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The complexity of social perception poses a challenge to traditional approaches to
understand its psychological and neurobiological underpinnings. Data-driven
methods are particularly well suited to tackling the often high-dimensional
nature of stimulus spaces and of neural representations that characterize social
perception. Such methods are more exploratory, capitalize on rich and large data-
sets, and attempt to discover patterns often without strict hypothesis testing.
We present four case studies here: behavioural studies on face judgements,
two neuroimaging studies of movies, and eyetracking studies in autism. We
conclude with suggestions for particular topics that seem ripe for data-driven
approaches, as well as caveats and limitations.

1. Introduction
Psychological and neuroscience studies on social cognition have traditionally
aimed at hypothesis-driven studies and rigorous control by using well-defined
stimuli that are amenable to clear experimental manipulation. Despite its undis-
puted success, this approach comes with several inherent limitations. First,
typical experimental stimuli are simply not as good as natural stimuli at eliciting
reliable, robust responses. As the brain has been tuned to respond to a continuous
sensory stream during evolution, complex natural stimuli trigger more reliable
neural responses than the conventionally used well-controlled yet simplified
stimuli. For example, cells in the cat visual cortex respond more strongly to natu-
ral pictures than to random patterns [1]. Similarly, movies but not noise patches
or sinusoidal gratings enhance response reliability in visual cortex [2]. In humans,
natural, dynamic faces also activate the face processing network more consist-
ently than static or rigidly moving faces [3,4]. More practically, participants in
fMRI experiments are more motivated to participate, pay better attention and
can tolerate longer experimental sessions, when they are watching a naturalistic
and engaging movie than looking at visual gratings.

Second, because the typical stimuli used in experiments are not representa-
tive of the real world, there is prima facie doubt about whether findings from
them would generalize to the real world. This worry is indeed valid: responses
to complex stimuli cannot necessarily be predicted from straightforward com-
binations of responses to simple stimuli [5]. The responses may also be
categorically different: many psychological phenomena simply cannot be
made to fit into fully controlled, traditional stimulus models. For example, lis-
tening to a musical piece [6], perception of complex action sequences [7] and
social interaction [8] all span several overlapping and hierarchical time scales
involving parallel processing of overlapping sensory features. Consequently,
they cannot be adequately explored with classic experimental designs that
use decompositions of these stimuli. Similarly, there is the historical effort to
find ‘simpler’ explanations of what features drive the responses of neurons,
or brain regions, with selectivity for high-dimensional stimuli like faces. Just
trying to cut up a face into parts does not result in an explanation of the
responses to whole faces, and instead many stimuli seem to be processed in a
way that appears ‘holistic’.
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But holistic responses do not emerge out of nowhere, so
there must be still an underlying mechanism that explains
how they are generated from more basic features or dimen-
sions of some sort. Thus, when researchers generate
stimulation models and design experimental conditions,
they may not necessarily know what are the most important
stimulus dimensions that should be manipulated. This is
where data-driven approaches can really show their power:
they can be used for revealing what defines an ‘optimal
stimulus’, and what defines basic features or dimensions
that may synthesize such a stimulus. Because the stimulus
space is typically too high-dimensional, and the underlying
dimensions may be too abstract for us to come up with
good a priori hypotheses about them, the mechanisms
behind responses to complex stimuli may not be amenable
to a priori theorizing in an efficient way. Yet data-driven
approaches are unconstrained by such hypotheses and
instead can show us stimuli, features, and dimensions that
we would never have thought of. One of the simplest
examples of how this might work conceptually is reverse cor-
relation. In this approach, the stimuli are unstructured noise.
On each trial, the noise stimulus will, just by chance, generate
some similarity to features of the target stimulus. When a
face-selective neuron is shown thousands of such noise
masks and we keep track of where exactly all the pixels in
the noise image are on each trial, we can simply do a
spike-triggered average that shows the association between
the response of the neuron with the locations of all the
pixels in the images. That can subsequently be used, for
instance, to generate a composite image that begins to
resemble a face. It is important to note here that even very
exploratory, data-driven, approaches usually incorporate
some kind of regularization—we assume linearity, or Gaus-
sian distributions, or make other assumptions about the
form the stimuli might take, or the mapping from stimuli to
behaviour. While data-driven methods are exploratory in
the sense that they eschew a rigid hypothesis about the con-
clusions of the analyses, they still rely on varied background
assumptions that are often important to note.

