Statistical analysis of volume and surface-based data

Lauri Nummenmaa

Turku PET Centre

Contents

- Basic statistical inference in neuroimaging (and elsewhere)
- ROI-based statistics versus full-volume comparisons
- The basic recipe for SPM analyses

1. Spatial normalization
2. Smoothing
3. Statistical parametric mapping

- Concluding remarks

The goal of statistical analysis of brain images

CONTROLS

ARE THESE BRAINS STATISTICALLY DIFFERENT?

PATIENTS

Basic problems associated with scientific measurement

ERRORS PRESENT AT ALL LEVELS; THEY ALSO ACCUMULATE FROM LEVEL TO LEVEL

TARGET
(e.g. specific
neuro-
receptor)

TRUE SCORE (T)
How target is
defined
(e.g. number of
receptors)

PREDICTION OF BEHAVIOR
(e.g. anxiety-
like behaviour)

- How well is target variable reflected in true scroe (construct validity)
- How well true score is reflected in observed score? (reliability)
- How well does observed score predict behaviour? (criterion-based validity)

Making inferences about the population

Making inferences about the population

Univariate data
Regularly shaped, low-dimensional

3D neuroimaging data Irregularly shaped, high-dimensional

Controls	Patients	
3	5	
4	4	
5	6	
6	7	
3	6	
2	5	
3	2	
5	6	
2	8	

ROI-based analyses

Controls	Patients
3	5
4	4
5	6
6	7
3	6
2	5
3	2
5	6
2	8

- Pros: Anatomically accurate if ROls well definied, data can be analyzed with simple univariate statistical tests
- Cons: extremely laborious, using many ROIs not feasible, averaging within ROI not always appropriate

Full-volume analyses with LEGO brains

Full-volume analyses with LEGO brains

Full-volume analyses with real brains

- Basic problem: Individual brains differ in size and shape
- Solution to the problem: Make brains similar by warping them
- But not without problems
- Warps distort anatomy
- Anatomical information is not the precise anyway
- How should we warp the brains?

THE BASIC RECIPE

TEMPLATE

STATISTICAL
PARAMETRIC MAP

Between-groups design

1) Mean images for each group

2) Statistical differences (t-map)

Challenge / longitudinal design

Lag hours or days

Baseline

Social Laughter

Manninen et al (2017 J Neurosci)

0	Effect size (d)
FDR	T-score
	Laughter $>$ Baseline

Correlational design

1) Voxelwise correlations between MOR availability and laughter rate

2) Correlation for ROI in orbitofrontal cortex

THE BASIC RECIPE

TEMPLATE

STATISTICAL
PARAMETRIC MAP

Remember: your results are only as good as your theory!

High reliability and good SNR do not safeguard against stupid research questions and Bad Science ${ }^{\text {TM }}$

