
OR I G INA L ART I C L E

Discrete Neural Signatures of Basic Emotions
Heini Saarimäki1,2, Athanasios Gotsopoulos1, Iiro P. Jääskeläinen1,
Jouko Lampinen1, Patrik Vuilleumier3,4, Riitta Hari1, Mikko Sams1, and
Lauri Nummenmaa1,5

1Department of Neuroscience and Biomedical Engineering and, 2AdvancedMagnetic Imaging (AMI) Centre, Aalto
NeuroImaging, School of Science, Aalto University, FI-00076 Espoo, Finland, 3Department of Neuroscience,
University Medical Center and, 4Department of Neurology, University Hospital, University of Geneva,
1211 Geneva, Switzerland, and 5Turku PET Center and Department of Psychology, University of Turku, FI-20014
Turku, Finland

Address correspondence to Heini Saarimäki, Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200,
FI-00076 Aalto, Finland. Email: heini.saarimaki@aalto.fi

Abstract
Categorical models of emotions posit neurally and physiologically distinct human basic emotions. We tested this assumption
by using multivariate pattern analysis (MVPA) to classify brain activity patterns of 6 basic emotions (disgust, fear, happiness,
sadness, anger, and surprise) in 3 experiments. Emotions were inducedwith short movies ormental imagery during functional
magnetic resonance imaging.MVPA accurately classified emotions induced by bothmethods, and the classification generalized
from one induction condition to another and across individuals. Brain regions contributing most to the classification accuracy
included medial and inferior lateral prefrontal cortices, frontal pole, precentral and postcentral gyri, precuneus, and posterior
cingulate cortex. Thus, specific neural signatures across these regions hold representations of different emotional states in
multimodal fashion, independently of how the emotions are induced. Similarity of subjective experiences between emotions
was associatedwith similarity of neural patterns for the same emotions, suggesting a direct link between activity in these brain
regions and the subjective emotional experience.
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Introduction
Emotional systems comprise both neural and bodily states that
provide immediate means for protection of the individual and
that maximize adaptation to survival-salient events (Damasio
1998; Tsuchiya and Adolphs 2007). Categorical emotion models
(Panksepp 1982; Ekman 1992) argue that evolution has shaped a
limited set of basic emotions (anger, fear, disgust, happiness,
sadness, and surprise) with distinct neural and physiological
substrates to support different survival functions. These basic
emotions are also characterized by distinctive feelings and cul-
turally universal expressions (Tracy and Randles 2011). However,
meta-analyses of functional magnetic resonance imaging (fMRI)
studies using univariate analysis methods have failed to

establish discrete neural correlates for different basic emotions.
Instead, a set of cortical midline and frontal regions, including
medial prefrontal cortex (mPFC) and posterior cingulate cortex
(PCC), are activated similarly during all basic emotional states
(Phan et al. 2002; Murphy et al. 2003; Vytal and Hamann 2010).
Moreover, some regions traditionally associated with specific
emotions, such as amygdala for fear and insula for disgust
(Calder et al. 2001), are in fact activated across a wide range of
emotions (Sander et al. 2003). Thus, evidence for discrete brain
substrates for different basic emotions has remained elusive
(Kober et al. 2008; Lindquist and Barrett 2012).

It is nevertheless possible that differential activation patterns
for each basic emotion exist within the cortical midline but
remain uncovered with the prevailing univariate analyses. We
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therefore adopted multivariate statistical pattern-recognition
approach since such studies have proved successful in decoding
sensory emotional signals in visual (Peelen et al. 2010; Said et al.
2010; Baucom et al. 2012) and auditory (Ethofer et al. 2009; Kotz
et al. 2012) domains and across stimulus types (Peelen et al.
2010; Chikazoe et al. 2014; Skerry and Saxe 2014). These studies
have focused on the perception of the emotion from emotional
stimulus. Even fewer studies have aimed to classify the emotion-
al experience or feeling, by using different emotional scenarios in
the absence of direct sensory stimulation (Sitaram et al. 2011;
Kassam et al. 2013). However, since these studies have focused
on few a priori selected brain areas and conducted only pairwise
comparisons between emotions, it still remains an open ques-
tion towhich extent all basic emotionswould have distinct neur-
al signatures, and which brain regions these signatures possibly
include (for a review, see Kragel and LaBar 2014).

Here, we aimed at classifying the emotions induced in the
participants, rather than discriminating the neural signatures
of emotion-eliciting sensory stimuli, to reveal whether different
basic emotions have discrete neural signatures. Emotions were
induced in 3 experiments by affective movies or emotional im-
agery while participants’ brain activity was measured with
fMRI, allowing us to compare such signatures for both internally
and externally triggered emotions. Using statistical pattern-rec-
ognition analysis of whole-brain as well as regional fMRI data,
we show that all 6 basic emotions have distinguishable but spa-
tially distributed neural signatures in the human brain. These
emotion-specific neural signatures generalize across different
emotion-eliciting conditions and also across individuals. Spatial-
ly overlapping but distinct local activation patterns for different
emotions are thus a key property of the organization of emotions
in the brain.