A conceptually similar approach to reverse correlation can
be taken when the dependent measure is behavioural classifi-
cation and the stimulus space pertains to a particular category,
rather than to unstructured noise. In this kind of experiment,
subjects are shown a large number of stimuli and asked to
sort them into categories—say different emotions that faces
express. The stimuli in this case are drawn from a structured
stimulus space and are noisy or sparsely sampled. Once
again, over many trials, the statistical relationship between
random sources of variation in the stimuli and the behavioural
classification is extracted [9]. The sources of variation can take
a number of different forms: one could simply inject noise into
an underlying base stimulus to ask how a noisy feature can be
interpreted in different ways. For example, Mona Lisa’s smile
may look neutral or happy, depending on slight variations of
the sensory input that we can identify, if we average over a suf-
ficiently large number of stimuli [10]. One could also introduce
random sampling of the spatial location, or the spatial fre-
quency, or the time of occurrence of the stimulus and its
features [9]. In all these cases, we are being unbiased in not
providing a specific hypothesis to begin with, and by introdu-
cing a source of random variation (but keeping track of that
variation, trial by trial) we are letting the data tell us about
the relationship between stimulus variation and response

category. One need not use noise as in these examples, but
can instead use any rich, high-dimensional stimulus that
does not set up a categorical hypothesis to begin with.

This kind of data-driven approach is equally useful when
it comes to making sense of complex responses to our com-
plex stimuli. The challenge often amounts to one of
dimensionality reduction, based on all the data available, a
big issue especially for EEG, MEG and fMRI data that
measure brain responses. Behavioural responses can also be
high-dimensional, but we in effect have the subject do the
dimensionality reduction by specifying a specific mapping:
push one of two buttons, etc. As with completely data-
driven approaches on the stimulus end, the difficulty is inter-
preting the relevance of the component dimensions that are
found: what, psychologically do these mean?

The solution is of course to find an approach to link
stimuli to behaviour (or brain response). The stimuli, and
the fMRI responses are individually high-dimensional, and
for each we have dimensionality reduction methods avail-
able. But we want to mesh the two: we want to find those
dimensions that actually matter to behaviour or to psychol-
ogy. There are a host of methods available to do this, and
the examples below give an overview of how this can work.

2. Case study 1: studies of face space to discover
the dimensions that underlie human social
judgements

In the first systematic study of social judgements from faces in
modern social psychology, Secord et al. [11] concluded that
‘the conventional “elementalizing” used by psychologists in
seeking to explain their data is simply inappropriate for physiog-
nomy, and that new ways of conceptualizing physiognomy
need to be found if it is to be fully understood.’ The researchers
reached this conclusion after finding out that the same facial fea-
ture in the context of other facial features can acquire completely
different meaning and, consequently, influence judgements in
opposite ways. Lips with the same thickness, for example, in
one combination create the expression of meekness and in
another of excitability and conceitedness. These effects have
been subsequently described as illustrating the holistic
perception of faces [12–14].

The standard experimental approach is to create all poss-
ible feature combinations and to test how these combinations
influence judgements. However, the space of possible combi-
nations is intractably large. With more than two features, the
possible combinations rapidly proliferate. With just 10 binary
features, we have 1024 feature combinations. With 20 binary
features, we have 1 048 576 feature combinations. To make
things worse, we do not even know what constitutes a
proper facial feature. Our intuitions point to things like eyes
and mouth but each of these ‘features’ could be further
broken down into a number of smaller features such as
pupil size, sclera size, sclera coloration, thickness of lips,
shape and bushiness of eyebrows and so on. And the features
are not binary. As a result of this complexity, typical
experiments focus on a set of features with limited variation.

In contrast with the standard approach, the data-driven
approach does not manipulate features and need not con-
strain the search for combinations of features to subsets of
features. The starting point for the data-driven approach is
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a mathematical model of face representation that captures the
holistic variation of faces. The first such models were based
on a principal components analysis (PCA) of the pixel inten-
sities of face images [15]. Subsequent models were based on a
PCA of the shape of faces acquired from three-dimensional
laser scanning of faces [16,17]. The same technique can be
used to build a statistical model of face reflectance, texture
and pigmentation, using the red, green and blue colour
values from each pixel on the face’s surface. In these
models, each face is represented as a vector in a multi-dimen-
sional space (figure 1). The statistical face space allows us to
randomly sample faces that are representative of the face vari-
ation captured by these models. To identify the combinations
of features that lead to social judgements, we simply need to
ask participants to judge the randomly sampled faces. If these
judgements are reliable, we can build a model of the face
variation that drives the judgements [18–20]. This model is
a new vector in the statistical face space that captures the
meaningful face variation with respect to the judgement.

Figure 2 shows such a model based on subject’s ratings of
faces. In the case of trustworthiness judgements, the primary
dimension on which faces are evaluated [18,21], we can see
that trustworthy faces are more feminine and have positive
expressions. Note that although emotional expressions were
not manipulated, they naturally emerged from the judgements
of the randomly varying faces. We can infer that weak emotional
signals are an important input to judgements and test this in stan-
dard experiments [22]. In the case of dominance judgements, the
second fundamental dimension on which faces are evaluated, we
can see that dominant faces are more masculine and facially
mature. We can infer that inferences of physical strength are an
important input to dominance judgements [18,21].

