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Rare fully penetrant mutations in AKT2 are an established
cause of monogenic disorders of glucose metabolism.
Recently, a novel partial loss-of-function AKT2 coding var-
iant (p.Pro50Thr) was identified that is nearly specific to
Finns (frequency 1.1%), with the low-frequency allele as-
sociated with an increase in fasting plasma insulin level
and risk of type 2 diabetes. The effects of the p.Pro50Thr
AKT2 variant (p.P50T/AKT2) on insulin-stimulated glucose
uptake (GU) in the whole body and in different tissues
have not previously been investigated.We identified carriers
(N = 20) and matched noncarriers (N = 25) for this allele in
the population-basedMetabolic Syndrome inMen (METSIM)
study and invited these individuals back for positron emis-
sion tomography study with [18F]-fluorodeoxyglucose dur-
ing euglycemic hyperinsulinemia. When we compared
p.P50T/AKT2 carriers to noncarriers, we found a 39.4%
reduction in whole-body GU (P = 0.006) and a 55.6%

increase in the rate of endogenous glucose production
(P = 0.038). We found significant reductions in GU in
multiple tissues—skeletal muscle (36.4%), liver (16.1%),
brown adipose (29.7%), and bone marrow (32.9%)—and
increases of 16.8–19.1% in seven tested brain regions.
These data demonstrate that the p.P50T substitution of
AKT2 influences insulin-mediated GU in multiple insulin-
sensitive tissues and may explain, at least in part, the in-
creased risk of type 2 diabetes in p.P50T/AKT2 carriers.

Many large-scale exome and genome sequencing studies
currently are under way to identify low-frequency and rare
genetic variants associated with human diseases and traits.
Large samples typically are required to obtain convincing
association evidence for such variants. Once a rare-variant
association is identified, investigators may call back carriers

1Turku PET Centre, University of Turku, Turku, Finland
2Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland,
Kuopio, Finland
3University of Helsinki and Department of Medicine, Helsinki University Central
Hospital, Helsinki, Finland
4Minerva Foundation Institute for Medical Research, Helsinki, Finland
5Department of Medicine, Kuopio University Hospital, Kuopio, Finland
6Department of Biostatistics and Center for Statistical Genetics, University of
Michigan, Ann Arbor, MI
7Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
8Clinical and Translational Epidemiology Unit, Massachusetts General Hospital,
Boston, MA
9Department of Medicine, Harvard Medical School, Boston, MA
10Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine,
University of Oxford, Oxford, U.K.
11Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Depart-
ment of Medicine, University of Oxford, Oxford, U.K.
12National Institute for Health Research Oxford Biomedical Research Centre,
Oxford University Hospitals NHS Foundation Trust, Oxford, U.K.

13Big Data Institute, Li Ka Shing Centre for Health Information and Discovery,
University of Oxford, Oxford, U.K.
14National Human Genome Research Institute, National Institutes of Health,
Bethesda, MD
15Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill,
NC
16Department of Psychology, University of Turku, Finland
17Department of Endocrinology, Turku University Hospital, Turku, Finland

Corresponding authors: Markku Laakso, markku.laakso@uef.fi, Pirjo Nuutila,
pirjo.nuutila@utu.fi, and Michael Boehnke, boehnke@umich.edu.

Received 21 September 2017 and accepted 7 November 2017.

M.B., P.N., and M.L. shared last authorship.

© 2017 by the American Diabetes Association. Readers may use this article as
long as the work is properly cited, the use is educational and not for profit, and the
work is not altered. More information is available at http://www.diabetesjournals
.org/content/license.

334 Diabetes Volume 67, February 2018

G
E
N
E
T
IC

S
/G

E
N
O
M
E
S
/P

R
O
T
E
O
M
IC

S
/M

E
T
A
B
O
LO

M
IC

S

https://doi.org/10.2337/db17-1142
http://crossmark.crossref.org/dialog/?doi=10.2337/db17-1142&domain=pdf&date_stamp=2017-12-29
mailto:markku.laakso@uef.fi
mailto:pirjo.nuutila@utu.fi
mailto:boehnke@umich.edu
http://www.diabetesjournals.org/content/license
http://www.diabetesjournals.org/content/license


