tedeschi et al., 1984). These discrep-
ancies likely pertain to differences in the route of administration, receptor af!nity, 
and genetically determined variation in receptor expression (Levran et al., 2012). 
Some recent experiments have found that opioid agonists shift the evaluation of 
external stimuli, making them seem more pleasant, without necessarily directly 
in#uencing tonic subjective emotional state per se (Heiskanen et al., 2019). Thus, it 
is possible that opioid agonists primarily in#uence the evaluative processing of 
emotions, rather than directly modulating the acute subjective feeling. Consequently, 
opioids might alleviate stress and dysphoria by shifting the evaluation of the internal 
and external world toward more positive directions.

By contrast, molecular imaging shows that reward consumption consistently 
triggers endogenous opioid release. Feeding leads to increased endogenous opioid 
release in the reward circuit and also elsewhere in the brain (Burghardt et al., 2015; 
Tuulari et al., 2017). However, this response is observed for both palatable and non- 
palatable meals and is actually stronger for fast-metabolizing, non-appetizing liquid 
meals than for palatable pizza. Thus, the response is likely a combination of the 
low-level homeostatic pleasure of feeding after fasting which is presumably more 
intense in response to a quickly metabolized liquid meal and possibly a partially 
independent effect of subjective hedonic responses. Corroborating evidence for the 
role of the opioid system in processing primary rewards comes from studies 
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showing that pleasurable social interaction (Hsu et al., 2013; Manninen et al., 2017) 
and strenuous physical exercise (Boecker et al., 2008; Saanijoki et al., 2017) induce 
central opioid release. Similar to dopamine, these effects extend beyond primary 
rewards; for example, positive moods induced by mere mental imagery induce opi-
oid release in the amygdala (Koepp et al., 2009). Fusion imaging with PET and 
fMRI suggests that the opioid system governs particularly the arousal dimension of 
emotions. The more opioid receptors an individual has in their limbic system, the 
weaker their arousal-dependent BOLD responses observed in the brain’s emotion 
circuits (Karjalainen et al., 2018). Accordingly, the opioid system might act as a 
buffer against socioemotional stressors, alleviating the negative feelings associated 
with one’s own or another’s misfortune (Karjalainen et al., 2017).

While the general role of the dopamine system in drug addictions is fairly clear- 
cut, the story is more nuanced with the opioid system. Alcohol dependence is asso-
ciated with elevated MOR levels in the striatum (Heinz et al., 2005; Weerts et al., 
2011), whereas cocaine dependence results in similar effects in more widespread 
regions, particularly cortical and cingulate areas (Gorelick et al., 2005). However, 
chronic opiate abuse is associated with MOR downregulation (Koch & Hollt, 2008; 
Whistler, 2012). Thus, the effects of drug abuse on MOR seem to be drug-speci!c. 
More consistent data comes from studies on obesity that have implicated downregu-
lated μ-receptor action as one of the key pathophysiological mechanisms in the 
disorder (Burghardt et al., 2015; Karlsson et al., 2015, 2016; Tuominen et al., 2015). 
These effects seem to also be speci!c to obesity rather than a general feature of 
behavioral addictions, as μ-receptor downregulation is not observed in pathological 
gambling for example (Majuri et al., 2016). Finally, despite the centrality of the 
opioid system in hedonia and affective functioning, there is no clear evidence of its 
involvement in the pathophysiology of mood disorders. PET imaging data are lim-
ited in scope, and the existing studies have yielded con#icting evidence on opioider-
gic alterations in major depression (Hsu et al., 2015; Kennedy et al., 2006). However, 
one recent large-scale study shows that subclinical depressive and anxious symp-
toms are consistently linked with MOR system downregulation (Nummenmaa 
et al., 2020). Finally, the opioid system may also contribute to affective pathophysi-
ology due to its role in governing human attachment behavior whose disruptions are 
consistently linked with mood disorders (Mikulincer & Shaver, 2012). This is sup-
ported by PET studies that have consistently found that insecure attachment is 
linked with downregulated MOR in the limbic and paralimbic regions (Nummenmaa 
et al., 2015; Turtonen et al., 2021).

 Serotonergic System

The monaomine neurotransmitter serotonin and its receptors 5HT1-5HT7 are 
involved in the regulation of sleep, appetite, mood, and pleasure, but it is also 
involved in cognitive and physiological processes. In the central nervous system, 
serotonin is produced in the raphe nuclei in the brainstem, from where the 
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Fig. 1.5 Main serotonin pathways in the brain

serotonergic projections extend to the striatum and neocortex (Fig. 1.5). The brain’s 
serotonergic systems also play a critical role in avoidance behaviors as well as fear 
and anxiety. Activation of the serotonergic system is critical for avoidance behavior 
in rodents (Deakin & Graeff, 1991), and genetic variations in serotonin transporter 
(SERT) expression in#uence the fear circuit’s responsiveness to acute threat signals 
in humans (Hariri et  al., 2002). Thus, major categories of anxiolytic drugs also 
inhibit SERT.