Materials and Methods
Participants

We conducted altogether 3 experiments where we induced emo-
tions with affective movies or emotional imagery. These meth-
ods are widely used and reliable ways for inducing emotions in
the laboratory setting (see reviews in Coan and Allen 2007).
Twenty-one volunteers (12 males, ages 19–33 years, mean age
24.9 years) participated in the Movie Experiment, 14 female vo-
lunteers (age 19–30 years,mean age 23.6 years) in the Imagery Ex-
periment, and 13 female volunteers (age 21–29 years, mean age
25.4 years) in the combined Movie–Imagery Experiment. All par-
ticipants were healthy with normal or corrected-to-normal vi-
sion and gave written informed consent. The studies were run
in accordance with the guidelines of the Declaration of Helsinki,
and the Institutional Review Board of Aalto University had ap-
proved the study protocol.

Design for the Movie Experiment

Fifty 10-s movie clips were chosen from a video database vali-
dated to reliably evoke basic emotions (Tettamanti et al. 2012).
This database has been designed so that each video reflects
prototypical and specific antecedents of the targeted emotion
(e.g., Frijda 1986) and has been validated to elicit the targeted
emotion with high mean accuracy (88%). Clips were chosen
from 5 emotion categories (10 clips per category): disgust, fear,
happiness, sadness, and neutral. Anger and surprisewere not in-
cluded in the study given the difficulties associated with eliciting
these emotions with movies (Hewig et al. 2005). The clips were

randomly divided into 2 sets with 5 movies from each category
in both sets.

During fMRI, both sets of movie clips were presented twice,
thus resulting in altogether 4 runs, each of them lasting for
12 min 50 s. Each clip was preceded by a 5-s fixation cross and
followed by a 15-s washout period. The clips were presented in
a random order within each run. Movies were presented without
sound to avoid attentional and linguistic confounds, as most
movies contained English speech and the participants were
native Finnish speakers. The participants were instructed to
view the movies similarly as they would watch TV. No active
task was required during fMRI scanning. In this and other experi-
ments, ratings of emotional qualities of the stimuli were acquired
post-experiment rather than during fMRI, as on-line reporting
task is known to influence neural responses to emotional stimu-
lation (Hutcherson et al. 2005).

The stimuli were delivered using Presentation software (Neu-
robehavioral Systems, Inc., Albany, CA, USA). They were back-
projected on a semitransparent screen using a 3-micromirror
data projector (Christie X3, Christie Digital Systems Ltd, Mön-
chengladbach, Germany) and from there via a mirror to the par-
ticipant. After the scanning, the participants viewed the movie
clips again and chose the emotion (disgust, fear, happiness, sad-
ness, neutral, anger, surprise) that best described their feelings
during each movie, and they rated the intensity (1–9) of the
elicited emotion.

Design for the Imagery Experiment

In a pilot study, we chose 36 Finnish emotionwords representing
6 emotion categories: anger, disgust, fear, happiness, sadness,
and surprise. Multiple synonyms for each emotion were chosen
to generalize classification results to actual emotional states, ra-
ther than to single lexical units. For the pilot, 60 words were se-
lected based on previous studies on Finnish emotion lexicon
(Toivonen et al. 2012). Fifteen volunteers rated the similarity be-
tween all the 1770 possible pairs created with these emotion
words using a scale ranging from 0 (completely dissimilar) to 5
(exactly similar). Themean similaritymatrix across emotion con-
cepts was then used to create a network of the emotion concepts
using Gephi 0.8.2 (Bastian et al. 2009). We then applied a cluster
analysis using the Louvain community detection algorithm
(Blondel et al. 2008) to select 36 words that formed the most dis-
tinctive 6 categories corresponding to the 6 basic emotions (see
also Supplementary Table 1): anger (furious, displeased, fierce,
angry, cranky, annoyed), fear (restless, nervous, anxious, frigh-
tened, frantic, afraid), happiness ( joyful, happy, merry, cheerful,
delighted, pleased), sadness (sad, unhappy, sorrowful, heavy-
hearted, depressed, gloomy), surprise (amazed, astonished, sur-
prised, wondering, bemused, confused), and disgust (repelled,
nauseous, bilious, disgusted, yucky, sickening).

The selected 36 emotion words were used in the subsequent
fMRI experiment. One week prior to scanning, the participants
were given a list of these 36 words and were asked to devise,
write down, and practice their ownmethod to elicit each emotion
in the list. Sample methods of emotion elicitation (such as
imagining a past event, thinking about a corresponding movie
scene, or recreating the bodily state associated with the emotion)
were provided but participants were free to choose whatever
method they considered best for each emotion. Participants
were asked to practice the imagery task at home for at least 1 h
prior to the fMRI experiment.

During the fMRI scanning, each emotion word was presented
once in each of the six 10-min runs. Each trial begun with a
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fixation cross shown for 0.5 s, followed by the presentation of the
word for 2 s, and an imagery period of 7 s. Participants were in-
structed to imagine the emotional state described by the emotion
word they saw and to continue imagery until the subsequent in-
tertrial interval, which lasted randomly between 6.5 and 7.5 s.
After this, the next trial was initiated. The visual stimuli were de-
livered as in the Movie Experiment.

After the scanning, the participants rated the pairwise simi-
larity between all the 630 word pairs from the 36 emotion labels
used in the fMRI experiment, using a scale ranging from 0 (com-
pletely dissimilar) to 5 (exactly similar). Participants also rated
how difficult (1) versus easy (9) it was to induce each emotion
with imagery, as well as the intensity (1–9) of the elicited emo-
tion. Based on the average similarity ratings across participants,
we calculated a mean similarity matrix between all word pairs
and repeated a cluster analysis using the Louvain community
detection algorithm similarly as in the pilot study to identify
the most prominent emotion categories.