and noncarriers of the associated variant from the study
population and undertake additional phenotyping to help
understand disease mechanism. Such phenotyping might
not have been considered at study outset or might have been
too costly to undertake in the full study sample. Finland
provides an ideal base for genotype callback studies. The
history of Finland, with recent population bottlenecks, has
resulted in increased frequency of genetic variants that are
rare elsewhere, including nonsynonymous and particularly
loss-of-function variants (1). Further, Finland boasts a well-
educated population strongly supportive of biomedical
research. In our present study we applied this callback ap-
proach to investigate the effects of a partial loss-of-function
variant p.Pro50Thr (rs184042322) AKT2 (V-AKT Murine
Thymoma Viral Oncogene Homolog 2) (p.P50T/AKT2) on
the rates of glucose uptake (GU) in whole body and in
multiple insulin-sensitive tissues to understand the mecha-
nisms explaining increased risk of type 2 diabetes in
p.P50T/AKT2 carriers.

The AKT2 protein plays a key role in the conserved
phosphoinositide 3-kinase signaling pathway, downstream
of the insulin receptor, and mediates the physiological
effects of insulin in several tissues including liver, skeletal
muscle, and adipose tissue (2–4). Additionally, AKT2 is
expressed in the bone marrow, heart, brain, small intestine,
and kidney. Mice deficient in Akt2 develop hyperglycemia,
hyperinsulinemia, insulin resistance, age-dependent loss of
adipose tissue, and diabetes in males (1,5).

In humans, rare penetrant mutations in the AKT2 gene
encoding AKT serine/threonine kinase 2 have been previ-
ously associated with monogenic disorders of glucose me-
tabolism. The first p.Arg274His mutation described in
a single family showed autosomal dominant inheritance
of severe insulin resistance and diabetes and disrupted in-
sulin signaling in cultured cells. Individuals with this loss-
of-function mutation were unable to phosphorylate glycogen
synthase kinase 3 (GSK3) in an in vitro kinase assay (6).
In contrast, another mutation, p.Glu17Lys, caused severe
fasting hypoinsulinemic hypoglycemia. AKT2 p.Glu17Lys
was constitutively located at the plasma membrane (7)
and overexpression induced translocation of glucose trans-
porter type 4 (GLUT4) to the plasma membrane (8).

In a recent meta-analysis of exome genotype data on
33,231 individuals of European ancestry without diabe-
tes, investigators demonstrated that carriers of the
low-frequency amino acid substitution p.P50T/AKT2 had on
average a 12% (95% CI 7–18%, P = 1.0 3 1029) increase in
fasting insulin level and an increased risk of type 2 diabetes
(allele-specific odds ratio 1.05, P = 8.1 3 1025) (9). In vitro
studies demonstrated the variant protein leads to a partial
loss of AKT2 phosphorylation at its activation sites (Thr308
and Ser473), suggesting impaired AKT2 signaling and a re-
duced ability to phosphorylate its downstream target GSK3b
(9). The p.P50T/AKT2 variant was found at a frequency of
1.1% in Finns, but it was present at much lower frequencies
in other ancestries (minor allele frequency 0.2% in non-
Finnish Europeans and#0.01% in African American, Asian,

and Hispanic individuals), making Finland the ideal place
for more detailed genotype-phenotype investigations.

RESEARCH DESIGN AND METHODS

The METSIM Positron Emission Tomography Studies

Study Participants
We selected male participants from the ongoing Metabolic
Syndrome in Men (METSIM) follow-up study with (N = 20,
1 homozygous, 19 heterozygous) and without (N = 25)
p.P50T/AKT2 and matched for age and BMI (10,11). They
fulfilled the following inclusion criteria: age 50–75 years,
BMI 20–40 kg/m2, and an oral glucose tolerance test not
indicating diabetes. We applied the following exclusion cri-
teria: diabetes, a chronic disease that could affect glucose
metabolism (e.g., liver, kidney, thyroid, cancer), abusive use
of alcohol, and any chronic medication that could affect
glucose metabolism (e.g., steroids, b-blockers, thiazide
diuretics, antipsychotics, antidepressants). We performed pos-
itron emission tomography (PET) studies at the PET Centre of
the University of Turku, Finland. Assuming the sample sizes
of 20 and 25 in the two groups, we had 80% power at signif-
icance level a = 0.05 to detect a 30% difference in the means
of skeletal muscle GU based on previous studies performed
at the Centre. The Ethics Committee of the Hospital Dis-
trict of Southwest Finland approved the study protocol.
The study was conducted according to the principles of
the Declaration of Helsinki. All participants gave written
informed consent prior to participation in the study.