Coming back to the example quote we gave at the begin-
ning, there are clear future directions here: notably,
extending the analysis to nonlinear effects. The results from
linear techniques, such as the PCA approach we reviewed
above, can be taken as initial findings that could guide more
complex studies that begin to explore truly ‘holistic’ face pro-
cessing in which different features or dimensions interact in
more complicated ways. Needless to say, this opens up a
much larger search space, but if suitably guided by initial find-
ings, particular parts of this space could be explored. This last

point also raises an important comment on the relationship
between data-driven and hypothesis-driven methods: they
should interact and inform one another. Not all methods
should be entirely agnostic, but as we accrue findings, future
approaches, even if data-driven, in part, should incorporate
aspects of prior findings to help constrain our search for
those features and dimensions that matter the most.

2
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Figure 1. Statistical models of faces. An individual face stimulus can be represented as a vector in a dimensional space. With synthetic face stimuli, one can omit
dimensions that would be psychologically irrelevant, such as the type of camera taking the picture, and incorporate a more restricted set of dimensions to begin
with. (a) Illustration of statistical face space with two dimensions representing face shape. (b) Illustration of statistical face space with two dimensions representing
face reflectance.

model of perceptions of competence

model of perceptions of dominance

model of perceptions of extroversion
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Figure 2. Faces generated by a data-driven computational model of judgements
of (a) competence; (b) dominance; (c) extroversion and (d ) trustworthiness. Mid-
dlemost face on each row is the average face in the statistical model. The face to the
right is 3SD above the average face on the respective trait dimension; the face to
the left is 3SD below the average face.
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3. Case study 2: neural representations of movies
The above example shows how one can map even complex
stimuli-like faces into a space, relate dimensions of that
space to social judgements and use this information to con-
struct new synthetic stimuli. However, even these stimuli
are still impoverished compared with the real world. What
happens if we try to take account of a dynamic, multi-
modal stimulus?

Cinema provides an excellent way for simulating real life
in the laboratory. Movies are multi-modal, engaging snapshots
of reality, often describing human interactions in realistic con-
ditions. From the researcher’s point of view, however, this
realism comes at a cost: when multiple overlapping stimulus
features are present simultaneously, stimulus-specificity of
the corresponding neural responses is difficult to disentangle.
This is even more a problem when we try to use a technique
such as fMRI, which tracks sluggish hemodynamic responses
as the basic-dependent measure, even though it has the great
advantage of a whole-brain field of view. Yet, the multidimen-
sionality of the stimulus and the long, variable haemodynamic
timecourses of fMRI can be exploited with novel data analytic
techniques, which have emerged in parallel with increases in
computational power available for analyses.

Early fMRI studies confirmed that modelling BOLD data
with subject classification of events, such as occurrence of faces
and voices in movies, results in clear patterns of functionally
specialized neural responses [23,24]. Specific subsystems—such
as those involved in face or voice perception—thus operate
during natural viewing as in more controlled experiments (see
also [25] for similar results in macaques). On the fMRI end, it is
also possible to use the pattern of activation across multiple
voxels as the response, rather than the more typical mass-uni-
variate response, which averages over voxels. This multivariate
pattern analysis can be used to classify stimuli using tools from
machine learning, and it can be used to visualize stimulus cat-
egories in terms of the pattern similarity of the response
evoked. The multivariate approach to classification was first
introduced by Haxby in 2001 [26] and has now become nearly
ubiquitous in fMRI studies. The approach of visualizing simi-
larity spaces, pioneered by Nikolaus Kriegeskorte, so-called
representational similarity analysis [27,28], is also becoming a
mainstream tool for discovering structure in high-dimensional
stimulus spaces on the basis of the similarity of the neural
activation response that they evoke.

The most recent work combines many of the above
aspects and has revealed that voxel-wise cortical represen-
tations of over thousands of different, overlapping
categories can be resolved from fMRI data acquired during
movie viewing [29], a feat that would require literally days
of scanning using conventional designs with separate exper-
imental condition for each tested category. However,
interpretation of the observed activation patterns in relation
to the overlapping, time-locked stimulus features remains
challenging [29,30] (see the final section).