Design for the Movie–Imagery Experiment

To test whether neural signatures of emotions are consistent
across means by which emotions are induced, we ran a control
experiment with both movie and imagery conditions (Movie-
Imagery Experiment). The stimuli were selected from the same
set as used in the 2 previous experiments. To make the designs
of the movie and imagery conditions comparable, we chose the
4 overlapping emotion categories (disgust, fear, happiness,
sadness) and selected 6 movie and 6 word stimuli per category.

Stimulus presentation in the movie condition was similar to
the Movie Experiment. To match the number of data points
used for classification in both conditions, we increased imagery
duration slightly: each word was presented for 2 s, followed by
13 s of imagery, and another 7 s of washout. In both conditions,
all the 6 exemplars ofmovies orwords per each emotion category
were presented all in one run. Altogether there were 6 runs per
participant: 3 runs with movies and 3 runs with mental imagery.

MRI Data Acquisition and Preprocessing

MRI data were collected on a 3T Siemens Magnetom Skyra scan-
ner at the Advanced Magnetic Imaging Centre, Aalto NeuroIma-
ging, Aalto University, using a 20-channel Siemens volume coil.
Whole-brain functional scans were collected using a whole-
brain T2*-weighted EPI sequence with the following parameters:
33 axial slices, TR = 1.7 s, TE = 24 ms, flip angle = 70°, voxel size =
3.1 × 3.1 × 4.0 mm3, matrix size = 64 × 64 × 33, FOV 256 × 256 mm2.
A custom-modified bipolar water-excitation radio-frequency
pulse was used to avoid signal from fat. High-resolution anatom-
ical images with isotropic 1 × 1 × 1 mm3 voxel size were collected
using a T1-weighted MP-RAGE sequence.

Datawere preprocessed using FSL 5.0 (Smith et al. 2004;Wool-
rich et al. 2009; Jenkinson et al. 2012). Motionwas corrected using
MCFLIRT (Jenkinson and Smith 2001; Jenkinson et al. 2002) and
nonbrain matter was removed using BET (Smith 2002). High-
pass temporal filtering was applied using Gaussian-weighted
least-squares straight line fitting with sigma of 55 volumes. Par-
ticipant-wise gray matter masks were generated by segmenting
the T1-weighted images into gray andwhitematter, plus cerebro-
spinal fluid, using the FAST segmentation tool (Zhang et al. 2001).
The gray matter maps were subsequently transformed to 64 × 64
× 33 space to match the EPI data and thresholded using an inten-
sity threshold >0.5. On average, the gray matter mask included
17 110 voxels.

For across-participants classification, the functional data
were registered to 2-mm Montreal Neurological Institute (MNI)
152 standard space template using FLIRT (Jenkinson and Smith
2001; Jenkinson et al. 2002). The brain-extracted T1-weighted
images were first normalized to the MNI space and the normal-
ization parameters were subsequently applied to the EPI images.
All registrations were performed using 9 degrees of freedom.
Since the across-participants classification was performed in
standard space unlike the within-participant classification (per-
formed in native space), we generated an average gray matter
mask in MNI space. The gray matter mask was generated by seg-
menting, using FAST, the average normalized T1-weighted image
into gray andwhitematter and cerebrospinal fluid. The graymat-
ter maps were subsequently thresholded using intensity thresh-
old >0.5 to create an average MNI mask that included 96 075
voxels.

Multivoxel Pattern Analysis Within Participants

The classification of emotion categories within participants
was performed with the Princeton multivoxel pattern analysis
(MVPA) toolbox (http://code.google.com/p/princeton-mvpa-
toolbox/, last accessed on April 21, 2015) in Matlab (2012b) using
each participant’s data in native space. We used the whole-brain
data since recent studies have shown that emotional processing
relies on large-scale cortical and subcortical circuits, rather than
on isolated regions (Kober et al. 2008; Vytal and Hamann 2010;
Nummenmaa, Saarimäki et al. 2014). Voxels outside gray matter
were masked out and the functional data were temporally nor-
malized to amean of zero and unit variance in each voxel by sub-
tracting the mean response across all categories. Feature
selection was performed using ANOVA to select voxels whose ac-
tivation was modulated across different emotion conditions (P <
0.05). The feature selection preserved on average 31% of voxels in
the Movie Experiment (mean 6320 voxels, SD 2100), and 38% of
voxels in the Imagery Experiment (mean 5355 voxels, SD 1000).
Finally, the hemodynamic lag was corrected by convolving
the category regressorswith the canonical double-gammahemo-
dynamic response function.

In the Movie Experiment, we used the 15-s washout period to
train the classifier to select the correct category out of all 5 pos-
sible emotion categories (disgust, fear, happiness, sadness, neu-
tral). This poststimulus period reflects emotional effects not
directly related to the stimulus itself, and excludes sensory dif-
ferences across the stimulus categories. Previous research
shows that after emotion induction with movies, the emotion
and corresponding brain activity can persist up until minutes if
no other task/induction is introduced (Eryilmaz et al. 2011) thus
confirming that this approach is technically feasible. In the Im-
agery Experiment, we used the 9-s period including the presenta-
tion of the emotion word and the active imagery period, and the
classifier was trained to select the correct category out of possible
6 emotion categories (anger, disgust, fear, happiness, sadness,
surprise).

