Visualizing volume and surface based data

Tomi Karjalainen (tomi.karjalainen@aalto.fi) Jouni Tuisku (jouni.tuisku@tyks.fi)

Visualizing 3D images

- This course has focused on producing various kinds of brain maps
 - Parametric images, statistical maps, VBM maps
- In each case the end product is structurally similar, and the same visualization methods can be used for all of them

BPnd image

Grey matter density

White matter density

DTI FA map

Image viewing software

• Numerous programs can be used for viewing dicom/nifti files:

http://people.cas.sc.edu/rorden/mricron/index.html https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation/SourceCode/FslView

Design your visualizations

- You should design your visulizations to serve the purpose that you have
- Figures in neuroimaging papers typically:
 - 1. show where in the brain you observe an effect
 - 2. show **how big** the effect is
 - 3. visualize the raw data for **transparency**

Slices

- Probably the most widely used method for visualizing brain maps
- Easy to create
- Good at visualizing subcortical effects
- Not optimal for cortical effects

Slices

- BPnd images are normalised to standardized MNI space
- Brain is extracted,
- Groupwise average images are created and overlaid on the T1 template
- Color scales and color tables are adjusted
- Same slice selected for both of the images

Example : spm correlation analysis

2.5

Design matrix

SPM output (pos. correlation; contrast [0 1])

Statistics: p-values adjusted for search volume

set-level		cluster-level					peak-level						mm mm mm	
р	с					$p_{\rm F}$	WE-com	WE-com ^Q FDR-com ^T			$p_{\rm uncorr}$			
		0.000	0.000	442	0.000	0.	000	0.001	7.39	6.35	0.000	14	-15	1

SPM basic visualization

Example : spm correlation analysis

SPM output (pos. correlation; contrast [0 1])

Statistics: p-values adjusted for search volume

set-level			cluster-le	evel			peak-level					
р	с					р _{FWE-com}	q _{FDR-cor}	т ^Т	(Z_)	$p_{\rm uncorr}$		
		0.000	0.000	442	0.000	0.000	0.001	7.39	6.35	0.000	14 -15 1	

t-statistic map spmT_0001.nii, No anatomical underlay; scale: [-7,9]

Example : spm correlation analysis

SPM output

Statistics: *p*-values adjusted for search volume

set-level			cluster-l	evel							
p c						P _{FWE-corr}	$q_{_{ m FDR-con}}$, <i>T</i>	(Z_)	р _{ипсогт}	
		0.000	0.000	442	0.000	0.000	0.001	7.39	6.35	0.000	14 -15 1

Thresholded t-statistic map (t>5.17) overlaid with T1 MNI template (slice layout)

Different underlays

T-map (t>5.17) overlaid with normalised T1: one subject, group average, MNI T1 template

Neurovault

- It's also possible to publish 3D summary statistic maps (nifti)
 - <u>https://neurovault.org</u>
- Instead of selected slices, everyone can look at the whole images
- Easier to understand where the effect truly is
- Facilitates meta-analyses

Pearson correlation: [11C]carfentanil BPnd posterior insula vs. haemodynamic responses to vicarious pain

Contributed by tomi.karjalainen@aalto.fi on April 10, 2017

Collection: Dissociable Roles of Cerebral µ-Opioid and Type 2 Dopamine Receptors in Vicarious Pain: A Combined PET-fMRI Study

Surfaces

- Surfaces are the best way to visualize cortical effects
- Compared to slices, gyral organization is easier to see
- 3D rendering shows an overall representation of the results
- Inflated surfaces also reveal sulci

Surfaces

- Mricron, mango, SPM, and fslview all have a surface rendering property
- Other options:

Freeview (Fresurfer)

http://brainvis.wustl.edu/wiki/index.php/Caret:Download

https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall

Alternative designs:

Positive effect

Negative effect

Alternative designs:

Positive and negative effect

Alternative designs

Main effect

Correlation

Alternative designs

The main effect and correlation

Pointing anatomical regions

Scatter plots

- The fancy looking brain images don't tell anything about the relationship between your variables
- It's important to show the raw data whenever possible
- Typically scatter plots are shown for ROI level analyses

https://www.autodeskresearch.com/publications/samestats