(a) Stimulus-blind analysis with intersubject
correlations

Prolonged naturalistic stimuli such as movies provide an
additional window to human brain function by enabling
analysis of intersubject reliability or intersubject synchroniza-
tion of the brain activity timecourses. This involves extracting

voxel-wise timecourses from each participant, and averaging
the voxelwise correlation of timecourses across each possible
subject pair. Temporal accuracy of the signal is thus sacrificed
for the sake of gaining sufficient signal-to-noise ratio for
quantifying regional response reliability across subjects. Criti-
cally, such analysis does not assume anything regarding the
underlying sensory features of the stimulus; thus it can be
used for exploring the regional response properties in the
brain. These kind of fMRI studies have revealed that
human cortical activity is time-locked across individuals (at
the time-scale of a few seconds) during naturalistic audiovi-
sual stimulation, confirming that neural processes occur at
similar temporal time-scales across individuals while proces-
sing naturalistic events presented in videos [31,32] or in
spoken narratives [33,34]; recently, it has also been applied
with significantly higher frequencies in MEG [35]. Intersub-
ject similarity measures can also be extended with reverse-
correlation techniques for probing the functional organiz-
ation of the human brain. Instead of using a pre-specified
stimulation model, it is possible to extract haemodynamic
time series from a specific brain region, and go back to the
original stimulus to assess whether focal, consistent brain
signals are associated with specific stimulus features [31].
Such explorative approaches open up insights into
the organization of human brain function that would go
unnoticed with a priori stimulation models.

Response reliability can also be quantified within subjects
for repeated presentations of the same stimulus. Such work
has revealed two broad, distinct sets of brain networks, one
whose responses are consistent and a second whose responses
are inconsistent with external stimulation, thus probably
reflecting ‘intrinsic’ and ‘extrinsic’ modes of information pro-
cessing [36]. In line with this, early visual areas show
reliable responses independently of disruption of temporal
structure of events in movies, whereas disruption significantly
lowers synchronization of upstream areas such as posterior
superior temporal sulcus and frontal eye fields [37].
This suggests that different cortical systems integrate sensory
information at different time scales. These findings are also
supported by frequency-specific intersubject-correlation ana-
lyses of movie viewing data, which find that sensory cortices
show synchronization at fastest, and frontal cortices at slowest
frequencies [38].

Finally, intersubject-correlation analysis can also be
extended to allow computation of moment-to-moment time
series of intersubject similarity, which can be used to model
how similarity in neural activation across participants fluctu-
ates as a function of time or due to experimental conditions
[39]. Conceptually, regionally selective synchronization of
brain activity across individuals could be the elementary
mechanism supporting mutual understanding of the social
environment. Activity within individual people’s brains
indeed becomes increasingly synchronous in a regionally selec-
tive fashion when they feel similar, strong emotions [40] or
assume similar psychological perspectives towards the
events described in a movie [41,42].

(b) Independent components analysis
An alternative solution for parsing the associations between
brain activity and overlapping stimulus dimensions in
movies involves the use of independent component analysis
(ICA, figure 3, [43]). In this blind signal separation approach,
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the BOLD signal is treated as a mixed signal, which is math-
ematically divided into statistically independent signals, that
is, independent components (ICs). The brain voxels belonging
to a single component thus share temporal activation patterns,
and areas with strong anatomical connections (e.g. language
areas) also often show associated response patterns [44].
ICA consequently allows anatomically unconstrained, func-
tional parcellation of the brain activity patterns, and enables
revealing brain activation patterns that may have been imposs-
ible to predict in forehand. It should be noted that ICA does
not inherently provide dimensionality reduction (although
dimensionality is typically first reduced for such analyses,
using methods such as PCA), but rather does so through a
process of post hoc selection of those components from the
ICA that are deemed relevant data (for instance, compo-
nents due to ‘noise’ such as head movement artefacts are
removed using ICA). Yet after the functional subdivision, the
ICs can be regressed against any stimulation model to reveal
their functional significance [32]. This approach may also
resolve the complex relationship between combinations of
overlapping stimulus features and resultant brain activation

patterns: after extracting functional patterns (ICs), temporal
dependencies between stimulus features and brain activation
patterns can be established using canonical correlation
analysis [45].

ICA is particularly powerful when analysing brain acti-
vation patterns associated with complex high-dimensional
stimuli, where onsets and offsets of discrete stimulus evens
cannot be defined. For example, tasks such as viewing a
movie, navigation in a VR environment or simulated driving
involve adaptation to a constantly changing environment
with multiple perceptual, attentional and motor behaviours,
yet the task structure cannot be fully specified a priori, practi-
cally precluding all sorts of model-based analyses of the brain
imaging data (see review in [46]). Despite its promise, ICA
retains a number of problems in application and interpret-
ation in the context of neuroimaging. First, determining the
number of components as well as aligning components
across subjects is far from straightforward. Second, interpret-
ation of the components still often requires a formal
stimulation model, so that IC timecourses can be linked
with, for example, stimulation events.