A linear neural network classifier without hidden layers was
used for classifying emotions in both experiments. The classifier
starts with randomweights from input i (voxels) to output j (cat-
egories). During training, the weights are adjusted for each given
input with scaled conjugate gradient algorithm for optimization
and mean squared error as an error function. During testing,
each input is mapped to values from 0 to 1 for each output cat-
egory using logistic functions. This corresponds to the confi-
dence that the input belongs to a specific category. In the
Movie and Imagery Experiments, the classifier was trained
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using a leave-one-run-out procedure where training was per-
formed with n − 1 runs and testing was then applied to the re-
maining one run. Cross-validation was performed across all
runs and the participant-wise classification accuracy was calcu-
lated as an average percentage of correct guesses across all the
cross-validation runs. The chance-level performance percent-
age is derived as a ratio of 1 over the number of categories.
Thus, the chance levels were 20% in the Movie Experiment and
16.6% in the Imagery Experiment.

To testwhether classification accuracy exceeded chance level,
we used permutation tests to simulate the probability distribu-
tion of the classification. Each permutation step included
shuffling of category labels and re-running the classification,
repeated 5000 times for each subject separately. The reported
confidence limits of the chance-level accuracies correspond
to the maximum over the permuted subject-wise limits (23%
for P < 0.05 in Movie Experiment, 19% for P < 0.05 in Imagery
Experiment).

To visualize the brain regions contributing most to the classi-
fier’s selection of each emotion category, voxel-wise importance
values were calculated and plotted separately for each category.
Importance values were calculated by defining importance
imp = a ×w, where a is the activation of a voxel for a specific cat-
egory and w is the trained weight from this voxel assigned to a
specific category (Polyn et al. 2005). This method reveals which
voxels are most important in driving the classifier’s output for a
specific category, and it highlights voxels that have concordant
activation values and weights. Participant-wise importance
maps were first calculated using the mean importance values
over cross-validation runs and subsequently registered to MNI
space. Then, mean importance maps were calculated across all
participants for each emotion. These maps were plotted on a
standard brain volume after selecting the highest 10 000 import-
ance values (corresponding to ca. 1%). Clusters smaller than 27 (3
× 3 × 3) voxels (216 mm3) were excluded from visualizations. It
should be noted that all voxels that passed the feature selection
were taken into account in the classification and the importance
maps simply highlight the most important clusters. Finally, to
test the overlap of regions important for the classification in
both experiments, we calculated the spatial correlation between
the voxel importance values for the emotion categories included
in both experiments (disgust, fear, happiness, sadness).

Multivoxel Pattern Analysis Across Movie and Mental
Imagery Conditions

For the combinedMovie–Imagery Experiment, we trained a classi-
fier using the 15-s washout period following the movies and the
15-s imagery periods (including the presentation of the emotion
word) for the imagery part. The classifier was trained with either
the movie data and tested with the imagery data, or vice versa
for cross-validation, and it was trained to select the correct cat-
egory out of 4 possible ones (disgust, fear, happiness, sadness).
The chance level was 25% (by permuting, the significant threshold
was27.5% forP < 0.05). Feature selectionandother classifierdetails
were the same as in the previous experiments, and feature selec-
tion preserved 20% of the voxels (mean 3100 voxels, SD 2500).

Multivoxel Pattern Analysis Across Participants

To test whether representation of different emotions generalizes
across participants, we ran whole-brain across-participants
MVPA. This analysis was performed with the same steps as the

within-participant classification but using the data registered to
MNI space with 2-mm isotropic voxels. The feature selection
preserved on average 19% of the voxels in Movie Experiment
(mean 18 350 voxels, SD 1250), and 24% of the voxels in Imagery
Experiment (mean 23 350 voxels, SD 1800). For each experiment,
a linear classifier was trained using a leave-one-participant-out
procedure where the training was performed with n – 1 partici-
pants and the testing of the classifier with the remaining one
participant. Cross-validation was then performed across all
participants, and the classification accuracy was calculated as
an average percentage of correct guesses across all the cross-
validation runs.

Region-of-Interest Analysis

We also applied a region-of-interest (ROI) analysis to test
whether the blood oxygen level–dependent signal in any of our
a priori-defined ROIs would allow a reliable classification of the
emotional states when considered alone. Cortical regions show-
ing consistent emotion-related activation in the literature were
selected as candidate ROIs for coding discrete emotional content
(Murphy et al. 2003; Kober et al. 2008; Vytal and Hamann 2010):
orbitofrontal cortex (OFC; on average 38 cm3), frontal pole
(186 cm3), inferior frontal gyrus (IFG; 32 cm3), insula (27 cm3),
anterior cingulate cortex (ACC; 31 cm3), PCC (33 cm3), frontal
medial cortex (11 cm3), precuneus (57 cm3), paracingulate gyrus
(31 cm3), precentral gyrus (100 cm3), supplementarymotor cortex
(17 cm3), and postcentral gyrus (80 cm3). The subcortical regions
were amygdala (on average 6 cm3), nucleus accumbens (7 cm3),
hippocampus (10 cm3), and thalamus (39 cm3). Bilateral masks
for these ROIs were first defined in MNI standard space using
the Harvard–Oxford cortical and subcortical atlases (Desikan
et al. 2006). These MNI masks were used in across-
participants classification. For within-participant classification,
the masks were transformed into native space using FLIRT in
FSL. A classifier was then trained for each ROI separately in a
similar fashion as in the whole-brain analyses. Accuracy was
then averaged across the homologous areas.