While dopamine and opioid systems are centrally involved in the pathophysiol-
ogy of addictive disorders, the SERT system is consistently implicated in mood 
regulation and consequently in the pathogenesis of mood disorders (Mann, 1999). 
Although initial reports on 5-HTT in mood disorders have been variable, meta- 
analyses suggest that serotonin transporter availability is consistently lowered in 
depression (Ichimiya et al., 2002); but see Andrews et al. (2015), and altered sero-
tonergic neurotransmission is also considered a hallmark of depression (Drevets 
et al., 1999). Accordingly, the most widely used and effective of antidepressants act 
by increasing extracellular serotonin levels. Importantly, individual differences in 
the expression of the serotonin transporter mediate the effects of stressful life events 
on the onset of depression (Risch et al., 2009). In a similar fashion, serotonin trans-
porter availability varies seasonally, suggesting that altered serotonergic function 
may also underlie the pathophysiology of seasonal affective disorders (Praschak- 
Rieder et al., 2008).

Functional molecular imaging of the serotonergic system has been limited due to 
the lack of radioligands that show sensitivity to endogenous serotonin levels, essen-
tially preventing serotonin activation studies with PET. However, fusion PET–fMRI 
imaging has elucidated the role of SERT in emotional processing. A number of 
studies indicate that the serotonergic system regulates amygdala responsiveness to 
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facial expressions of emotions (Fisher et  al., 2006, 2009; Rhodes et  al., 2007; 
Selvaraj et al., 2015). For instance, PET–fMRI studies have found an inverse rela-
tionship between 5-HT1A receptor density in the dorsal raphe nucleus (DRN) or 
HT2A density in the prefrontal cortex and the magnitude of amygdala BOLD 
response to emotional faces (Fisher et al., 2006, 2009, 2011; Selvaraj et al., 2015). 
Some studies have also yielded con#icting results, with no association between 
5-HT1A binding and emotional face processing (Kranz et al., 2018). For practical 
and economic reasons, these types of multimodal neuroimaging studies have lim-
ited statistical power (oftentimes n:s <30), which may yield inconsistent effects in 
correlational designs. However, pharmacological activation studies provide cor-
roborating evidence for serotonergic modulation of amygdala responses to threat. 
Multiple studies have documented that serotonin reuptake inhibitors (SSRIs) modu-
late amygdala reactivity to emotional facial expressions (Anderson et  al., 2007; 
Bigos et  al., 2008; Harmer et  al., 2006; Murphy et  al., 2009). These effects are 
however not just face-speci!c but extend to emotional processing in general and 
also to emotions derived from natural speech. The serotonin and norepinephrine 
receptor antagonist mirtazapine attenuates responses to unpleasant events in senso-
rimotor and anterior areas while modulating responses to arousing events in cortical 
midline structures. These effects are paralleled by increased functional connectivity 
between cortical midline and limbic areas during pleasant events (Komulainen 
et al., 2017), suggesting large-scale modulation of affective processing by seroto-
nergic drugs.

From a clinical viewpoint, subjective feelings linked with the neural and auto-
nomic emotional response are also an important facet of mood disorders. In particu-
lar, negative self-concept and increased self-focus play an important role in the 
pathophysiology of depression. Some studies suggest that the serotonergic system 
can in#uence how subjects interpret and process self-relevant affective information. 
Mirtazapine attenuates self-referential emotional processing in healthy volunteers, 
as manifested in decreased cortical midline activation (Komulainen et al., 2016). 
This mechanism could underlie one form of serotonin-dependent antidepressant 
action. This is further evidenced in clinical trials, which show how short-term esci-
talopram treatment regulates self-referential processing in patients with major 
depressive disorder (Komulainen et al., 2018). Thus, serotonergic modulation seems 
to occur at multiple levels of the human emotion circuit, ranging from sensory to 
evaluative, cognitive and self-referential processes, and the serotonergic action of 
antidepressants likely impacts all these levels.

 Conclusions

Recent advances in nuclear medicine imaging have helped to elucidate the role of 
opioid, dopamine, and serotonin systems in human emotions. There is clear evi-
dence that dopamine and opioid systems modulate hedonic processes. However, 
both dopaminergic and opioidergic activation is observed during negative emotions 
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too, suggesting that they may also support general motivational and arousal- 
modulation components of emotions. At a pathophysiological level, the dopamine 
system is more clearly linked with substance abuse and addictive disorders, whereas 
opioidergic activations vary from substance to substance, with clear downregulation 
observed particularly in obesity. The serotonin system links more clearly with nega-
tive emotions including fear and sadness, yet outside pharmacological and clinical 
studies, the majority of these data come from pharmacological fMRI studies and 
those correlating transporter availability with BOLD–fMRI responses.

There is no clear one-to-one mapping between speci!c emotions or emotional 
behaviors and speci!c neurotransmitters. Obviously, numerous neurotransmitters 
have a wide variety of roles, and their speci!c actions are not limited to emotional 
behavior. Human imaging studies are challenging to conduct and are limited by 
radioligand pharmacokinetics and af!nity. For the major neurotransmitter systems 
implicated in emotion, reliable radioligands exist for imaging serotonin, dopamine, 
opioid and endocannabinoid receptors and transmitters. For opioid and dopamine 
systems, there are also radioligands available that are sensitive to endogenous trans-
mitter levels, whereas this has yet to be achieved for serotonin and endocannabinoid 
systems. In sum, targeting neurotransmitter mechanisms of emotions using PET is 
a powerful tool for dissecting the molecular mechanisms of emotions, further poten-
tiated by next-generation PET–MRI devices which allow us to address the molecu-
lar speci!city of emotion-related BOLD activation.
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