Genotyping
We originally genotyped the participants of the METSIM
study on the Illumina HumanExome Beadchip (9). We con-
firmed the p.P50T/AKT2 genotypes with TaqMan Allelic
Discrimination Assays (Applied Biosystems) for PET study
participants.

Hyperinsulinemic-Euglycemic Clamp
We performed a hyperinsulinemic-euglycemic clamp after an
overnight fast of 10–12 h. Two catheters were inserted in
veins of opposite forearms: one in the right antecubital vein
for blood sampling and another in the left forearm for glucose
and insulin infusions and radiotracer injection. To obtain arte-
rialized venous plasma, the right arm was warmed. After cath-
eterization, we collected baseline samples and performed the
hyperinsulinemic-euglycemic clamp as previously described
(12) with the insulin infusion rate of 40 mU/m2 body sur-
face area/min (Actrapid; Novo Nordisk, Copenhagen, Den-
mark). We maintained euglycemia by moderating the rate
of 20% glucose infusion based on the plasma glucose level
measured every 5–10 min. We reported the rates of whole-
body GU (M value) as the average of 20-min intervals between
60–140 min after the start of insulin infusion.

GU Measurements Using PET/CT During the
Hyperinsulinemic-Euglycemic Clamp
We quantified the rates of tissue-specific GU using the PET/
CT (Discovery 690; GE Medical Systems, Milwaukee, WI),
with 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) as tracer.
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The method of producing the tracer has been previously
described (13). After reaching a steady euglycemia (69 6
15 min from the start of insulin infusion), we injected par-
ticipants with 152 6 10 MBq of 18F-FDG and started PET
scanning. The scanned regions were heart (40 min), liver
(15 min), upper abdomen (15 min), thigh skeletal muscle
(15 min), neck (10 min), and brain (10 min). We performed
all PET measurements blinded to AKT2 genotype.

Endogenous Glucose Production
We collected a urine sample immediately after GU measure-
ments and measured the amount of radiotracer lost into
urine using an isotope dose calibrator (Model VDC-205;
Comecer Netherlands, Joure, Netherlands). We assessed
endogenous glucose production (EGP) by subtracting glu-
cose infusion rate from rate of glucose disposal derived
from 18F-FDG consumption (14). The liver produces ;80%
of EGP and the kidney ;20% (15).

Nonbrain PET GU
Before analysis, we corrected imaging data for dead time,
decay, and photon attenuation. To determine the input
function, we calculated a blood time-activity curve by
combining arterial blood activity data from the PET images
(first 10 min after injection) with measurements made from
arterialized venous blood plasma samples collected at nine
time points (5, 10, 20, 30, 40, 47.5, 62.5, 75, and 85 min
after injection) during the scanning (16). We determined
plasma activity using an automatic gamma counter (Wizard
1480 3; Wallac, Turku, Finland). We derived tissue activity
and fractional uptake (Ki) of the tracer from graphical ana-
lyses (17) applying the Carimas Software (version 2.9, Turku
PET Centre, downloadable at http://www.turkupetcentre
.fi/software/). We used a segmenting tool for myocardium
to include the left ventricle wall and septum in the analysis;
for other tissues the regions of interest (ROIs) were drawn
manually. For skeletal muscle analysis, ROIs were drawn to
include the medial parts of quadriceps femoris muscle of
both thighs; for the liver, a section of the right lobe free of
large vessels was chosen. The same researcher (A.L.-R.) per-
formed analyses blinded and estimated the rates of skeletal
muscle and liver GU twice for the first 24 participants. The
Pearson correlation between the two measurements was
0.99 for skeletal muscle and 0.92 for liver.

We report the average of several ROIs for different
adipose tissue types, with subcutaneous adipose tissue ROIs
positioned around waistline, visceral adipose tissue ROIs in
intraperitoneal cavity, and brown adipose tissue ROIs in
supraclavicular areas on both sides of the neck. Bone marrow
ROIs were drawn inside the body of both femoral bones
and reported as their average.