Comparison Between Behavioral and Neural Similarity
of Different Emotions

To examine the correspondence between brain activation
patterns and subjective feelings associated with different emo-
tion categories, we extracted similarity matrices from fMRI data
and behavioral rating of word pairs in the Imagery Experiment.
To construct the neural similarity matrix, we trained a within-
participant classifier to separate between brain responses to all
36 emotion words and computed the mean confusion matrix
across the basic emotion categories for each participant. All
other parameters remained as in the between-category classifi-
cation described above. As an indicator for neural similarity, we
then averaged these confusion matrices across participants and
averaged the upper and lower triangles to make the matrix
symmetrical and to estimate the mean confusion regardless
of which category was the target and which was the guess.
Likewise, the behavioral similarity matrix was computed on
the basis of the average pairwise similarity ratings of emotion
words across all participants. Next, we applied the Mantel
test to examine the correlation between the 2 similarity
matrices using an in-house algorithm (available at http://becs.
aalto.fi/~eglerean/permutations.html, last accessed on April 21,
2015). The probability distribution was obtained with permuta-
tion repeated for 106 times.
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Results
Subjective Experience of Emotions

Behavioral ratings confirmed that the video clips used in the
Movie experiment successfully induced the intended emotions
in participants (Fig. 1a). Also, the intensity of the elicited emo-
tions was high (disgust: mean 7.7, SD 0.7; fear: mean 7.7, SD 0.5;
happiness:mean 6.0, SD 0.7; sadness:mean 6.2, SD 0.5) compared
with the neutral state (mean 1.7, SD 0.6). For the Imagery Experi-
ment, cluster analysis of the similarity ratings confirmed that the
36 emotion words constituted 6 discrete categories correspond-
ing to the basic emotions, with only weak linkage between
words belonging to different emotion clusters (Fig. 1b). Self-re-
ports confirmed that participants found it easy to induce the
emotions with imagery (mean 6.1, SD 2.2 on a scale ranging
from0 [difficult] to 9 [easy]). The intensity of the elicited emotions
was high (anger: mean 5.8, SD 2.0; disgust: mean 6.2, SD 2.2; fear:
mean 6.2, SD 2.0; happiness: mean 6.7, SD 1.4; sadness: mean 4.9,
SD 1.9; surprise: mean 4.6, SD 2.1).

Classification Within Participants

In the Movie Experiment, the mean within-participant classifier
accuracy was 47% for distinguishing one emotion against all

others (averaged across all categories) and the classifier was
able to classify each of the 5 emotion categories statistically
significantly above chance level (20%, P < 0.05; Fig. 2a). Only in
3 out of 21 participants the average classifier accuracy remained
at chance level. The left panel of Figure 3 shows the voxels with
highest importance for the classification of each emotion in this
experiment. The brain areas contributing to classification of all
emotions predominated in frontal (dorsal, ventral, and rostral
mPFC; ACC) and parietal (precuneus; PCC) midline structures.
Other important regions were spread out over the cortical
surface, especially in frontal lobe, including anterior prefrontal
cortex (aPFC) and IFG; in motor areas including precentral
gyrus; in somatosensory and visceral regions including postcen-
tral gyrus, opercular cortices, and posterior insula; in temporal
lobe including middle temporal gyrus (MTG) and temporal pole;
in higher order visual regions including fusiform gyri and lateral
occipital cortex (LOC); and in subcortical areas including amyg-
dala and thalamus. Importantly, no regions were found to be im-
portant for the classification of a single emotion, although some
areas were associated with a few but not all categories (e.g., in-
sula contributedmost to fear and disgust, less to other emotions;
see Fig. 3). Notably, amygdala voxels contributed to the classifica-
tion of happiness, fear, and disgust.

Figure 1. Behavioral results for Movie and Imagery Experiments. (a) Behavioral results in the Movie Experiment. Mean ± SEM percentages of movie clips per emotion
category during which the participants reported feeling the corresponding emotion. The clips were assigned to the predefined target category with 93.1% overall
accuracy (chance level 20%). (b) Behavioral results in the Imagery Experiment. Mean network of basic emotion concepts based on the participants’ behavioral
similarity ratings. Link width denotes similarity between words.

Figure 2. Mean ± SEM classification accuracy for each emotion category. (a–c) Within-participant classification. (d and e) Across-participant classification. Dashed line
represents the chance level [20% in the Movie Experiment (a and d), 16.7% in the Imagery Experiment (b and e), 25% in the Movie–Imagery Experiment (c)].
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In the Imagery Experiment, themeanwithin-participant clas-
sifier accuracywas 55% and the classifierwas able to classify each
emotion category statistically significantly above chance level
(16.7%) for all 14 participants (P < 0.05; see Fig. 2b). The middle
panel of Figure 3 shows the voxels with highest importance for
the classification of each emotion in this experiment. As in the
Movie Experiment, the regions contributing most consistently
to the classification of all emotions predominated in midline
structures of the frontal (dorsal, ventral, and rostral mPFC; ACC)
and parietal (precuneus; PCC) lobes. Again, other regions sup-
porting accurate classification covered widespread cortical
areas, especially in frontal regions such as aPFC and IFG; in
motor areas including precentral gyrus and supplementary
motor cortex; in somatosensory regions including postcentral
gyrus, opercular cortex, and posterior insula; in temporal lobe
areas such as MTG and parahippocampal gyri; in higher order
visual regions including LOC; and in subcortical regions including
amygdala and thalamus. Again no regionswere uniquely import-
ant for the classification of a single emotion.