pairwise
correlations
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Figure 3. (a) Stimulus-blind analysis using intersubject correlation (ISC) is based on temporal similarity of voxelwise timecourses across subjects. When computed in
a sliding window across the timecourse, it also allows linking moment-to-moment ISC with stimulus model for quantifying the relationship between external
stimulus and response reliability across subjects. (b) Independent components analysis is based on dividing the BOLD signal into statistically independent com-
ponents. As in ISC, the extracted components can subsequently be linked with stimulus events. (a) Courtesy of Juha Lahnakoski, (b) adapted with permission
from Malinen et al. [32].
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4. Case study 3: using movie data to build a
model of shared representational spaces

As we discussed in the previous section, movies provide a much
richer and more diverse sampling of stimuli than is used in more
controlled experiments. They, therefore, also provide a better
basis for modelling the structure of high-dimensional represen-
tational spaces that is shared across brains [47,48], thus allowing
us to align different people’s brain representations in a func-
tional space that circumvents problems with standard
anatomical alignment. A model of the commonality of the func-
tional architecture of the human brain that is based on structural
anatomical features is inadequate. Anatomy-based alignment
does not align the fine-scale patterns of activity, embedded in
fine-scale features of cortical topographies, which carry distinc-
tions between the information represented by those patterns
[47,49–51]. Moreover, anatomy-based alignment does not cap-
ture the idiosyncratic individual variability of coarse
topographic features, such as the location, size and confor-
mation of the borders of functional areas such as
retinotopically organized early visual areas, motion-sensitive
MT or category-selective areas in ventral temporal cortex.

A common model of the functional architecture that capture
these features—fine-scale patterns of activity and individual
variability of coarse scale features—has been developed using
a new algorithm, hyperalignment and achieves broad general
validity by estimating model parameters based on responses to
a complex, dynamic, naturalistic stimulus, such as a full-length
movie [47,51,52]. The elements of this model are a common,
high-dimensional representational space and individual trans-
formation matrices that project data from idiosyncratic,
individual anatomic spaces into the common model space. The
first demonstration of this model was a common representational
space for ventral temporal cortex [47]. Subsequent developments
have extended this approach to make a common model of rep-
resentational spaces in all of human cortex [51]. The original
algorithm used the Procrustes transformation [53] to derive the
individual transformation matrices and common model space.
More recently, a probabilistic algorithm appears to afford build-
ing a model with even better performance [52].

The common model finds response tuning profiles that are
shared across brains. Between-subject correlations of local
time-series responses to movies double after hyperalignment
[47,51]. Between-subject multivariate pattern classification
(bsMVPC) is dramatically higher after hyperalignment, as
compared to bsMVPC of anatomically aligned data, equalling,
and at times exceeding, within-subject MVPC. This counterin-
tuitive result is achievable because the common model affords
larger, multi-subject datasets for training pattern classifiers,
whereas training datasets for wsMVPC are necessarily limited
to data from single subjects.

Using responses to a naturalistic movie to derive the
common model space and estimate the parameters for individ-
ual-specific hyperalignment transformation matrices greatly
increases the general validity of the common model in two
ways. First, surprisingly, the responses to the movie are
more distinctive than are responses to more controlled stimuli,
such as isolated, single objects or faces on a blank background.
In a matched bsMVPC analysis of single time-points from
responses to movies as compared to responses to isolated
faces and objects, accuracies were over twice as high for
responses to the movie than for responses to the more

controlled stimuli (figure 4, adapted from [47]). Second,
responses to the movie afford a common model with far
greater general validity than is possible if the common
model is derived based on responses to a more controlled
and limited range of stimuli. The hyperalignment algorithm
can also be applied to data obtained while subjects engage
in controlled experiments. Whereas a model based on movie
data generalizes to afford high levels of bsMVPC for unrelated
experiments, a model based on data from a controlled
experiment does not (figure 5, adapted from [47]).

Shared representation is the basis of social communi-
cation. Modelling how different brains represent the same
information, therefore, is key for understanding the epistemo-
logical basis of social cognition. The use of complex,
dynamic, naturalistic stimuli provides a stronger basis for
modelling that common basis than does the use of more con-
trolled stimuli. This advantage is due to several factors. First,
rich, naturalistic movies sample a much broader range of
stimuli and include dynamic movement, language, social
interactions and narrative structure. This broader sampling
affords more precise estimation of parameters for a high-
dimensional model of shared representation that has broad-
based validity across experiments. Moreover, this sampling
includes high-level aspects of social cognition that play
little role in controlled experiments. Second, viewing a con-
tinuous movie provides strong predictions at each moment
about what to expect next, at all levels of representation
from low-level visual features of changes due to continuous
movement to high-level semantic features based on plot
and character development. This allows predictive coding
to operate in a natural way, and prediction signals may be
a key component of neural representation. By contrast, con-
trolled experiments are generally designed to render
prediction signals as uninformative as possible, making
them inconsistent and a probable source of noise.