Brain PET GU
We carried out preprocessing and statistical analyses of the
brain PET images with the SPM 12 software (http://www.fil
.ion.ucl.ac.uk/spm/). We first normalized PET images into
an in-house 18F-FDG template according to the Montreal
Neurological Institute standard using linear and nonlinear

transformations and smoothed with a Gaussian kernel with
8-mm full width at half maximum. Next, we quantified the
voxelwise fractional uptake rate as the ratio of tissue time
activity and integral of plasma activity from time 0 to the
time of the scan. We compared voxelwise between-group
differences in fractional uptake rate using a nonparametric
full-volume analysis in the SnPM13 toolbox (http://warwick
.ac.uk/snpm). We constructed anatomical ROIs in the brain
lobes, midbrain, limbic system, and cerebellum in a manner
parallel to that for the other tissues.

Calculation of Tissue-Specific GU
To assess the rates of tissue-specific GU (mmol/kg/min), we
multipled tissue fractional uptake by plasma glucose con-
centration during scanning and divided by tissue density
and a previously established lumped constant: 1.2 for skel-
etal muscle, 1.0 for myocardium and liver, 1.14 for adipose
tissue, 1.1 for intestine, and 0.65 for brain (18–24). The
lumped constant for bone marrow has not been defined, so
we adopted the previously used value of 1.0 (25) to compare
the results between groups.

Laboratory Measurements
We measured plasma glucose in duplicates using the
glucose oxidase method (Analox GM9; Analox Instruments,
London, UK) in the fasting state and during the clamp. We
determined plasma insulin levels in the fasting state and at
30-min intervals after the start of insulin infusion until the
end of clamp using an automated electrochemiluminescence
immunoassay (Cobas 8000; Roche Diagnostics, Mannheim,
Germany). We measured serum free fatty acid (FFA) levels
in the fasting state and at 60-min intervals during the clamp
with an enzymatic colorimetric method assay (NEFA-HR2,
ACS-ACOD; Wako Chemicals, Neuss, Germany; Cobas 8000
c502 Analyzer, Roche Diagnostics).

Statistical Analyses
We carried out data analyses with IBM SPSS 21.0 for Windows
(Chicago, IL). We give the results for continuous variables as
means 6 SD. We logarithm transformed variables with
skewed distribution (insulin, triacylglycerol, FFA, GU in sub-
cutaneous and visceral adipose tissue) prior to statistical
analyses. We assessed the differences between the groups
by the independent samples t test for continuous variables
and x2 test for discrete variables. We used linear regression
to adjust the results for outside temperature in the previous
30, 14, and 7 days in statistical analyses of brown adipose
tissue GU. We assessed the correlation between different
measures of GU by the Spearman correlation coefficient. We
used the Fisher r-to-z transformation to compare correlation
coefficients in carriers and noncarriers of the p.P50T/AKT2.
The threshold for statistical significance was set at a = 0.05.

RESULTS

The Euglycemic-Hyperinsulinemic Clamp and PET Study

Characteristics of the Participants
Characteristics of the p.P50T/AKT2 carriers (N = 20, 1 homo-
zygous, 19 heterozygous) and noncarriers (N = 25) without
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chronic diseases are presented in Table 1. These two groups
of participants were matched for age and BMI and did not
differ significantly by age, BMI, or fasting glucose. As
expected, fasting insulin was higher in the p.P50T/AKT2
carriers than in the noncarriers. We pooled the single
p.P50T/AKT2 homozygous carrier with heterozygous car-
riers in all statistical analysis because the homozygous car-
rier was not an outlier among the group of carriers.

Whole-Body GU, Glucose Disposal, and EGP
Whole-body GUwas assessed by the euglycemic-hyperinsulinemic
clamp–based M value and the glucose disposal rate by the
18F-FDG disappearance rate (20). To verify the quality of
the euglycemic-hyperinsulinemic clamp, we compared the
mean glucose levels during the clamp in p.P50T/AKT2 car-
riers and noncarriers; we observed essentially no difference
between the two groups (5.0 6 0.4 and 5.0 6 0.2 mmol/L,
P = 0.53). The rates of whole-body GU (17.6 6 10.3 vs.
29.2 6 15.2 mmol/kg/min, P = 0.006) and glucose disposal
(25.6 6 9.9 vs. 33.1 6 11.9 mmol/kg/min, P = 0.029) were
lower in p.P50T/AKT2 carriers compared with noncarriers
(Fig. 1A). EGP during the clamp was higher in p.P50T/AKT2
carriers than in noncarriers (9.0 6 2.6 vs. 5.8 6 6.9 mmol/
kg/min, P = 0.038).