Classification Across Movie and Imagery Conditions

To test whether the neural signatures of emotions are independ-
ent of the emotion induction procedure, we conducted a com-
bined Movie–Imagery experiment, with movie and imagery
conditions corresponding to those of the previously described
unimodal movie and imagery experiments but now presented
to the same individuals andwith the 4 emotion categories shared
between the 2 experiments (disgust, fear, happiness, and sad-
ness).We trained a classifier with data from one condition (either
movie or imagery) and then tested it with data from the other
condition. Themeanwithin-participant classifier accuracy, aver-
aged for movie–imagery and vice versa, was 29%. The classifier
was able to classify all emotion categories except sadness statis-
tically significantly above chance level (25%, P < 0.05; see Fig. 2c).

We also trained and tested the classifier separately for the movie
and imagery conditions to replicate the findings of the separate
Movie and Imagery experiments with a single elicitation proced-
ure. Again, the classification accuracy was high and significantly
above chance-level (25%) for bothmovie (57%) and imagery (40%)
conditions and for all emotions.

Figure 3 (right panel) shows the mean importance maps for
each emotion in the cross-condition classification. As in the pre-
vious experiments, the regions contributingmost consistently to
the classification of all emotions were found in midline struc-
tures of the frontal (dorsal, ventral, and rostral mPFC; ACC) and
parietal (PCC) lobes. Other significant voxels were also identified
in frontal regions such as aPFC; motor areas including precentral
gyrus and supplementary motor cortex; somatosensory regions
including postcentral gyrus, opercular cortex, and posterior in-
sula; in temporal lobe areas such as MTG and parahippocampal
gyri; in higher order visual regions including LOC; and in subcor-
tical regions including amygdala and thalamus. Again no regions
were uniquely important for the classification of any single
emotion.

Classification Across Participants

To estimate whether the neural signatures of different emotions
are consistent across individuals, we next carried out a similar
classification analysis with data from the separateMovie and Im-
agery Experiments but now across participants by training the
classifier with n − 1 participants and testing it on the remaining
participant. In both experiments, the across-participant classifier
performed statistically significantly above chance levelwhen col-
lapsing across all emotion categories (Ps < 0.05; 34% versus 20%;
23% versus 16.7%; for movies and imagery, respectively). When
tested separately, classification accuracy was also above chance
level for all emotion categories except for fear during the Imagery
Experiment (Fig. 2d–e). As in thewithin-participant classification,

Figure 3. Brain regions with the largest importance for within-participant classification for each basic emotion. mPFC, medial prefrontal cortex; PCC, posterior cingulate
cortex; Prec, precuneus; aPFC, anterior prefrontal cortex; LOC, lateral occipital cortex; post-CG, postcentral gyrus; pre-CG, precentral gyrus; Ins, insula; Amy, amygdala;
MTG, middle temporal gyrus. Note: These importance maps are shown for visualization only. All inference is based on the classifier performance.

6 | Cerebral Cortex



the most important regions for across-participant classification
in both individual experiments included midline brain regions,
such as mPFC, precuneus, and PCC (see Supplementary Fig. 1).
In the Movie Experiment, additional regions included aPFC, in-
sula, pre- and postcentral gyri, lingual gyrus, LOC, fusiform corti-
ces, MTG, cerebellum, thalamus, and amygdala. In the Imagery
Experiment, additional regions also included aPFC, insula, sup-
plementary motor cortex, pre- and postcentral gyri, lingual
gyrus, LOC, fusiform cortices, MTG, cerebellum, thalamus, and
amygdala.

Region-of-Interest Analyses

In the Movie and Imagery Experiments, the classification accur-
acy was above chance level for all ROIs except for the nucleus ac-
cumbens (Supplementary Fig. 2). In the Movie Experiment, the
best classification accuracies across emotions were reached in
frontal pole (36%), precuneus (36%), postcentral gyrus (34%), pre-
central gyrus (32%), and IFG (30%). In the Imagery Experiment, the
highest classification accuracies were found in frontal pole (44%),
precentral gyrus (34%), IFG (31%), postcentral gyrus (30%), and
OFC (30%). In the Movie–Imagery Experiment, the average classi-
fication accuracy was above chance level only in frontal pole
(30%) and medial frontal cortex (28%). Importantly, in all experi-
ments the whole-brain classifiers performed significantly better
(47% in the Movie Experiment, 55% in the Imagery Experiment,
29% in the Movie–Imagery Experiment) than any of the ROI
classifiers alone, except for the frontal pole in Movie–Imagery
Experiment, for which the classifier was equally good as the
whole-brain classifier.

Since our ROIs had different sizes, we investigated the rela-
tionship between ROI size and classification accuracy by calculat-
ing the correlation between these. Larger ROIs tended to have
better classification accuracies (r = 0.76 in Movie Experiment, r =
0.86 in Imagery Experiment; r = 0.61 in Movie–Imagery Experi-
ment); however, some large ROIs such as thalamus exhibited
poor classification accuracies.