5. Case study 4: modelling attention in autism
For our last example we return once more to analysis of
stimuli, this time with complex images. As mentioned at
the beginning, one thing we would like to know, when
faced with a complex stimulus, is the contribution made by
each of its constituents. This was studied in an eyetracking
experiment, which asked what the influence is that different
features make to people’s fixations, and in particular, how
this might differ in people with autism spectrum disorder.
Conceptually, this is like a big regression problem: we want
to predict where people fixate on an image, and we want to
have as regressors all the different factors that could influence
this. Those factors include some basic low-level or ‘bottom-
up’ properties of images, such as the centre location of the
image, regions that have high contrast or colour and so
forth. They also include object- and semantic-level attributes
of the images, such as the locations of round or square
objects, the identity of those objects (faces, text, cars, etc.),
and other judged properties (e.g. their emotional relevance).
The low-level or pixel-level attributes can be assigned using
computer algorithms mimicking the response properties of
the visual system from retinal neurons through V1 [54],
whereas the object-level and semantic-level attributes
currently require manually annotating this on each image.
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Figure 4. bsMVPC of single time-points (TRs) from a movie, Raiders of the Lost Ark, and from a face and object perception study. (a) A seven-way bsMVPC analysis
matched the probability of correct classifications for the two experiments. Response patterns from one TR in each stimulus block of a run in face and object
experiment were extracted from all subjects. This was repeated for all eight runs. Response patterns of TRs during the movie presentation at the same acquisition
time as selected for the face and object experiment were extracted from all subjects to perform a similar seven-way bsMVPC analysis. (b) Results showed that BSC
accuracy for movie time-points was more than twice that for time-points in the face and object perception experiment. Dashed lines indicate chance classification
(one out of seven). Adapted from Haxby et al. [47].
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Figure 5. Comparison of the general validity of common models based on responses to the movie and on responses to still images. Common models were built
based on responses to a movie, Raiders of the Lost Ark, and responses to single images in a face and object category perception experiment [47], performed at
Princeton, and an animal species perception experiment (Connolly et al. [49]), performed at Dartmouth. Results on the left show bsMVPC accuracies for the
responses to single faces, objects and animal species. Results on the right show bsMVPC accuracies for 18 s time segments in the movie. Note that common
models based on responses to the category images afford good bsMVPC for those experiments but do not generalize to bsMVPC of responses to movie time
segments. Only the common model based on movie viewing generalizes to high levels of bsMVPC for stimuli from all three experiments. Dashed lines indicate
chance performance. From Haxby et al. [47].
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In the experiment, we used an out-of-sample prediction, a
support vector machine classification that was trained, in each
subject, on a subset of the eyetracking data and then evaluated
on the remainder of the fixations [55]. Subjects viewed 700
images that had over 5000 objects annotated on them. The analy-
sis yields ‘weights’ that, when normalized, correspond to how
much influence each feature has on where a subject fixates. We
found some expected weights in the control subjects: For
instance, faces had a high weight, as did text, as these are features
that typically strongly attract attention. However, for the autism
group, there were systematic differences in how bottom-up sal-
iency versus scene semantics guided eye movements: Notably,
they remained, across fixations, more influenced by low-level
properties (such as brightness), and less influenced by object-
and semantic-level properties (such as faces; [56]).

These findings illustrate the power of using data-driven
techniques also to investigate psychiatric disorders. There is
acknowledgement that the current diagnostic way of classify-
ing psychiatric disorders probably needs revision, and should
be based on more objective criteria. Data-driven approaches
to analysing behaviour, eyetracking or brain responses
could provide such criteria, perhaps also allowing us to
view psychiatric disorders more dimensionally.

6. Limitations
There are a number of caveats to data-driven approaches for
the investigation of social perception. In many cases—such
as in reverse-correlation techniques—large numbers of
trials are required, and in all cases, rich stimuli and/or
data are required. This imposes constraints on the time
required for an experiment, the number of sensory channels
engaged and the number of dependent measures obtained.
In the case of using fMRI while subjects are watching a
movie, the process can be rendered efficient because there
is a large bandwidth both at the stimulus end (complex,
dynamic, audiovisual stimulus) and the dependent measure
of brain activity (parallel measures in 50 000 voxels all over
the brain). In the case of more standard reverse-correlation
approaches, the approach can, however, quickly become
very inefficient and require a huge number of trials. Relat-
edly, statistical power, reliability and replication are
important considerations. In general, one would like to set
up an analysis that includes out-of-sample prediction
(such as cross-validation), and there are now many
approaches from machine learning to apply this to fMRI
and other data.