Tissue-Specific GU
We assessed GU in different tissues using the euglycemic-
hyperinsulinemic clamp and PET. We observed lower rates
of GU in carriers of the p.P50T/AKT2 variant compared
with noncarriers in skeletal muscle (23.9 6 14.1 vs.
37.5 6 20.7 mmol/kg/min, P = 0.012), liver (21.0 6 5.1
vs. 25.1 6 6.6 mmol/kg/min, P = 0.030), brown adipose
tissue (11.7 6 5.1 vs. 16.7 6 6.9 mmol/kg/min, P = 0.004),
and bone marrow (13.36 5.4 vs. 19.86 8.8 mmol/kg/min,

P = 0.004) (Fig. 1B and C), but did not observe significant
differences in subcutaneous adipose tissue (11.3 6
4.1 vs. 12.7 6 5.8 mmol/kg/min, P = 0.488), visceral adi-
pose tissue (17.3 6 6.4 vs. 20.9 6 8.5 mmol/kg/min, P =
0.157), myocardium (34.2 6 16.8 vs. 35.0 6 12.6
mmol/100 g/min, P = 0.870), duodenum (31.9 6 7.0 vs.
31.7 6 7.1 mmol/kg/min, P = 0.931), or jejunum (33.2 6
7.0 vs. 32.4 6 7.2 mmol/kg/min, P = 0.711). We observed
higher rates of GU in the p.P50T/AKT2 carriers than in non-
carriers in all seven analyzed brain regions (P = 0.001) (Fig. 2).

FFA Levels in Fasting and During the Clamp
Fasting FFA levels did not differ between carriers and noncarriers
of p.P50T/AKT2 (0.43 6 0.16 vs. 0.39 6 0.16 mmol/L, P =
0.360). However, FFA levels were higher during hyperinsu-
linemia at 60 min in carriers than in noncarriers of p.P50T/
AKT2 (0.16 6 0.12 vs. 0.09 6 0.05 mmol/L, P = 0.024).

Correlations Between the Rates of Whole-Body and Brain
GU With Tissue-Specific GU and EGP in Carriers and
Noncarriers of p.P50T/AKT2
The differences in the rates of GU across several tissues
between carriers and noncarriers of p.P50T/AKT2 we ob-
served prompted us to investigate the correlations of the
rates of GU separately in carriers and noncarriers of p.
P50T/AKT2.Whole-body GU correlated positively with skel-
etal muscle GU (r = 0.92 vs. r = 0.90), bone marrow GU (r =
0.74 vs. r = 0.85), subcutaneous fat GU (r = 0.59 vs. r =
0.40), and liver GU (r = 0.41 vs. r = 0.46), and negatively
with brain GU (r =20.56 vs. r =20.66) in both noncarriers
and carriers of p.P50T/AKT2, respectively (Fig. 3A). Corre-
lations of the rates of whole-body GU with brown fat GU
(r = 0.80 vs. r = 0.36, P = 0.023) and EGP in the liver
(r = 20.41 vs. 20.08, P = 0.276) were substantially weaker

Table 1—Clinical and laboratory characteristics of the p.P50T/AKT2 noncarriers and carriers who participated in the METSIM
PET studies
Variable Noncarriers (N = 25) Carriers (N = 20) P value