Comparison Between Behavioral and Neural Similarity
Matrices

To construct the neural similarity matrix, we trained a within-
participant classifier to separate between brain responses to all
36 emotion words and computed the mean confusion matrix
across the basic emotion categories for each participant. The

classification accuracy was 14.1% against 2.8% chance level. The
behavioral similarity matrix was extracted from similarity rat-
ings, where participants rated the felt similarity between each
pair of emotion words. The mean confusion matrix derived
from the fMRI data and themean behavioral rating similarityma-
trix were significantly correlated (r = 0.43, P < 0.001; Fig. 4, Supple-
mentary Table 1), suggesting that emotional states that are
similar at the subjective level also share similar brain signatures.
Participants rated emotion word pairs more similar when they
belonged to the same rather than different basic emotion clusters
(P < 0.05; Fig. 4, left panel). A similar predominance of confusions
within a given emotion category was also observed for the fMRI
classifier (Fig. 4, right panel) but this pattern was generally weak-
er and less systematic than that found for the behavioral ratings.

Discussion
Our results reveal that basic emotions are supported by discrete
neural signatures within several brain areas, as evidenced by the
high classification accuracy of emotions from hemodynamic
brain signals. These emotion-specific neural signatures general-
ized across participants and across emotion-eliciting conditions
in different modalities. Instead of engaging isolated brain re-
gions, all basic emotions were associated with specific activation
patterns within a distributed network of cortical and subcortical
areas. The most consistent differential patterns were focused on
the cortical midline structures and sensorimotor regions, but
also extended to areas traditionally associated with emotion
processing such as the insula or amygdala.

The distributed emotion-specific activation patternsmay pro-
vide maps of internal states that correspond to specific subject-
ively experienced, discrete emotions (Damasio and Carvalho
2013). Even though our data confirm that at least the basic emo-
tions have discrete neural bases, similar brain regions in cortical
midline areas are engaged across different emotions: we found
no direct one-to-one correspondence between a specific emotion
and a specific brain site (Murphy et al. 2003; Kober et al. 2008;
Lindquist et al. 2012). Critically, confusions between different—
albeit closely related—emotion concepts, such as “frightened”
and “restless,” were more pronounced at the subjective than
neural level, suggesting that the consciously accessible feeling
states are biased to be automatically interpreted as basic emotion
categories, even though the underlying neural signatures remain
further apart (compare behavioral similarity and neural confu-
sion matrices in Fig. 4).

Figure 4. Behavioral similarity and fMRI confusion matrix from the Imagery Experiment. Left: Behavioral similarity matrix based on average ratings of experienced
similarity between each pair of emotion words, ranging from 0 = no similarity to 1 =maximum similarity. Right: fMRI confusion matrix from word-by-word
within-participant classification. Correct categories on the x-axis, classifier guesses on the y-axis.
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Distributed Representation of Emotions in the Brain

Results from the 3 experiments with externally and internally
triggered emotions were concordant, with comparable classifica-
tion accuracies for individual emotions and similar anatomical
layout of importance maps focused on anterior and posterior
midline regions. Together with accurate classification of emo-
tions across different induction conditions (visual vs. imagery),
these findings suggest that the involved cortical regions code
emotions in amodality-independent fashion, and generalization
of the neural signatures of different emotions across participants
further points toward biological rather than experience-depend-
ent brain basis of emotions. Importantly, classification accuracy
was high even though the emotions induced in the participants
were not necessarily completely discrete (Figs 1 and 4); it is
thus likely that evenmore discrete neural signatures could be re-
vealed with techniques allowing induction of purely discrete
emotions.

None of the ROIs alone reached the accuracy of the whole-
brain classification for any emotion, suggesting that the anatom-
ically distributed activation patterns contain the most accurate
neural signature of an individual’s emotional state. This result
accords with previous neuroimaging studies which typically
show that joint activity from multiple regions discriminates
best between different emotions (Baucom et al. 2012; Kotz et al.
2012; Kassam et al. 2013). Lesion studies have shown that deficits
in different emotions (particularly of fear and disgust) are linked
to damages of specific brain regions (amygdala, insula, respect-
ively; cf. Calder et al. 2001). Nevertheless, our findings suggest
that large-scale cortical and subcortical networks are crucially
involved in representing all basic emotions in a distinctive,
category-specific manner (see also Feinstein 2013). It must how-
ever be stressed that the present study focused only on the 6
emotions that are most widely accepted as basic. Future
pattern-recognition studies should address whether also the
“complex” or “social” emotions (Ekman and Cordaro 2011)
would have discernible and discrete neural signatures.

Discrete Neural Signatures for Basic Emotions

Recent data-driven meta-analysis of functional imaging studies
(Kober et al. 2008) proposed a functional subdivision of emotional
brain circuits into 6 groups, each responsible for processing dif-
ferent types of information (see also Meaux and Vuilleumier,
2015). These functional circuits were proposed to code for differ-
ent components of emotions, such as attentional,motor, ormne-
monic processes engaged during emotional episodes. However,
previous experimental work has failed to establish different
neural signatures for different emotions within these circuits.
Nevertheless, the brain regions that supported the classification
of emotions in the current study significantly overlap with the
functional groups identified by Kober et al. (2008). In our study,
themedial prefrontal andmedial posterior regions (mPFC, precu-
neus, and PCC) contributed most significantly to classification
between different basic emotions (Fig. 3). Thus, local activation
patterns within these areas differ across emotions and thus pre-
sumably reflect distinct neuronal signatures for different
emotions.