Some kind of regularization or dimensionality reduction
is often needed at the front end to begin any analysis, because
the number of datapoints is typically much larger than the
number of exemplars in a category. For instance, the
number of subjects or of stimuli may be quite small, in
relation to the richness of measures obtained. A number of
such methods, such as ICA that was discussed above, are
available for this. It is also often advantageous to have an
independent set of data from which a more guided analysis
can be conducted. For instance, in fMRI studies, it is often
informative to have a separate session that yields specific
regions of interest or data on which alignment is based.

A major conceptual limitation with all data-driven
methods is that, by design, they eschew a prior hypothesis
or theory. As such, it becomes a challenge to know what

meaning to assign to the results discovered: what do the
extracted dimensions mean? Sometimes emerging dimen-
sions or components make intuitive sense or may be
directly linked with the applied stimulation model, but some-
times not. For instance, when applying ICA to data, it is often
difficult to know which of the components produced reflect
artefactual data (e.g. due to movement of the subject in the
scanner or activity driven by eye movements) and which
are psychologically meaningful data. As the method itself is
blind to this question, it is the final interpretation of the
experimenter that must decide.

There are several solutions to this situation. One is of
course to have some prior knowledge, perhaps results from
other convergent experiments, that can help to triangulate
on meaning in the results (see e.g. [29] for linking model-
free and model-based responses to semantic categories). A
second is to use data-driven methods that nonetheless dis-
cover functions describing the data and thus give further
insight. An example of this latter approach is symbolic
regression, which uses genetic algorithms to generate a func-
tion that classifies the data. To our knowledge, this approach
has, however, never been applied to fMRI data.

To illustrate this problem a little more, let’s return to our
first case study of the face space. If we just show synthetic
faces on a computer screen, we can completely describe the
stimuli. In images consisting of 500 ! 500 pixels, the corre-
sponding 500 ! 500 matrix of grayscale values describes the
stimulus completely. One might think this is a fairly easy pro-
blem: just do a principal component analysis on all the faces,
from their initial 500 ! 500 pixelwise representations. Doing
so, however, will still give many dimensions with possibly
erroneous ordering of how those dimensions contribute to all
the variability in the faces. If one makes some faces slightly
darker, and some lighter, or shoot some with a polaroid and
others with a digital canon camera, a completely stimulus-
driven approach will pull out dimensions such as the type of
the camera and the global brightness of the image. Yet those
are not likely to be psychologically relevant dimensions.
Instead, psychologically relevant dimensions could be: those
people that are familiar to me, versus those that are not.
How on earth could we find this dimension solely by analysing
the pixel-by-pixel features of the stimuli?

This then shows us a big hurdle in applying data-driven
methods. We cannot simply operate on the stimuli, because
there are complex associations that people have with subsets
of stimuli, and because certain aspects of stimuli (like the
type of camera) are mostly irrelevant to people. That is the
problem: we do not know what is relevant in our high-
dimensional stimulus set. The brain does. That is why we
need to link stimuli with brain or behaviour in some way,
and for example, generate novel stimuli using the emerging
dimensions and go back to the good old-fashioned practice
of asking subjects to group stimuli and label the groups, or
simply evaluate how the stimuli look like.
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Sams M, Brattico E. 2012 Large-scale brain networks
emerge from dynamic processing of musical timbre,
key and rhythm. NeuroImage 59, 3677 – 3689.
(doi:10.1016/j.neuroimage.2011.11.019)

7. Zacks JM, Speer NK, Swallow KM, Maley CJ. 2010
The brain’s cutting-room floor: segmentation of
narrative cinema. Front. Hum. Neurosci. 4, 12.
(doi:10.3389/fnhum.2010.00168)

8. Stephens GJ, Silbert LJ, Hasson U. 2010 Speaker-
listener neural coupling underlies successful
communication. Proc. Natl Acad. Sci. USA
107, 14 425 – 14 430. (doi:10.1073/pnas.
1008662107)

9. Schyns PG, Petro LS, Smith ML. 2007 Dynamics of
visual information integration in the brain for
categorization facial expressions. Curr. Biol. 17,
1580 – 1585. (doi:10.1016/j.cub.2007.08.048)

10. Kontsevich LL, Tyler CW. 2004 What makes Mona
Lisa smile? Vis. Res. 44, 1493 – 1498. (doi:10.1016/j.
visres.2003.11.027)

11. Secord PF, Dukes WF, Bevan W. 1954 Personalities
in faces: I. An experiment in social perceiving.
Genetic Psychol. Monogr. 49, 231 – 279.