Age, years 63.9 6 4.8 61.9 6 6.3 0.23

Height, cm 176.9 6 5.3 174.2 6 5.5 0.10

Weight, kg 87.4 6 10.2 86.1 6 11.6.2 0.70

BMI, kg/m2 28.1 6 3.4 28.7 6 3.4 0.60

Waist, cm 100.7 6 8.9 100.3 6 8.7 0.88

Fat mass, % 29.0 6 7.0 28.0 6 7.0 0.60

Systolic blood pressure, mmHg 133.8 6 14.1 137.3 6 15.9 0.44

Diastolic blood pressure, mmHg 86.4 6 10.1 86.6 6 8.5 0.94

Fasting plasma glucose, mmol/L 6.0 6 6.5 6.1 6 0.3 0.28

Fasting insulin, mU/L 9.4 6 5.6 17.8 6 10.2 0.003

LDL cholesterol, mmol/L 3.30 6 0.96 2.92 6 1.09 0.21

HDL cholesterol, mmol/L 1.51 6 0.38 1.33 6 0.37 0.12

Total triglycerides, mmol/L 1.12 6 0.50 1.48 6 1.04 0.26

Alanine transferase, units/L 29.7 6 13.6 32.6 6 17.8 0.58

Creatinine, mmol/L 85.3 6 10.5 85.5 6 12.6 0.96

Data are mean 6 SD. Total triglycerides and alanine transferase were log-transformed to calculate P value.
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among the carriers than among noncarriers of p.P50T/
AKT2. Whole-body GU correlated weakly with heart muscle
GU and jejunum GU without any substantial difference be-
tween the noncarriers and carriers of p.P50T/AKT2. Correla-
tions of brain GU with EGP (r = 0.68 vs. r = 0.05, P = 0.016)
and bone marrow GU (r = 20.24 vs. r = 20.84, P = 0.002)
were significantly different between the noncarriers and
carriers of p.P50T/AKT2 (Fig. 3B).

DISCUSSION

Our genotype-based callback PET study demonstrates that
a low-frequency partial loss-of-function p.P50T/AKT2 variant,

nearly unique to Finns and probably originating from a re-
cent bottleneck in the 16th century in the settlement of
Eastern Finland (1), is associated with significantly de-
creased GU in whole body and in multiple insulin-sensitive
tissues. This is consistent with our previous study (9) dem-
onstrating that insulin levels were increased in carriers of
p.P50T/AKT2 as a compensatory mechanism for insulin re-
sistance. The increase in insulin levels was substantially less
in carriers of p.P50T/AKT2 compared with carriers of the
p.Arg274His/AKT2 loss-of-function mutation previously
reported (6).

Activation of AKT2 is associated with translocation of
GLUT4 from intracellular storage vesicles to the cell surface
(26,27). AKT2 is the major isoform of AKT and is abun-
dantly expressed in skeletal muscle (8,9). Insulin-stimulated
AKT2 activation leads to inactivation of GSK3b (3,28),
resulting in increased glycogen synthesis. Moreover, gene
silencing experiments have provided evidence that AKT2 is
indispensable for insulin action on glucose uptake and gly-
cogen synthesis in human skeletal muscle cells (29). The
current study shows that in vivo skeletal muscle GU was
reduced by 36% (P = 0.012) in the p.P50T/AKT2 carriers
compared with noncarriers. This could be explained, at least
in part, by reduced activity of the low-frequency p.P50T/
AKT2 variant, in agreement with our previous finding of
impaired insulin signaling in HeLa cells and human liver
HuH7 cells for the variant (9). Collectively, these findings
demonstrate that AKT2 is an important determinant of
insulin sensitivity in human skeletal muscle.

The liver plays an important role in maintaining nor-
mal glucose levels by regulating EGP (gluconeogenesis) and
glycogenolysis (glycogen breakdown). Additionally, the kidney

Figure 2—A: Brain regions in the PET study where insulin-stimulated
GU was measured in carriers and noncarriers of the p.P50T/AKT2
variant. B: Significant differences (P value) in GU in the specific regions
of the brain between noncarriers (blue bars, N = 25) and carriers (red
bars, N = 20) of the p.P50T/AKT2 variant. Data are mean 6 SD.