These midline regions are consistently activated during emo-
tional processing in different sensory modalities (Phan et al.
2002; Kober et al. 2008; Lindquist et al. 2012) and contain emo-
tion-specific patterns independent of the task or exact emotion
categories used (Peelen et al. 2010; Chikazoe et al. 2014; Skerry
and Saxe 2014; see also Kragel and LaBar 2014 for a review). The

mPFC and PCC receive inputs from insula which processes vis-
ceral information, from amygdala which codes the affective rele-
vance of the stimulus, from medial temporal lobe areas involved
inmemory, and from thalamus and hypothalamuswhich govern
arousal (Öngür and Price 2000; Kober et al. 2008; Etkin et al. 2011).
Together, mPFC, precuneus, and PCC form the medial part
of the default mode network (DMN), typically linked with self-
referential processing (Amodio and Frith 2006; Northoff et al.
2006; Buckner and Carroll 2007). This anatomical architecture
makes thesemidline regions a plausible candidate for integrating
information about one’s internal state (Klasen et al. 2011; Mar
2011) with representations frommemory and personal relevance
(Summerfield et al. 2009; D’Argembeau et al. 2010). The patterns
of activity resulting from the binding of these various representa-
tions might constitute a core feature of an emotional state
regardless of the particular emotion category, and possibly
underlie the distinctive fingerprints of these states as identified
by our MVPA analyses. Somatosensory and motor regions—
including postcentral gyrus, posterior insula, and precentral
gyrus—were also among the most important brain regions for
discriminating between all emotions. This finding accords with
previous work showing how different emotions elicit discernible
patterns of somatic sensations (Nummenmaa, Glerean et al.
2014), and that primary somatosensory,motor and premotor cor-
tices are reliably engaged during emotion perception (De Gelder
et al. 2004; Nummenmaa et al. 2008, 2012; Pichon et al. 2008).
Moreover, damage to somatosensory cortices (Adolphs et al.
2000) or their inactivation by transcranial magnetic stimulation
(Pourtois et al. 2004) can cause significant deficits in the
recognition of emotions. Similarly, posterior insula mediates
the interoceptive awareness of one’s own bodily functions
(Critchley et al. 2004) and its damagemay impair various compo-
nents of emotion processing, including gustatory information
(Calder et al. 2001) or aversive/risk information (Naqvi et al.
2007). Precentral gyrus containing the primary motor cortex is
also consistently activated during emotional experience and
emotion perception (De Gelder et al. 2004; Hajcak et al. 2007),
and it likely plays an important role in motor preparation pro-
cesses related to emotion and action tendencies (Frijda 1986;
Mazzola et al. 2013).

Limbic regions, including amygdala, hippocampus, and thal-
amus, form an important part of the emotion network, yet our
ROI analysis revealed poorer classification accuracy in limbic
versus cortical components of the emotion network. Further-
more, none of the limbic ROIs was able to separate between
all emotion categories. It is possible that this finding merely
reflects the positive association between classification accuracy
and ROI size, as the limbic ROIs were, on average, smaller than
their cortical counterparts. However, follow-up analysis estab-
lished that such an association is present only for the cortical
(Mr = 0.75, P < 0.05) but not for the limbic (Mr = –0.05, ns) ROIs.
Thus, mere ROI size unlikely accounts the poorer classification
accuracy in the limbic ROIs, particularly as some of these—such
as thalamus—were indeed relatively large. One possibility is that
the limbic circuit contributes to shaping emotional states jointly
with the cortical regions. The limbic regions likely govern elem-
entary functions related to arousal, saliency, and relevance pro-
cessing, which tend to be shared by all different emotions
(Adolphs 2010; Damasio and Carvalho 2013; Kragel and LaBar
2014). Activity in these subcortical regions may then contribute
to the generation of discrete emotional states via feed-forward
connections to the frontal cortex, but the latter may also shape
emotion responses through feedback interactions with limbic
regions.
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Subjective Emotional Experience Is Linked with Neural
Activity

Humans are usually aware of their current emotional state,
which may help to fine-tune the behavior adaptively to better
match to the challenges of the environment (Damasio 1996).
Prior studies have linked the medial frontal cortex with the sub-
jective feelings of emotions (Barrett et al. 2007; Etkin et al. 2011;
Herbert et al. 2011; Satpute et al. 2012) and self-awareness
(Lane et al. 1998; Northoff et al. 2006), and the present results es-
tablish a direct link between neural activity in these regions and
emotional experience: The more similar neural signatures two
emotions have, the more similar are the corresponding subject-
ive feeling states.

Damasio et al. (2000) suggested that emotion-dependent
neural patterns across regions could explain why each emotion
feels subjectively different. Here, we provide direct support for
this proposal by showing that distinct brain activity patterns in
somatosensory regions and insula, probably code subjective
feeling of bodily sensations that contribute to the generation of
a distinct physiological mapping for each emotion. We propose
that the joint activation of these different components is inte-
grated in the mPFC and precuneus/PCC where distributed re-
sponses arising in the downstream brain regions are ultimately
connected with the context and personal goals, presumably
resulting in distinctive neural signatures that reflect the subject-
ive experience of a specific, discrete emotion.

Conclusions
Basic emotions haveadiscreteneural basis, and theneural signa-
tures of different emotions are consistent across individuals.
Basic emotions are encoded in discrete activation patternswithin
a widespread network of brain regions, rather than in emotion-
specific brain regions or systems. We propose that the moment-
ary subjective emotional state is the result of simultaneous
activation of multiple cortico-subcortical systems, including re-
gions processing somatosensory, motor, and self-relevant infor-
mation, but also perceptual, language, memory, and executive
control functions. The activation of these subcircuits is integrated
in themidline frontal and parietal regions, linking emotion-driven
neural and physiological changes to self-awareness.
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oxfordjournals.org
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