12. Rossion B. 2013 The composite face illusion: a
whole window into our understanding of holistic
face perception. Vis. Cogn. 2, 139 – 253. (doi:10.
1080/13506285.2013.772929)

13. Todorov A., Loehr V, Oosterhof NN. 2010 The
obligatory nature of holistic processing of faces in
social judgments. Perception 39, 514 – 532. (doi:10.
1068/p6501)

14. Young AW, Hellawell D, Hay DC. 1987
Configurational information in face perception.
Perception 16, 747 – 759. (doi:10.1068/p160747)

15. Turk M, Pentland A. 1991 Eigenfaces for recognition.
J. Cogn. Neurosci. 3, 71 – 86. (doi:10.1162/jocn.
1991.3.1.71)

16. Blanz V, Vetter T. 1999 A morphable model for the
synthesis of 3D faces. In Proc. of the 26th Annu.
Conf. on Computer Graphics and Interactive
Techniques, pp. 1872194Q2 .

17. Blanz V, Vetter T. 2003 Face recognition based on
fitting a 3D morphable model. IEEE Trans. Pattern
Anal. Mach. Intell. 25, 1063 – 1074. (doi:10.1109/
TPAMI.2003.1227983)

18. Oosterhof NN, Todorov A. 2008 The functional basis
of face evaluation. Proc. Natl Acad. Sci. USA 105,
11 087 – 11 092. (doi:10.1073/pnas.0805664105)

19. Todorov A, Oosterhof NN. 2011 Modeling social
perception of faces. IEEE Signal Process. Mag. 28,
117 – 122.

20. Walker M, Vetter T. 2009 Portraits made to
measure: manipulating social judgments about
individuals with a statistical face model. J. Vis. 9,
12, 1 – 13. (doi:10.1167/9.11.12)

21. Todorov A, Said CP, Engell AD, Oosterhof NN. 2008
Understanding evaluation of faces on social
dimensions. Trends Cogn. Sci. 12, 455 – 460. (doi:10.
1016/j.tics.2008.10.001)

22. Said C, Sebe N, Todorov A. 2009 Structural
resemblance to emotional expressions predicts
evaluation of emotionally neutral faces. Emotion 9,
260 – 264. (doi:10.1037/a0014681)

23. Bartels A, Zeki S. 2004 Functional brain mapping
during free viewing of natural scenes. Hum. Brain
Mapp. 21, 75 – 85. (doi:10.1002/hbm.10153)

24. Moran JM, Wig GS, Adams Jr RB, Janata P, Kelley
WM. 2004 Neural correlates of humor detection and
appreciation. NeuroImage 21, 1055 – 1060. (doi:10.
1016/j.neuroimage.2003.10.017)

25. Russ BE, Leopold DA. 2015 Functional MRI mapping
of dynamic visual features during natural viewing in
the macaque. NeuroImage 109, 84 – 94. (doi:10.
1016/j.neuroimage.2015.01.012)

26. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten
JL, Pietrini P. 2001 Distributed and overlapping
representation of faces and objects in ventral
temporal cortex. Science 293, 2425 – 2429. (doi:10.
1126/science.1063736)

27. Kriegeskorte N, Bendettini P. 2007 Analyzing for
information, not activation, to exploit high-
resolution fMRI. NeuroImage 38, 649 – 662. (doi:10.
1016/j.neuroimage.2007.02.022)

28. Mur M, Bandettini PA, Kriegeskorte N. 2009 Tools of
the trade: revealing representational content with
pattern-information fMRI—an introductory guide.
Soc. Cogn. Affect. Neurosci. 4, 101 – 109. (doi:10.
1093/scan/nsn044)

29. Huth AG, Nishimoto S, Vu AT, Gallant JL. 2012
A continuous semantic space describes the
representation of thousands of object and action
categories across the human brain. Neuron 76,
1210 – 1224. (doi:10.1016/j.neuron.2012.10.014)

30. Lahnakoski JM, Glerean E, Salmi J, Jaaskelainen I,
Sams M, Hari R, Nummenmaa L. 2012 Naturalistic
fMRI mapping reveals superior temporal sulcus as
the hub for the distributed brain network for social
perception. Front. Hum. Neurosci. 6, 14. (doi:10.
3389/fnhum.2012.00233)

31. Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R.
2004 Intersubject synchronization of cortical activity

during natural vision. Science 303, 1634 – 1640.
(doi:10.1126/science.1089506)

32. Malinen S, Hlushchuk Y, Hari R. 2007 Towards
natural stimulation in MRI—Issues of data analysis.
NeuroImage 35, 131 – 139. (doi:10.1016/j.
neuroimage.2006.11.015)

33. Nummenmaa L, Saarimäki H, Glerean E,
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