Figure 1—Whole-body and tissue-specific GU. A: Whole-body GU
(M value), EGP, and whole-body glucose disposal rate in the carriers
(red bars, N = 20) and noncarriers (blue bars, N = 25) of p.P50T/AKT2.
B and C: Tissue-specific GU in the carriers (red bars, N = 20) and
noncarriers (blue bars, N = 25) of p.P50T/AKT2. Bar heights repre-
sent sample means, vertical lines represent sample SDs. P values for
comparison of carriers versus noncarriers of p.P50T/AKT2. Subcut,
subcutaneous.
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produces about 20% of EGP (15). Normally, insulin sup-
presses EGP and inhibits the genes encoding gluconeogen-
esis and redirects newly synthesized glucose-6-phosphate to
glycogen (3). We found that EGP was significantly increased
and liver GU decreased in the carriers of the AKT2 variant
compared with noncarriers, indicating liver insulin resis-
tance. AKT2 plays an important role in the regulation of
liver and kidney (29) insulin sensitivity. AKT2 phosphory-
lates and inhibits FOXO1, a key regulator of EGP (30). Our
findings agree with the results observed in mice deficient
in Akt2, which demonstrated a significant failure of insulin
to suppress EGP (2). Additionally, we found that liver GU
was decreased in the carriers of the p.P50T/AKT2 variant
compared with noncarriers. This could be due to impaired

insulin signaling attributable to the p.P50T/AKT2 variant,
which results in subnormal inactivation of GSK3b. Other
mechanisms, independent of GSK3b suppression, could also
play a role, as recently suggested (3).

Activation of AKT2 enhances GLUT4 translocation and
the rates of GU similarly in adipose tissue and skeletal
muscle (6). GU into the white adipose tissue is relatively
minor, accounting for only 5–10% of whole-body GU during
insulin-stimulated states, suggesting that white adipose tis-
sue does not have a major quantitative role in postprandial
glucose metabolism (31,32). We did not find a statistically
significant difference between the carriers and noncarriers
of p.P50T/AKT2 in the rates of GU in subcutaneous or
visceral adipose tissue, although the rates of GU were slightly

Figure 3—A: Correlations of whole-body GU with the tissue-specific GU in skeletal muscle, heart muscle, brown fat, subcutaneous fat, bone
marrow, brain, jejunum, and liver in carriers and noncarriers of the p.P50T/AKT2 variant.B: Correlations of the mean brain GUwith tissue-specific
GU in skeletal muscle, heart muscle, brown fat, subcutaneous fat, bone marrow, jejunum, and liver in carriers and noncarriers of the p.P50T/
AKT2 variant. Blue indicates correlations in noncarriers and red in carriers of the p.P50T/AKT2 variant. *P, 0.05 (exact P values are given in the
text) for correlations that were significantly different between carriers and noncarriers of the p.P50T/AKT2 variant.
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lower in variant carriers than in noncarriers. The carriers
and noncarriers of p.P50T/AKT2 had similar weight, BMI,
waist circumference, and fat percentage, making it unlikely
that obesity, central obesity, or fat mass could have an
effect on the rates of adipose tissue GU. However, we found
that the levels of FFAs were higher during the clamp at
60 min in carriers of p.P50T/AKT2 than in noncarriers,
suggesting that insulin’s inhibitory effect on adipose tissue
lipolysis was impaired in carriers of p.P50T/AKT2 (33).

Brown adipose tissue is mainly located in the supraclavicular
region in adult humans, has high mitochondrial content
and insulin sensitivity and rich vasculature, and is activated
by cold exposure (34). We observed that the rates of brown
adipose tissue GU were significantly lower in p.P50T/AKT2
variant carriers than in noncarriers, not surprising since
hyperinsulinemia increases GU in brown adipose tissue up
to fivefold compared with the fasting state (22). A recent
study demonstrated that mice lacking adipocyte Akt1 and
Akt2 had no discernible subcutaneous or brown adipose
tissue and developed lipodystrophy, severe insulin resis-
tance, and hepatomegaly (35). However, p.P50T/AKT2
variant carriers in our study did not have lipodystrophy,
reduced fat mass, or elevated liver enzymes (Table 1). This
is consistent with our previous in vitro studies showing that
p.P50T/AKT2 is only a partial loss-of-function variant (9).
To assess the effects of outside temperature on brown ad-
ipose tissue activity, we adjusted statistical analyses for the
mean temperatures in the previous 30, 14, and 7 days; these
adjustments had no meaningful effect on our results.

