

# Statistical analysis of volume and surface-based data

Lauri Nummenmaa Turku PET Centre



#### Contents

- Basic statistical inference in neuroimaging (and elsewhere)
- ROI-based statistics versus full-volume comparisons
- The basic recipe for SPM analyses
  - 1. Spatial normalization
  - 2. Smoothing
  - 3. Statistical parametric mapping
- Concluding remarks

#### The goal of statistical analysis of brain images



# Basic problems associated with scientific measurement

#### ERRORS PRESENT AT ALL LEVELS; THEY ALSO ACCUMULATE FROM LEVEL TO LEVEL

TARGET
(e.g. specific neuro-receptor)

TRUE SCORE (T)

How target is

defined

(e.g. number of receptors)

**MEASUREMENT** 

OBSERVED
SCORE
(Outcome
measure such
as BPND)

PREDICTION
OF BEHAVIOR
(e.g. anxietylike behaviour)

- How well is target variable reflected in true scroe (construct validity)
- How well true score is reflected in observed score? (reliability)
- How well does observed score predict behaviour? (criterion-based validity)

#### Making inferences about the population



Reliable and valid





Reliable but invalid

Unreliable but valid





Unreliable and invalid

#### Making inferences about the population



Univariate data

Regularly shaped, low-dimensional

| Controls |   |  | Patients |   |  |
|----------|---|--|----------|---|--|
|          | 3 |  |          | 5 |  |
|          | 4 |  |          | 4 |  |
|          | 5 |  |          | 6 |  |
|          | 6 |  |          | 7 |  |
|          | 3 |  |          | 6 |  |
|          | 2 |  |          | 5 |  |
|          | 3 |  |          | 2 |  |
|          | 5 |  |          | 6 |  |
|          | 2 |  |          | 8 |  |

3D neuroimaging data Irregularly shaped, high-dimensional



T-test

# ROI-based analyses



- Pros: Anatomically accurate if ROIs well definied, data can be analyzed with simple univariate statistical tests
- **Cons:** extremely laborious, using many ROIs not feasible, averaging within ROI not always appropriate







#### Full-volume analyses with LEGO brains



#### Full-volume analyses with LEGO brains



#### Full-volume analyses with real brains

- Basic problem: Individual brains differ in size and shape
- Solution to the problem: Make brains similar by warping them
- But not without problems
  - Warps distort anatomy
  - Anatomical information is not the precise anyway
  - How should we warp the brains?



### Between-groups design



#### 1) Mean images for each group



#### 2) Statistical differences (t-map)



# Challenge / longitudinal design

Lag hours or days



#### Baseline

#### Social Laughter





Manninen et al (2017 J Neurosci)



Manninen et al (2017 J Neurosci)

# Correlational design



1) Voxelwise correlations between MOR availability and laughter rate



FDR T-score

BP<sub>ND</sub> × Laughs per minute

### 2) Correlation for ROI in orbitofrontal cortex





# Remember: your results are only as good as your theory!



High reliability and good SNR do not safeguard against stupid research questions and Bad Science™