Bone marrow of the femoral diaphysis in adults consists
mostly of adipocytes. Femoral bone marrow “yellow” adi-
pose tissue, consisting of a moderate number of mitochon-
dria, has intermediate metabolic activity compared with
brown and white adipose tissue. It is still unclear whether
“yellow” adipose tissue constitutes a homogeneous popula-
tion of brown or white adipocytes or is a heterogeneous
population of both types of adipose tissue cells (36). We
have recently shown that femoral bone marrow insulin-
stimulated GU correlated with whole-body insulin sensitiv-
ity in elderly women (37). Here, we observed a significant
correlation of the rates of femoral bone marrow insulin-
stimulated GU with the rates of skeletal muscle GU in
men. Therefore, it is possible that femoral bone marrow
exhibits a similar impairment in GU as skeletal muscle attrib-
utable to impaired AKT2 signaling.

Glucose is the major source of energy in the brain.
Reduced brain insulin uptake has been postulated to lead to
a decrease in brain insulin sensitivity to stimulate central
nervous system pathways (38). In a previous PET study,
brain GU was similar in participants with impaired glucose
tolerance and healthy individuals in the fasting state but
increased by 18% during hyperinsulinemia in participants
with impaired glucose tolerance and not in healthy partic-
ipants, suggesting that in insulin-resistant states brain GU
is paradoxically increased (39). Similarly, in another PET
study, brain GU during hyperinsulinemia was increased in
obese but not in nonobese participants (40). In our study,

brain GU was greater in p.P50T/AKT2 variant carriers com-
pared with noncarriers by 16.8–19.1% in different regions
of the brain. These results suggest that both acquired (im-
paired glucose tolerance, obesity) and inherited (p.P50T/
AKT2) insulin resistance may lead to the increased rates
of brain GU. The molecular mechanism of this phenomenon
is poorly understood. A recent study in rats demonstrated
that 18F-FDG PET signal reflects GU not only in neurons
but also in astrocytes (41). Moreover, the insulin signaling
cascade is functional in primary human astrocytes and
increases Akt serine 473 phosphorylation (42). We plan to
investigate the role of p.P50T/AKT2 in astrocyte GU in
in vitro studies.

Interestingly, correlation of brain GU with EGP was
significantly different between the noncarriers and carriers
of p.P50T/AKT2 (r = 0.68 vs. 0.05, P = 0.016). A previous
study in rats demonstrated that hypothalamic insulin sig-
naling has significant effects on liver glucose production
during hyperinsulinemia (43). Our results suggest that in
p.P50T/AKT2 carriers, insulin regulation of EGP is lost,
resulting in increased glucose production by the liver and
kidney during hyperinsulinemia.

The main source of energy in the heart is FFAs, but
energy can also be derived from other sources including
glucose, pyruvate, and lactate. Therefore, it is not surprising
that we did not observe significant differences in myocardial
GU between carriers and noncarriers of the p.P50T/AKT2
variant, in contrast to the substantial differences observed
in skeletal muscle. A recent study demonstrated that insulin
was able to increase GU by almost threefold in duodenum
and jejunum in normal-weight, nonobese participants, but
obese participants without diabetes showed no response to
insulin, implying insulin insensitivity in the small intestine
(23). Although AKT2 is expressed in small intestine, we did
not observe any difference in GU into duodenal or jejunal
mucosa between carriers and noncarriers of p.P50T/AKT2.

The strengths of our study are a careful matching of the
study groups for sex (all male), age, and BMI, strict inclusion
criteria to exclude participants with diseases and drug treat-
ments which could have an effect on tissue-specific GU, and
the fact that all study procedures at the Turku PET Centre
were performed blinded to the genotype of the participants.
The tissue-specific differences in the kinetics of 18F-FDG and
glucose in skeletal muscle, adipose tissue, liver, and intestine
were corrected using lumped constants validated in our lab-
oratory in healthy participants during similar clamp condi-
tions. The primary limitation of the study is that it included
only middle-aged and elderly men; it would be interesting to
repeat our study in women and younger individuals.

In conclusion, our genotype-based callback study dem-
onstrates a significant decrease of the insulin-mediated GU
in skeletal muscle, liver, brown adipose tissue, and bone
marrow and an increase of GU in the brain in the carriers of
the p.P50T/AKT2 variant compared with the noncarriers of
this variant. These changes in GU may explain, at least
in part, the increased risk of type 2 diabetes in p.P50T/
AKT2 carriers. Our study also demonstrates the value of
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genotype-based callback studies and the practicality of PET
as an informative, noninvasive method to characterize the
function of genetic variants of interest.
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